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Abstract

This paper deals with several bijections between cladograms and perfect match-
ings. The first of these is due to Diaconis and Holmes. The second is a modification
of the Diaconis-Holmes matching which makes deletion of the largest labeled leaf
correspond to gluing together the last two points in the perfect matching. The third
is an entirely new encoding of cladograms, first as a bijection with a certain set of
strings and then via this to perfect matchings. In this pair of bijections, deletion of
the largest labeled leaf corresponds to deletion of the corresponding symbols from
the string or deletion of the corresponding pair from the matching. These two new
bijections are related through a common max-min labeling of internal vertices with
two different choices for the label of the root node. All these encodings are extended
to cladograms with edge lengths and left-right ordered children. Moving a single
symbol in this last encoding corresponds to a subtree prune and regraft operation
on the cladogram, making it well suited for use in phylogentics software. Finally,
a perfect Gray code for cladograms is derived from the bar encoding, along with a
total ordering on all cladograms, Algorithms are also provided for finding the next
and previous cladogram, the cladogram at any position, and the position of any
cladogram in the sequence.

A cladogram with n leaves is a rooted binary leaf labeled tree with leaves distinctly
labeled 1, . . . , n. It has long been known that the number of such trees with exactly n
leaves is (2n − 3)!!. This is also the number of perfect matchings on 2(n − 1) points.
Diaconis and Holmes give a bijection in [7] between the set of cladograms and perfect
matchings.
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Currently, cladograms are most often encoded in variants of the Newick or New Hamp-
shire format. This is an enrichment of parenthesis notation which allows additional in-
formation such as edge-lengths to be included. However, a major drawback of Newick
notation is that there is in general not a unique representation for a cladogram. For ex-
ample, testing equality of large cladograms given in Newick format is a non-trivial task.
For this reason, a bijection is preferable.

One such bijection is that of Diaconis-Holmes. This is used in the R package APE
(Analysis of Phylogeny and Evolution [14]) because it provides a unique and compact
representation of a cladogram, and in a fast-mixing random walk on cladograms [6].
While simple and elegent, this bijection can be improved upon.

A desirable property which the Diaconis-Holmes bijection lacks is deletion-stability.
There is a natural projection from the set of cladograms with n leaves to the set with
n−1 leaves: deletion of the n-th leaf. For the Diaconis-Holmes bijection the induced map
on perfect matchings is not natural.

A second direct bijection between cladograms and perfect matchings is presented here,
called the hat encoding. This is an alteration of the Diaconis-Holmes bijection which
makes deletion of the leaf labeled n correspond to gluing together the last two points
in the matching. Algorithms are provided for finding the matching corresponding to a
cladogram and the cladogram corresponding to a matching.

A completely new encoding of cladograms is also presented, called the bar encoding.
This coding is a bijection between cladograms with n leaves and a subset of permutations
of the set {2, 2̄, 3, 3̄, . . . , n, n̄}. This string of symbols is called the name of a cladogram.
Deletion of the leaf labeled n corresponds to deletion of the symbols n and n̄ from the
name. The set of names is in natural bijection with the set of matchings on 2n−2 points.
For a cladogram with n leaves, deletion of the leaf labeled n corresponds to removing the
last pair in the matching (pairs are labeled by starting at the last point in the set and
moving to the first, labeling pairs n to 2 in the order they are first encountered).

The hat and bar encodings both involve labeling the internal vertices of a tree. Both
of these labelings may be easily described in terms of maxmin labeling, covered in Section
4. Which of the labeling is generated depends on the choice of label for the root vertex.

The bar encoding is also used to give a perfect Gray code on the set of cladograms
with n leaves. In this case, the Gray code is a sequential ordering of the set of cladograms
so that adjacent cladograms differ by a small amount, specifically a subtree prune and
regraft operation. Algorithms are provided to find the name of the next and previous
cladogram in the Gray code. Algorithms are also provided which return the position of
a cladogram in the Gray code given its name, and the name of the cladogram in a given
position. Such functions are sometimes called ranking and unranking functions, such as
those for the set of permutations given by Myrvold and Ruskey [13]. The Combinatorial
Object Server [16] uses such functions to provide indexed lists for many types of objects
but does not yet serve cladograms.

The necessary basic definitions are now reviewed.
Recall that a tree is a simple graph of vertices and edges with precisely one non-self-

intersecting path between any two vertices.
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A cladogram with n leaves is a finite rooted binary tree with non-root leaves distinctly
labeled 1, 2, . . . , n. Note that the planar representation of the cladogram is not important:
ie. ‘left’ and ‘right’ children are not distinguished. A fat cladogram, or oriented cladogram,
is a cladogram where the children of each vertex are distinguished as the ‘left’ child and
the ‘right’ child. In other words, the edges around each vertex have a cyclic ordering.

485376 12

Figure 1: A cladogram with 8 leaves.

A perfect matching of 2m points may be thought of as an involution on a set of 2m
points which has no fixed points. In other words, every point is paired with another point,
and each point is a member of exactly one pair. The two points in a pair may be thought
of as being joined by an edge. Figure 2 shows an example of a perfect matching.

◦
GF ED

◦
GF ED

◦@A BC◦ ◦
GF ED

◦@A BC◦ ◦ ◦@A BC◦
GF ED

◦ ◦ ◦ ◦

Figure 2: A perfect matching on 14 points.

There are several different possible definitions for what it means for two cladograms
to be ‘close’ to one another. Waterman [22] defined two cladograms to be adjacent if one
may be obtained from the other by migrating a sub-branch past a single vertex. This is
often called nearest neighbor interchange. This was extended to the continuous case by
Billera, Holmes and Vogtmann [3].

Two cladograms might also be considered adjacent if one may be obtained from the
other by migrating a single branch from one location to another. In other words, two
cladograms are adjacent if the subtree below an edge in the first cladogram can be pruned
and then regrafted onto another edge of the remaining cladogram to arrive at the second
cladogram. This is often called rooted subtree prune and regraft (rSPR). A special case of
this is nearest neighbor interchange, where an edge is migrated past a neighboring edge.
See [9] for a good introduction. Bonet, St John, Mahindru and Amenta give a algorithm
for approximating the distance between trees under this metric [4].
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1 The Diaconis-Holmes bijection

The only previously reported encoding of cladograms as perfect matchings is that of
Diaconis and Holmes [7]. This encoding is now briefly described.

Let the term sibling pair denote a pair of vertices with the same parent vertex. Let
the term non-root branch point denote a branch point which is not the first branch point
below the root. The Diaconis-Holmes (DH) bijection may be described as a two-step
process: first label internal vertices, then record sibling pairs.

Algorithm: DiaconisHolmesBijection
Input: A cladogram t with n > 2 leaves.
Output: A perfect matching on the set {1, 2, . . . , n, n + 1, . . . , 2n− 2}.
1: (Start by labeling the internal vertices as follows:)
2: while there are unlabeled non-root branch points do
3: Consider every sibling pair which has both siblings labeled, but not the common

parent. Of these, choose the sibling pair which contains the smallest label.
4: Give the parent of this sibling pair the smallest unassigned label.
5: end while
6: Return the set of all sibling pairs. (This is the perfect matching corresponding to the

cladogram).

For example, Figure 3 shows a cladogram before and after its internal vertices are
labeled. The matching for this tree is given by taking all sibling pairs:
(1, 5)(3, 4)(6, 7)(2, 8)(9, 10).

6 1 5 2 4 3 6 1 5 2 4 3

10

7
9

8

1

GF ED
2@A BC3

GF ED
4 5 6@A BC7 8 9

GF ED
10

Figure 3: A cladogram with 6 leaves before and after labeling by the DH scheme, and its
DH matching: (1, 5)(3, 4)(6, 7)(2, 8)(9, 10)
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The inverse algorithm from [7], which takes a perfect matching and gives a cladogram,
follows the obvious procedure: connecting sibling pairs together at their parent node and
doing this in the order corresponding the the labeling procedure in the previous algorithm.

Algorithm: InverseDiaconisHolmesBijection
Input: A perfect matching on the set {1, 2, . . . , n, n + 1, . . . , 2n− 2}, with n > 2.
Output: A cladogram t with n leaves.

1: Create a graph, G with n nodes labeled 1, . . . , n.
2: Create a set, S, of all the pairs in the perfect matching.
3: for i from 1 to n− 1 do
4: Take all the pairs in S for which both their elements have corresponding labeled

points in G.
5: Choose the pair, (a, b), with the smallest element from among these.
6: Create a new node in the graph labeled n + i.
7: Create edges from node a to node n + i and from node b to node n + i.
8: Remove the pair (a, b) from the set S.
9: end for

10: Declare the node labeled 2n− 1 to be the root of the graph.
11: Remove the node labels n + 1, . . . , 2n− 1 and return the resulting rooted graph.

For completeness, a proof that these functions form a bijection presented her. First,
show that the above algorithm gives a cladogram with the desired property.

Proposition 1 The above algorithm produces a (rooted) cladogram with n leaves and the
tree with internal labels has sibling pairs equal to the pairs in the matching.

Proof. First, show that the algorithm never gets stuck at Step 5: there is always at least
one pair in S to choose in Step 5. This follows by a simple counting argument. There are
n + i− 1 points in the graph with labels from the set {1, . . . , 2n− 2} and n− 1 pairs in
the matching on the same set so at least i pairs have both their elements in the graph.
The set S contains n − i of the n − 1 pairs so it must contain at least one of the i pairs
for which both elements are already labels in graph G.

Next, note that the graph has exactly 2n− 1 nodes labeled 1, . . . , 2n− 1. Also, note
that all edges are created in Step 7. Thus, nodes 1, . . . , n have degree 1 since these labels
occur in the matching exactly once and are not of the form n + i for i > 1. Similarly,
nodes n+1, . . . , 2n−2 have degree 3 since each of these labels occur once in the matching,
contributing one edge to their parent, and once in the form n + i for some i > 1 which
contributes 2 edges from their children. Finally, the root node, labeled 2n − 1 has one
edge from each of its two children and does not occur in the matching.

Now, with the exception of node 2n−1, each node is connected to a unique node with
a larger label. This follows as edges are only created in Step 7 both a and b must be less
than n+ i as they already exist in the graph G and, since the input is a perfect matching,
each node occurs in Step 7 as a or b exactly once.
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Thus, the resulting graph is a rooted tree and the parent of each node other than 2n−1
is the unique adjacent node with a higher label. This implies that the nodes a and b in step
Step 7 are sibling (share the same parent). These are exactly the pairs in the matching. �

Proposition 2 For any integer n > 2, the function DiaconisHolmesBijection defined
above gives a bijection between cladograms with n leaves and perfect matchings on the set
of points {1, . . . , 2n− 2}.

Proof. Take a perfect matching and use the algorithm InverseDiaconisHolmesBijection
to generate a cladogram. Apply the algorithm DiaconisHolmesBijection, which labels the
internal nodes of this cladogram and records the sibling pairs, to give a second matching.
The aim is to show that these two matchings are identical and from there that the functions
are inverse to each other.

By Proposition 1, the cladogram in Step 10 of InverseDiaconisHolmesBijection, with
internal leaves labeled, has sibling pairs given by the original matching m. All that
remains is showing that the labeling of the internal nodes by DiaconisHolmesBijection.
This is clear, since the labeling of nodes in one happens in exactly the same way as the
creation of nodes in the other: in one case the sibling pair for which the labels exist in
the graph which has the smallest label, and in the other case the matching pair (soon to
be sibling pair) for which both labels exist in the graph which has the smallest label.

Since the labeling of the internal nodes agrees, the set of sibling pairs agrees and
so the two matchings are equal. It is well known that the set of perfect matchings on
{1, . . . , 2n − 2} and the set of cladograms with n leaves have the same cardinality ([19]
and later [5]), completing the proof that these functions are inverses of each other and so
are bijections. �

1.1 Encoding edge lengths and fat cladograms

Diaconis and Holmes [7] also note that if the cladogram comes equipped with edge lengths
then these may also be encoded by labeling each point in the matching with the length
of the edge above the corresponding vertex of the tree. These lengths may be recorded
as a subscript to the label.

For example, if all (non-root) edges in the cladogram in Figure 3 have length propor-
tional to their apparent length then the corresponding labeled matching is:

(11, 51)(31, 41)(62, 71)(22, 81)(93, 103)

The length of the root edge is not recorded. This is not a serious limitation in common
use cases such as phylogenetics, where it does not make sense to consider the length of
the root edge.

This encoding is used in the R package ape (Analysis of Phylogenetics and Evolution)
[14].
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Note that similar additional information may be used to extend the DH encoding to
fat cladograms. A fat cladogram, or oriented cladogram is a cladogram together with a
cyclic ordering of the edges at every vertex. In other words, the ‘left’ and ‘right’ child of
a vertex are distinguished from each other. The term fat comes from the concept of a fat
graph, where an ordering is placed on the edges incident to each vertex. Fat graphs were
first introduced by Penner in [15].

This additional information may be easily added to the matching by ordering each
pair: placing the ‘left’ child first and the ‘right’ child second. This may also be thought
of as orienting an edge joining the two elements of a pair, or labeling this edge with ±1.
Call such a perfect matching with this extra information a directed perfect matching, or
edge labeled perfect matching.

For example, considering the cladogram in Figure 3 as a fat cladogram makes the
corresponding directed/edge-labeled perfect matching:
(1, 5)(4, 3)(6, 7)(2, 8)(10, 9)

The next section introduces a further alteration to the DH bijection with improved
properties. Specifically, given the deletion map on cladograms which removes the largest
leaf, the corresponding map on perfect matchings induced by the bijection is very natural:
gluing together the last two points of the matching.

2 The hat bijection between cladograms and perfect

matchings

This section describes a new bijection between cladograms with n leaves and perfect
matchings on 2n − 2 points {1, 2, 3, 3̂, . . . , n, n̂}. This bijection is an alteration of the
bijection of Diaconis and Holmes described in the previous section. The difference is in
the way that the internal vertices are labeled before recording sibling pairs. This bijection
will be called the hat bijection, for lack of a better name.

Some notation is now introduced to aid description of the bijection.
For a rooted tree t let the subtree of t spanned by leaves v1, . . . , vk denote the usual

subgraph spanned by these vertices and the root vertex, except that vertices of degree 2
are erased (so that their two adjacent vertices are now joined directly by an edge). See
Figure 4 for an example.

There is a natural injection from the set of vertices of the subtree into the original
tree, and from the set of edges of the subtree into edges of the original tree. The bijection
is clear for the leaves themselves. An internal vertex v in the subtree is identified by the
set of leaves below it. The corresponding vertex in the supertree is the lowest common
ancestor of this set of leaves. In other words, the corresponding vertex is on the shortest
paths from each of these leaves to the root, and contains all such vertices on its own
shortest path to the root. In this way the vertices of the subtree may be considered as
vertices of the supertree.

The edges of the subtree may also be considered as edges of the supertree. Specifically,
if two vertices correspond to each other then the single edges immediately above them
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e
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c

a
A

Figure 4: The tree on the right is the subtree of the one on the left spanned by leaves 1,
2 and 4. The vertices and edges in the supertree corresponding to those in the subtree
are highlighted and labeled.

correspond also. An example of this is shown in Figure 4.
Let Cl(n) denote the set of cladograms with n leaves

Definition 3 Let Dn : Cln → Cln−1 denote the operation of deleting the largest leaf of
a cladogram with n leaves. Specifically, Dn(t) is the cladogram given by removing from
cladogram t vertex n and its parent (and the three edges incident to these two vertices)
and creating a new edge between the two neighbors of the parent of n (that vertex’s parent
and its other child, which is a sibling of n).

Extend this definition to cladograms with edge lengths by giving the new edge length
equal to the sum of the two edges which were just removed from its two end points, thus
preserving the natural distance between all surviving nodes.

Extend this definition to oriented/fat cladograms by replacing, in the cyclic ordering
at each of the two surviving modified nodes, the just removed edges with the newly created
edge.

In the case of a cladogram with n leaves, the subtree spanned by leaves 1, 2, . . . , k is
given by deleting leaves n, n− 1, . . . , k + 1 with the deletion maps Dn, Dn−1, . . . , Dk+1.

Conversely, a new leaf labeled n may be inserted into a cladogram with n−1 leaves at
an edge e. This is done by creating two new vertices, call them n and n̄ which are joined
by an edge. A new edge is added from n̄ to each of the two ends of edge e and then edge
e itself is removed (so that the resulting graph is still a tree). See Figure 5 for an example
of insertion and deletion.

Let the term first branch point refer to the first internal vertex below the root (for
a tree with at least 2 leaves). Let the term non-root branch point refer to any internal
vertex (branch point) which is not the first branch point.
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7 64 2 3 8 5 1 7 64 2 3

8

5 1

e

Figure 5: The tree on the right is the subtree of the one on the left gained by deleting leaf
8. Alternatively, the supertree on the left is gained by inserting leaf 8 into the highlighted
edge, e, of the tree on the right.

Below is an algorithm, called HatBijection, for producing the perfect matching for a
cladograms with at least 2 leaves.

Algorithm: HatBijection
Input: A cladogram t with n > 2 leaves.
Output: A perfect matching on the set {1, 2, . . . , n, 3̂, . . . , n̂}.
1: Let tk, for i ∈ {2, . . . , n}, denote the subtree of t spanned by leaves 1, . . . , k.
2: for i = 3, . . . , n do
3: ti has exactly one non-root branch point which is not a non-root branch point of

ti−1. Label this vertex î.
4: end for
5: Return all sibling pairs.

Corollary 6 shows that this function defines a bijection between cladograms with n leaves
and perfect matchings on the set {1, 2, . . . , n, 3̂, . . . , n̂}. The inverse function is given in
Section 2.2. Also, note that tk−1 = Dktk, the cladogram obtained by deleting leaf k from
tk.

For example, Figure 6 shows a cladogram labeled according to this algorithm and the
corresponding perfect matching. Figure 7 shows the cladogram obtained by deleting the
largest leaf, 8, and its corresponding perfect matching.

Notice that the perfect matching for this second cladogram is obtained from the first
by gluing together nodes 8 and 8̂, which converts the two pairs (4, 8) and (5, 8̂) into a
single pair (4, 5). This correspondence between deletion and gluing occurs in general.

Let h denote the map from cladograms to perfect matchings defined by algorithm
HatBijection.

Recall that Cl(n) denotes the set of cladograms with n leaves and Dn : Cln → Cln−1
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2 6 1 537 8 4

6

4

7

8

5
^

^

^

^

^

3
^

1
GF ED

2@A BC3 3̂

GF ED
4

@A BC
4̂
GF ED

5@A BC5̂ 6 6̂
GF ED

7 7̂ 8 8̂

Figure 6: A cladogram with 8 leaves with internal vertices labeled accord-
ing to the algorithm called hatBijection, and its corresponding perfect matching:
(1, 3)(2, 6)(3̂, 7̂)(4, 8)(4̂, 5̂)(5, 8̂)(6̂, 7)

2 6 1 537 4

6

4

7

5
^

^

^

^

3
^

1
GF ED

2@A BC3 3̂

GF ED
4@A BC4̂

GF ED
5 5̂ 6 6̂

GF ED
7 7̂

Figure 7: A cladogram with 7 leaves with internal vertices labeled accord-
ing to the algorithm called hatBijection, and its corresponding perfect matching:
(1, 3)(2, 6)(3̂, 7̂)(4, 5)(4̂, 5̂)(6̂, 7)
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the operation of deleting the largest leaf. For n > 2, let Match(n) denote the set of
matchings on the set {1, 2, . . . , n, 3̂, . . . , n̂} (for n = 2 the set is {1, 2}). For n > 3, let
Gn : Match(n) → Match(n−1) denote the operation which glues points n and n̂ together:
If n and n̂ were paired by the matching then simply remove them and the edge between
them, otherwise remove them both and glue the point which was paired with n to the
point which was paired with n̂.

Proposition 4 If t is a cladogram with n > 3 leaves and h(t) is the corresponding perfect
matching then deleting leaf n corresponds to gluing n and n̂ together: Gn(h(t)) = h(Dn(t))
In other words, the following diagram commutes:

Cl(n) h //

Dn

��

Match(n)

Gn

��
Cl(n− 1) h // Match(n− 1)

Proof. Consider a cladogram t with n leaves.
First, note that tn−1 = Dnt, the tree given by deleting leaf n from tree t. Now, tree t

contains exactly one internal non-root branch point which is not a non-root branch point
of tn−1 = Dnt.

If the parent of leaf n is the root branch point then the sibling of n is the new non-root
branch point and is thus labeled n̄. Therefore, every sibling pair in Dnt is still a sibling
pair in t. Thus the matching corresponding to t is precisely the matching corresponding to
Dnt on points 1, 2, 3, . . . , n−1, 3̂, . . . , ˆn− 1 along with the new sibling pair (n, n̂). Gluing
this last pair together recovers the matching for Dnt.

If the parent of n in t is not the root branch point then this parent is the new non-root
branch point and is therefore labeled n̂. Let x be sibling of n and y be the sibling of
n̂ (see Figure 8). Deleting vertices n and n̂ from tree t and joining x with an edge to
the parent of n̂ produces the tree Dnt. Note that in this tree the vertices x and y are
now siblings. All other sibling pairs remain unaltered. Therefore, the matching for Dnt
is gained from the matching for t by taking the points x and y, which are paired with n
and n̂ respectively, and pairing them whilst removing points n and n̄. This is precisely
the operation of gluing n and n̂ together. �

The reason this bijection is an improvement on the previous bijection is that it pre-
serves some of the natural structure on the objects in question by carrying a natural
operation on one set to a natural operation on the other. In this case, the new bijection
allows the operation of deleting the largest leaf of a cladogram to be performed directly
on the matching representation. Furthermore, moving a symbol in the bar encoding of
a cladogram corresponds to a subtree prune and regraft (SPR) operation on trees. This
SPR operation preserves most of the structure of the tree, allowing reuse of partial results
in likelihood calculations, and is biologically natural because it describes reticulation in
evolution: [12], [20].

The DH bijection is used in the R package APE (Analysis of Phylogeny and Evo-
lution [14]) because it provides a unique and compact representation of a cladogram.
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n

n^

x

y

x

y

Figure 8: In the cladogram on the left, (n, x) and (n̂, y) are sibling pairs. In the cladogram
on the right (x, y) is a sibling pair.

The advantages of the bar encoding make it well suited for this and other phylogentics
software.

The next two sections briefly discuss encoding fat cladograms and cladograms with
edge lengths and give the inverse map for this bijection.

The section following these, Section 3, describes an encoding of cladograms as certain
types of strings and an associated bijection between cladograms and perfect matchings.
The new encodings in this latter section preserve deletion of the largest leaf in a different
way than the hat bijection just discussed.

2.1 Encoding edge lengths and fat cladograms

Again, given a cladogram with edge lengths, the non-root edge lengths may be recorded
by labeling each point in the matching by the length of the edge above the corresponding
vertex in the cladogram. If the cladogram is a fat cladogram then each pair may be
ordered: ‘left’ child then ‘right’ child.

For example, considering the cladogram in Figure 6 as a fat cladogram with all edge
lengths equal to 1 gives the corresponding directed, labeled perfect matching:

(11, 31)(21, 61)(7̂1, 3̂1)(81, 41)(4̂1, 5̂1)(51, 8̂1)(6̂1, 71)

Considering all edge lengths to be proportional to their apparent length in the diagram
in Figure 6 gives:

(11, 31)(21, 61)(7̂2, 3̂3)(81, 41)(4̂3, 5̂5)(52, 8̂1)(6̂1, 72)
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When deleting the largest leaf of an n-leaf cladogram, the lengths of some edges may
change. The lengths associated with most edges in the tree and labels in the encoding
remain the same. There are two cases to consider:

If n and n̂ are paired then they must be the children of the first branch point and so
removing them only effects the length of the root edge, which is not recorded. Thus, all
remaining recorded edge lengths are remain unchanged. If n and n̂ are not paired then
removing n̂ increases the length of the edge below it by the length of the edge above it.
This corresponds in the encoding to adding the length associated with n̂ to the length of
the vertex paired with n, and leaving all other recorded lengths unchanged.

In the example above, when leaf 8 is deleted the length associated with 81 is added to
the length associated with 41 (which was paired with 8) to give 42:

(11, 31)(21, 61)(7̂2, 3̂3)(4̂3, 5̂5)(52, 42)(6̂1, 72)

2.2 Recovering the cladogram given the matching

This section contains an inverse function for the algorithm HatBijection as well as a proof
that they are actually inverse to each other. This implies that HatBijection is actually a
bijection.

Recall the definition of inserting a leaf, given at the beginning of Section 2.
The following is the natural recursive function which is inverse to function HatBijec-

tion.
Algorithm: HBInverse
Input: A perfect matching m on the set {1, 2, . . . , n, 3̂, . . . , n̂} (n > 2).
Output: A cladogram t with n leaves.

1: if n=2 then
2: Return the unique cladogram with two leaves.
3: end if
4: Let m′ be the perfect matching given by gluing n and n̂ together in matching m (ie.

m′ := Gn(m)).
5: Let t′ := HBInverse(m′).
6: if n and n̂ are paired in m then
7: Let t be the cladogram which is the root join of the leaf n and cladogram t′ (ie.

insert leaf n into the root edge of t′).
8: Label the sibling of n in t with symbol n̂.
9: else

10: Let x be the point paired with n and y be the point paired with n̂ in matching m.
11: Let t be the tree gained from t′ by inserting a leaf labeled n into the edge immedi-

ately above the vertex labeled x.
12: Label the newly created internal vertex n̂.
13: end if
14: Return labeled cladogram t.

Proposition 5 The algorithms HatBijection and HBInverse are inverse to each other.
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Proof. Proceed by induction on the number of leaves n. Both algorithms are trivial for
n = 2 and are inverse to each other (there is only one cladogram and only one matching).

Suppose that the algorithms are inverse to each other for all n < k. Let h denote
the function defined by algorithm HatBijection and g the function defined by algorithm
HBInverse.

Let t be a cladogram with k leaves. Show that gh(t) = t as follows:
Let t′ = Dkt, the cladogram gained by deleting leaf k from cladogram t. Let m′ be

the perfect matching which is in bijection with t′ (ie m′ = h(t′)).
Now, if k is a child of the root branch point then the sibling of k is labeled k̂ and so

the perfect matching m given by algorithm HatBijection has k matched with k̂. Applying
algorithm HBInverse to the matching m first builds the tree for the matching restricted
to 1, 2, 3, . . . , k− 1, 3̂, . . . , ˆ(k − 1) (line 5) as k and k̂ are matched in m. By Proposition 4
this tree is Dkt. Finally, the cladogram obtained by inserting leaf k into Dkt at the root
(lines 6-8) is precisely cladogram t.

On the other hand, if k is not a child of the root branch point then the parent of k in t is
labeled k̂. Let m = h(t) be the perfect matching given by applying algorithm HatBijection
to t. Let x be the sibling of k and y the sibling of k̂. Now, the tree constructed from m by
algorithm HBInverse is Dkt (line 5) with leaf k inserted into the edge immediately above
vertex x (lines 10-12). This makes k the sibling of x in the new tree. In other words, k
is reinserted into Dkt at the unique edge which makes it a sibling of x. Therefore, this is
precisely cladogram t. This completes the proof that gh(t) = t.

It is well known that the set of perfect matchings on {1, . . . , 2n − 2} and the set of
cladograms with n leaves have the same cardinality [19], proving that g is inverse to h. A
direct proof that hg(m) = m for any matching m is also possible, but is omitted here.

This completes the inductive step for the converse direction (that HBInverse followed
by HatBijection is the identity). �

This leads immediately to the following corollary:

Corollary 6 The function HatBijection provides a bijection between cladograms with n
leaves and perfect matchings on the set of points {1, 2, . . . , n, 3̂, . . . , n̂}.

Proof. This follows directly from the previous Proposition. �

3 The bar encoding of cladograms as strings or per-

fect matchings

This section presents a completely new encoding of cladograms, first as strings and then
as matchings. The bar coding is a deletion stable coding for cladograms with n leaves as
certain strings of length 2n on the alphabet {1, 1̄, 2, 2̄, . . . , n, n̄}.

As with the previous bijections, the internal vertices are first labeled. Two algorithms
are presented for this labeling. The previous two encodings would return the set of
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sibling pairs at this point. However, for this encoding the completely labeled tree gives
a string encoding, which then leads to a perfect matching. This string encoding, called
the name of the cladogram is discussed in Section 3.2, while the bijection with perfect
matchings is covered in Section 3.3. These are both extended to fat/oriented cladograms
and cladograms with edge lengths in Section 3.4.

The labeling and string encoding are now presented. Consider a cladogram with leaves
labeled 1, 2, . . . , n, such as that in figure 1. The following algorithm labels the internal
vertices.

An algorithm for labeling the internal vertices of a cladogram.
Algorithm: barLabeling (a)
Input: A cladogram t with n leaves.
Output: A cladogram t with n leaves and all internal leaves labeled.

1: for i=n,. . . ,2 do
2: Follow the path from leaf i towards the root and label the first encountered unla-

beled vertex with symbol ī.
3: end for
4: (Notice that the root is always labeled 1̄. This label is sometimes omitted from

diagrams.)

Later, Proposition 8 shows this gives an identical labeling to a recursive algorithm, called
barLabeling (b).

This labeling of the internal vertices leads to the string encoding of the cladogram via the
following algorithm.
Algorithm: nameOfCladogram
Input: A cladogram t with n leaves.
Output: The name of cladogram t.

1: Label internal vertices of t by the algorithm barLabeling (a).
2: Start with an empty string s.
3: Append symbol 1̄ to string s.
4: for i=1,. . . ,n do
5: Append symbol i to string s.
6: Follow the path from leaf i towards the root and append each symbol encountered

to string s until symbol ī is encountered. (Do not append ī).
7: end for
8: Return string s.

Figure 9 shows a cladogram with 8 leaves labeled according to the above scheme and
the resulting name.

Notice that the string always begins with 1̄1. This initial segment is sometimes omitted
from the name of the cladogram. Sometimes the label of the smallest leaf is kept in
brackets at the beginning of the string, as in Figure 9. This is useful when joining two
trees at the root (see Section 3.5), as all of these algorithms extend to trees with leaves
distinctly labeled by integers, such as those in Figure 19.
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Figure 9: The cladogram with name (1)3̄2̄4̄26̄7̄348̄5̄5678

This function, nameOfCladogram, is a bijection between cladograms and a certain set
of strings, called names of cladograms (Corollary 14).

Definition 7 Define the set of names of cladograms with n > 2 leaves, denoted Name(n),
to be the set of strings satisfying the following three conditions:
1 - Each of the symbols 2, 3, . . . , n, 2̄, . . . , n̄ occurs exactly once in the string and no other
symbols occur.
2 - If k < l then symbol k occurs to the left of symbol l in the string
3 - Symbol k̄ occurs to the left of the symbol k.

The name of a cladogram is also deletion stable in the sense that removing leaf n corre-
sponds to deleting symbols n and n̄ from the name. The inverse function which creates a
cladogram given its name is also provided in Section 3.2.

First, however, the labeling produced by this algorithm is examined.

3.1 The bar labeling

The internal vertex labeling given by barLabeling algorithm (b), below, and a recursive
definition for the name of a cladogram was first discovered by demanding that it and the
name it defines satisfy the deletion property. The easier to use barLabeling algorithm (a)
and the piecewise sequential reading of the name was derived later.
Algorithm: barLabeling (b)
Input: A cladogram t with n leaves.
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Output: A cladogram t with n leaves and all internal leaves labeled.

1: If t has one leaf then label the root vertex 1̄ and return the tree.
2: Otherwise, the cladogram Dnt contains one internal node which does not correspond

to an internal vertex of t. This is the immediate parent of leaf n.
3: Label Dnt according to barLabeling and transfer these labels to the corresponding

internal vertices of t.
4: Label the remaining internal vertex n̄.

This algorithm for labeling the internal vertices of a tree barLabeling, (a) and (b),
produce identical labelings.

Proposition 8 The internal labeling given by the two barLabeling algorithms, (a) and
(b), are identical for every cladogram.

Proof. Proceed by induction. The statement is trivially true for the cladogram with
one leaf, as there are no internal vertices to label. Let n > 2 and suppose the proposition
is true for all cladograms with less than n leaves. Let t be any cladogram with n leaves.
After the first visit to line 2 in algorithm (a) the only internal vertex labeled is the parent
of leaf n. Thereafter, this internal vertex is already labeled and so always skipped over in
line 2. Therefore algorithm (a) proceeds along the other internal vertices of t in the same
order that it would along the corresponding vertices of Dnt, the tree t with leaf n deleted.
By induction, this labeling of the other internal vertices is identical to the labeling of Dnt
produced by algorithm (b). Finally, algorithm (b) also labels the parent on leaf n with
label n̄ so the two labeling agree everywhere. The proposition now follows by induction
on n. �

Let ln denote the function which takes a cladogram with n leaves and labels it internal
leaves with algorithm barLabeling. Let Dn denote the operation of deleting the n-th leaf
from a cladogram with n leaves.

Corollary 9 The bar labeling is deletion stable: For a cladogram t with n leaves, Dnlnt =
ln−1Dnt.

Proof. This follows directly from the recursive definition of barLabeling (algorithm (b),
Step 3). �

This labeling, and the hat labeling, are generalized in Section 4 as maxmin labelings.
Finally, for the algorithm nameOfCladogram to make sense, the following proposition

must be true:

Proposition 10 For any bar labeled cladogram with n leaves, and for all k = 1, . . . n, the
vertex labeled k̄ lies above leaf k (on the shortest path from k to the root).

Proof. The statement is true for the unique cladogram with 1 leaf. Suppose that
statement is true for all cladograms with n − 1 leaves. Inserting leaf n anywhere in the

the electronic journal of combinatorics 17 (2010), #R54 17



tree does not change the fact that k̄ is above k. Finally the vertex n̄ lies immediately
above n. The proposition now follows by induction on n. �

3.2 The name of a cladogram

The properties of the name of a cladogram are now discussed. In particular, the names
satisfy a natural deletion property and are easily classified (as the set given in Definition
7). An inverse function which takes the name of a cladogram and produces the cladogram
is also provided.

Definition 11 Define the deletion operation Dn : Name(n) → Name(n− 1) on the set of
names of cladograms as follows: Dn(s) is the string s with the symbols n and n̄ removed.
(It is clear from the definition above that if s ∈ Name(n) then Dn(s) ∈ Name(n− 1))

Let bn denote the function which takes a cladogram with n leaves and returns its name
(the output of algorithm nameOfCladogram).

Proposition 12 The names of cladograms are deletion stable: For a cladogram t with n
leaves, Dnbnt = bn−1Dnt.

Proof. First, recall Corollary 9: the bar labeling is deletion stable. Let t be a clado-
gram with n leaves, and ln the bar labeling function. By Corollary 9, the labeled trees t
and Dnt are identical except that Dnt has leaf n and its parent vertex n̄ deleted. Thus,
for t and Dnt, the traversal and recording of vertices in Line 6 of algorithm nameOf-
Cladogram for i = 1, . . . , n − 1 is identical except that vertex n̄ is missing in the case of
Dnt. In the case of t, the leaf n is also recorded after all of this. In other words, the
only difference in the two strings is that the string produced for Dnt is missing n̄ and n. �

For following fact is comforting to know:

Proposition 13 There are exactly (2n− 3)!! elements in the set of names of cladograms
(Definition 7) with n > 2 leaves.

Proof. This is true for n = 2 as there is one string, 2̄2, and (4− 3)!! = 1. Suppose the
statement is true for all n < k.

Note that Dk is surjective. In other words, for every string s′ in Name(k − 1) there
is a string s in Name(k) such that Dks = s′. In particular, s may be the string s′ with
string n̄n appended to its end.

Now consider the inverse image under Dk of any string s′ in Name(k − 1). For any
string s ∈ D−1

k s′, the symbol n must be the last symbol in s. On the other hand, the
symbol n̄ may occur in any of 2k − 3 positions before n. Since these are the only choices
to be made, there must be exactly (2k − 3) strings in the inverse image D−1

k s′.
Thus the proposition follows by induction. �
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The following proposition shows that these so-called names of cladograms are actually
the strings produced by the algorithm nameOfCladogram, without the initial 1̄1. Let
the set of strings produced by the algorithm nameOfCladogram henceforth refer to these
modified strings which have the leading 1̄1 removed (in other words, skip line 8 and the
first visit to line 10 in the algorithm) .

Proposition 14 The algorithm nameOfCladogram provides a bijection from the set of
cladograms with n leaves to the set of names set Name(n) of names of cladograms with n
leaves given in Definition 7.

Proof. Proceed by induction. Applying the algorithm to the unique 2 leaf cladogram
produces the string 2̄2 as required.

Assume that the statement holds for all cladograms with k leaves for 2 6 k < n.
Let s be a string which is in the set of names of cladograms with n > 2 leaves. Let

s′ = Dns be the string s with n and n̄ deleted. By the inductive assumption, there exists
a tree t′ which has name s′.

Let x be the symbol in s which is just before symbol n̄. Let t be the cladogram created
by inserting leaf n into the edge above the vertex of t′ labeled x. The claim now is that
cladogram t has name s.

By the previous proposition, the the name of t with n̄ and n deleted, Dnlnt, is the
name of t′ = Dnt. The symbol n is necessarily the last symbol in the name of t. The
symbol n̄ occurs somewhere in the string. This is because the number of internal vertices
below n̄ is one less than the number of leaves (not including n) so there must be some
leaf k below n̄ for which k̄ lies above n̄.

Therefore, the symbol n̄ must be located immediately after the symbol of its child
which is not leaf n, by Line 6 of algorithm nameOfCladogram. Thus, the name of t is
precisely string s.

Therefore, since there are exactly (2n − 3)!! names of cladograms with n leaves and
(2n− 3)! cladograms with n leaves, the algorithm nameOfCladogram is a bijection from
cladograms with n leaves to names of cladograms (given by Definition ). �

Notice that this proof provides an indication of how to recursively build a cladogram
from its name.

A non-recursive algorithm for taking a name and returning the corresponding clado-
gram is now presented:
Algorithm: cladogramOfName
Input: a string s satisfying the conditions of Proposition 14.
Output: a cladogram with n leaves.

1: Append symbol 1 to the beginning of string s.
2: Create a vertex and label it 1.
3: Set variable v this vertex 1 just created.
4: Create a vertex and label it 1̄.
5: Set variable u to be this vertex 1̄ just created.
6: Set variable r to be this vertex 1̄ just created (the root).
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7: for symbol x in string s do
8: if x is a barred symbol then
9: Create a vertex labeled x and join x to v with an edge.

10: Set variable v to be this vertex labeled x just created.
11: else
12: Join vertex v to the vertex u.
13: Create a vertex labeled x.
14: Set v to be this vertex labeled x just created.
15: Set u to be the vertex with label x̄ (which has already been created by the

properties required of the string s).
16: end if
17: end for
18: Join the vertex labeled n to vertex labeled n̄ with an edge.
19: Return the constructed tree, rooted at vertex r.

Let hn denote the putative map from names of cladograms with n > 2 leaves to
cladograms with n leaves given by the above algorithm.

Proposition 15 Given a string, s ∈ Name(n), which is the name of a cladogram with n
leaves, the algorithm cladogramOfName produces a cladogram with n leaves.

Proof. First, note that the graph produced by algorithm cladogramOfName is a tree.
The graph has no loops because each vertex created is attached to at most one previously
created vertex. Also, at all times, the graph consists of at most two connected components,
one of which is the chain currently under construction (containing vertex v) which is
connected to the other component (containing vertex u) upon completion of the chain
(line 12).

Next, there is a bijection between the vertices of this tree and the symbols in the given
string (with 1 and 1̄ adjoined) since exactly one new vertex is created for each symbol
read from the string.

The vertex labeled x, for x ∈ {1, 2, . . . , n}, has degree 1. This follows since once it is
created (line 13), variable v is assigned to this vertex (line 14) then at the next visit to
line 9 of line 12 it is joined to another vertex. Variable v is then immediately reassigned
(line 10 or line 14) and the vertex labeled x is never referenced again.

The vertex labeled x̄, for x̄ ∈ {2̄, . . . , n̄}, has degree 3. The proof is as follows: Once
the vertex labeled x̄ is created, it is immediately connected to another vertex (line 9).
Variable v is then assigned to x (line 10). On the next visit to line 9 or line 12 x is
connected to another vertex, and variable v is immediately reassigned (line 10 or line 14).
Since symbol x comes after symbol x̄ in the string, when the vertex labeled x is created
(line 13), variable u is then set to x̄ (line 15). On the next visit to line 12, x̄ is connected
to a new vertex and variable u is then reassigned (line 15) and x̄ is never referenced again.

Therefore, the graph output by the algorithm is rooted, binary tree with n leaves
labeled {1, 2, . . . , n}. In other words, the output is a cladogram with n leaves. �
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Let bn : Cl(n) → Name(n) denote the map from cladograms to names given by
algorithm nameOfCladogram.

Proposition 16 The algorithm cladogramOfName is the inverse of algorithm nameOf-
Cladogram. In other words, for any cladogram t with n leaves hnbn(t) = t and for any
string s which is in the set of names of cladogram with n leaves bnhn(s) = s.

Proof. Let t be a cladogram with n leaves and s its corresponding name, given by
algorithm nameOfCladogram.

Now, for each k ∈ {1, . . . , n− 1}, the algorithm cladogramOfName constructs chains
with vertices labeled by the symbols in the string s from symbol k to the symbol before
k +1. The top of each such chain (the end which is barred; ie. not k) is attached with an
edge to vertex k̄. Thus, following the shortest path from leaf k to vertex k̄ in the resulting
tree, as in the last step of algorithm nameOfCladogram, gives the desired substring of s
between symbols k and k + 1.

Therefore bnhnbn(t) = bn(t). Since bn is a bijection (Corollary 14), hn must be its
inverse. �

Figure 9 shows the labeling of the cladogram in Figure 1 and the resulting name.
Figures 10 to 15 show the labelings and names for the cladograms obtained by successive
deletions of the largest remaining leaf.

2

4

53

7

6

45312 6 7

Figure 10: The cladogram with name (1)3̄2̄4̄26̄7̄345̄567

3.3 Perfect matchings

This section covers the construction of a perfect matching from the name of a clado-
gram and some of its properties. In particular, deleting the largest leaf of a cladogram
corresponds to deleting the last point in the matching and its paired point.

To convert the name of a cladogram with n leaves to a perfect matching on 2(n− 1)
points, first label the points in order by the symbols in the name then for each k = 2, . . . , n
pair point k̄ with point k. In other words, lay 2n− 2 points in a line and connect the i-th
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Figure 11: The cladogram with name (1)3̄2̄4̄26̄345̄56
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Figure 12: The cladogram with name (1)3̄2̄4̄2345̄5
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Figure 13: The cladogram with name (1)3̄2̄4̄234
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Figure 14: The cladogram with name (1)3̄2̄23
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2

Figure 15: The cladogram with name (1)2̄2
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and j-th point if symbol k̄ and k are in position i and j in the name. See Figure 16 for
an example. Note that points in the perfect matching are identified by their position in
the linear ordering and the labeling of the points is not part of the matching.

3

GF ED
2
GF ED

4@A BC2 6
GF ED

7@A BC3 4 8@A BC5

GF ED
5 6 7 8

Figure 16: The perfect matching with name (1)32426734855678. The corresponding clado-
gram is shown in Figure 9. The labeling of the ordered points in the matching is simply
to aid understanding its construction and this is the same matching as shown in Figure
2.

Conversely, given a perfect matching on 2(n− 1) points, start with the last point and
label it n and label its paired point n̄. Continue in this was backwards through the points,
labeling each unlabeled point by the next highest unused label in {n − 1, . . . , 1}, say k,
and labeling its paired point with the corresponding k̄. The name of the cladogram is
now read off from the first point to the last.

These two operations are inverse and form a bijection between names of trees with
n > 1 leaves and perfect matchings on 2(n − 1) points. Denote this map from names to
perfect matchings pn.

This mapping is deletion stable in the following sense. For all n > 2, let Dn be a
function from perfect matchings on 2(n − 1) points to perfect matchings on 2(n − 2)
points which acts as follows: Remove the last point of the matching and its paired point.

With this definition of deleting the ‘largest pair’ from a perfect matching, we have the
desired deletion stability: Dnpns = pn−1Dns for all

Since ‘deletion’ is preserved by the mappings from cladograms to names and from
names to perfect matchings, it is preserved by the composite bijection from cladograms
to perfect matchings.

3.4 Fat/oriented cladograms and cladograms with edge lengths

This section discusses a simple alteration to the previous encoding so that it encodes fat
cladograms. Recall that a fat cladogram, or oriented cladogram is a cladogram together
with a cyclic ordering of the edges at every vertex. In other words, the ‘left’ and ‘right’
child of a vertex are distinguished from each other.

The encoding for fat cladograms is as follows: Label the internal vertices as before,
with algorithm barLabeling.

Read the labels as before, but this time record internal vertex k-bar as k if it is
encountered coming from the left child and k if it is encountered coming from the right
child. In other words, the label of an internal vertex v which would have previously been
labeled k̄ is k, respectively k, if the leaf k is in its left, respectively right, subtree below
it.
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This gives a bijection between fat cladograms and a certain set of strings, called names
of fat cladograms.

Definition 17 Define the set of names of fat cladograms with n > 2 leaves, denoted
FatName(n), to be the set of strings satisfying the following three conditions:
1 - Each of the symbols 2, 3, . . . , n occurs exactly once in the string and for each k ∈
{2, . . . , n} exactly one of the symbols k̄ or k occurs. No other symbols occur.
2 - If k < l then symbol k occurs to the left of symbol l in the string
3 - If a symbol k̄ or k occurs it is to the left of the symbol k.

The name of a fat cladogram is also deletion stable in the sense that removing leaf n
corresponds to deleting from the name symbols n and either n̄ or n depending on which
occurs. An inverse function which creates a fat cladogram from it’s name would be very
similar to that for ordinary cladograms given in Section 3.2. This algorithm, the proof of
the bijection and correctness of the definition are omitted as they are almost identical to
those for cladogram case.

Figure 17 shows the name associated with a fat cladogram with 8 leaves. Compare
this with the name of the thin cladogram in Figure 9.

2 16 7 3 5 8 4

5

8

4

3

7

2

6

1

Figure 17: The fat cladogram with name (1)32426734855678

A directed perfect matching on 2k points is a pairing of these points, such that every
point belongs to exactly one pair, along with a sign of ±1 assigned to each pairing. This
sign on a pair (a, b) may be thought of as a direction on an edge between a and b.

The name of a fat cladogram with n leaves corresponds naturally to a directed perfect
matching. The structure of the undirected perfect matching is as before and the direc-
tion/sign of each edge/pair is determined by whether the bar is above or below k-bar: out
of k and into k (or +1 for a pair with k and −1 for a pair with k)

Figure 18 shows the directed perfect matching on 14 = 2∗8−2 points corresponding to
the name (1)32426734855678. Remember that the ordering of the points in the diagram
is what is important. The labeling of the points is not part of the matching.
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Figure 18: The directed perfect matching with name (1)32426734855678. The labeling of
the ordered points in the matching is simply to aid understanding its construction. Figure
17 shows the corresponding fat cladogram.

Again, this bijection from ‘oriented’ names to directed perfect matchings preserves
deletion (as defined earlier for names and perfect matchings). Thus the composite bijection
from fat/oriented cladograms to directed perfect matchings also respects these deletion
maps.

Recording edge lengths in the bar coding is similar to the case of the Diaconis-Holmes
and hat encodings. The length of the edge above each vertex is recorded immediately
after the vertexes label in the name. In this case, the length of the root edge is recorded.
For example, the cladogram in Figure 17 with edge lengths proportional to their apparent
length has name

(1) : 1, 3 : 3, 2 : 3, 4 : 1, 2 : 1, 6 : 1, 7 : 2, 3 : 1, 4 : 1, 8 : 1, 5 : 5, 5 : 1, 6 : 1, 7 : 2, 8 : 1

(1)133234121, 61723141815551617281

Notice that when deleting the largest leaf, n, the edge lengths of the resulting tree are
gained by discarding the edge length for n and adding the length of n to the length of the
symbol immediately preceding it. In the example above, the length of 8 is added to the
length of 4, for a combined length of 2.

3.5 Adjoining two trees

This section describes how to construct the name of a tree gained by joining two trees at
their roots. Recall that algorithm nameOfCladogram makes sense for any rooted binary
leaf-labeled tree with distinctly labeled leaves from a total ordering.

Consider two trees with disjoint sets of leaf labels from the same totally ordered set and
names (a0)a1a2 . . . ak and (b0)b1b2 . . . bl, To construct the name of their root-join, begin by
breaking each name into its disjoint blocks. Each block starts with a leaf label and ends
with the last symbol before the next leaf label, or the end of the name. Without loss of
generality, let symbol a0 (the smallest leaf label of the first tree) be less than symbol b0

(the smallest leaf label of the second tree). Append symbol b0 to the block starting with
a0. Finally, reassemble all of the blocks according to the ordering of their initial symbols
(the leaf labels). This is the name of the root join of the two initial trees.

The following is an example using two trees with disjoint sets of integer leaf labels.
Figures 19 and 20 show the effect of adjoining these two trees at the root.
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Figure 19: Trees ‘(7), 10, 35, 10, 35, 41, 41’ and ‘(19), 23, 23, 53, 53’
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35
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53
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Figure 20: The tree named ‘7, 10, 35, 19, 10, 19, 23, 23, 53, 35, 41, 41, 53’

Given trees with names ta = (7), 10, 35, 10, 35, 41, 41 and tb = (19), 23, 23, 53, 53, begin
by breaking each name into its blocks. Each block starts with a leaf label and proceeds
until the symbol before the following leaf label. In this case the blocks are:

7, 10, 35− 10− 35, 41− 41− 19, 23− 23, 53− 53

Since 7 < 19 the new internal vertex where the trees are joined will have label 19 so
add this to the end of the 7-block:

7, 10, 35, 19− 10− 35, 41− 41− 19, 23− 23, 53− 53

Finally, reassemble the blocks in order to get the name of the root-joined tree:

7, 10, 35, 19, 10, 19, 23, 23, 53, 35, 41, 41, 53

3.6 Moving a symbol in the name of a tree

This section demonstrates the effect of changing the position of a symbol k̄ in the name
of a cladogram. Recall that the only conditions on the name of a cladogram are that the
symbols 2, . . . , n occur in this relative order and symbol k̄ occurs before symbol k.
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Moving a symbol k̄ from one position in the name of a cladogram to another allowable
position corresponds to pruning the subtree below vertex k̄ which contains vertex k and
regrafting it onto another edge of the tree. The edge which the subtree is regrafted onto is
the edge immediately above the vertex with label occurring just before k̄’s new position.

These are branch-regraft moves, where the subtree below an edge is pruned and re-
grafted onto the original tree in a different position are usually called subtree prune and
regraft (SPR) moves, [8]. A special case of SPR moves are nearest neighbor interchange
(NNI) moves, described in [9], [2], [3] and [1]. SPR moves are also a subset of tree bisection
and reconnection (TBR) moves, which were first described in [21] and are also discussed
in [9], [1] and [18]. Each of these three types of moves are implemented in a number of
popular phylogenetic software packages.

For example, Figure 21 shows the effect of taking the name of the cladogram in Figure 9
and moving symbol 4̄ to a new position. Notice that the subtree below vertex 4̄ containing
leaf 4 has been pruned and regrafted into the edge which was between vertices 6̄ and 7̄.

Note that the labels of all vertices in the pruned subtree are of the form j̄ or j for
some j > k. Thus, since symbol k̄ must be reinserted into a position before symbol k, the
regrafting position must be on the remaining tree and not the pruned subtree.
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Figure 21: Cladograms with names (1)3̄2̄4̄26̄7̄348̄5̄5678 and (1)3̄2̄26̄4̄7̄348̄5̄5678

4 Maxmin labeling

This section introduces maxmin labeling. Both the hat and bar labelings are special cases
of maxmin labeling, after making a choice for the label of the root vertex.

Given an internal vertex, v, of a tree, removing this vertex breaks the tree into a
number of connected subtrees equal to its degree. Call these the component subtrees of
vertex v.

Definition 18 A total labeling of a finite leaf labeled tree with leaves labeled from a totally
ordered set such as N ∪ {∞} is a maxmin labeling if each internal vertex, v, has label k̄,
where k is the maximum of the minimum leaf label in each component subtree of v.
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v

Figure 22: The three component subtrees corresponding to vertex v.

Proposition 19 Given a maxmin labeled finite bifurcating tree with all leaves labeled
distinctly from a totally ordered set, such as N ∪ {∞}, each internal vertex is distinctly
labeled. Furthermore, the only leaf labels, k, for which a corresponding internal labels, k̄,
do not occur are the two smallest leaf labels.

Proof. Prove the proposition by contradiction.
Suppose that such a maxmin labeled tree exists, with two internal vertices x and y

with identical labels k̄. The vertices x and y naturally divide the tree into five pieces, as
indicated in Figure 23. Note that the piece lying between x and y may be an empty tree.

485376 12

x

ea

b

y

c

d

Figure 23: The five disconnected subtrees gained by removing vertices x and y. The
smallest label in each subtree, if it exists, is called a, b, c, d, e respectively.

Let a, b, c, d, and e if it exists, denote the smallest leaf label in each of the four (or
five) connected subtrees gained by removing vertices x and y. Since k̄ is the label for x,
k > a, b and k > e if e exists. On the other hand, since k̄ is the label of y, k 6 a, b and
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k 6 e if e exists. Therefore k = a, b, and if e exists then k = e. This contradicts the
assumption that all leaves are distinctly labeled.

Finally, the two smallest leaf labels do not occur, since for any internal vertex, they
must always be less than the smallest leaf label in one of the other component subtrees for
that vertex. Since there are exactly 2 fewer internal vertices than leaf vertices, uniqueness
implies that labels corresponding to all other leaf labels must occur exactly once. �

In fact, the uniqueness of internal vertex labels remains true for trivalent trees with
leaves distinctly labeled from a totally ordered set, whether or not the tree is finite.

4.1 Maxmin labeling and the hat labeling

The hat labeling, from Section 2, is a special case of the maxmin labeling once the root
vertex is labeled ∞. When comparing the maxmin labeling and the hat labeling, k̂ and
k̄ are treated as synonymous.

Proposition 20 Consider a cladogram labeled according to the hat labeling. Labeling the
root vertex ∞ and the root branch point ∞̂ makes this a maxmin labeling.

Proof. The proposition is trivially true for a cladogram with one leaf, since there are
no internal nodes to be labeled. Assume that the proposition is true for all cladograms
with less than n > 2 leaves.

Now consider a cladogram t with n leaves. As in the algorithm for hat labeling, let
tn = t denote the whole tree with n leaves and tn−1 denote the tree gained by deleting the
leaf labeled n. Recall that there is a single non-root branch point of tn which does not
correspond to a non-root branch point of tn−1 (via the natural mapping shown in Figure
4).

The addition of a leaf labeled n does not effect the label of any of the non-root branch
points coming from tn−1 because they all have labels k̂ where k < n. This is because the
minimum label of all of their component subtrees is at most k < n and this minimum
cannot be effected by the addition of a leaf with label n > k to any of them.

The root branch point is labeled ∞̂ because one of it’s component subtrees comprises
the single root vertex with label ∞. Proposition 19 guarantees that there is some internal
vertex labeled n, so this must be the new non-root branch point in tn which was not a
non-root branch point in tn−1. This is exactly the labeling given by the hat bijection.
The proposition now follows by induction on n. �

4.2 Maxmin labeling and the bar labeling

The bar labeling, from Section 3, is a special case of the maxmin labeling if the root label
1̄ is considered as smaller than all leaf labels.

Proposition 21 The bar labeling of a cladogram is a maxmin labeling, if the root label 1̄
is considered smaller than all leaf labels.
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Proof. The proposition is trivially true for the cladogram with one leaf, since there
are no internal leaves to label. Let n > 2 and suppose the proposition is true for all
cladograms with less than n leaves.

Let t be a cladogram with n leaves and tn−1 denote the cladogram gained by deleting
the vertex labeled n from t. There is one internal vertex of t which does not correspond to
an internal vertex of tn−1 via the natural mapping shown in Figure 4. This is the parent of
leaf n. For every other internal vertex, v, the label given by the maxmin labeling remains
unchanged from tn−1 to t because the addition of the new leaf labeled n to any of the
component subtrees of v does not change the minimum leaf label in that subtree (since n
is the largest leaf). By the inductive assumption, these are precisely the labels given to
these internal vertices by the bar labeling.

Finally, the internal vertex adjacent to leaf n must have label n̄ since this the the
minimum leaf value of one of it’s component subtrees and also the maximum possible
label. This is precisely the label given to this internal vertex by the bar labeling.

The proposition now follows by induction on n. �

4.3 Exchanging the labels of two leaves

This section describes the effect on the maxmin labeling of exchanging the labels of two
leaves on a tree.

Before beginning, define a cherry to be a pair of leaves which have a common immediate
parent node. For example, in Figure 22 leaves 1 and 3 form a cherry.

Proposition 22 If the labels of leaves k and k+1 are exchanged then all internal labels of
the max-min labeling remain unchanged except, possibly, the vertices labeled k̄ and ¯k + 1.
If k = 1, 2 then nothing happens. If k > 3 and k and k + 1 do not form a cherry then the
labels k̄ and ¯k + 1 are swapped

Proof. This is because every other leaf label is either greater than both k and k + 1
or less than both k and k + 1. Thus, if a component subtree has minimum leaf label
x 6= k, k + 1 before the exchange then it still does afterwards. Also, a component subtree
with minimum leaf label k or k + 1 before the exchange will have either k or k + 1 as
it’s minimum leaf label after the exchange. If an internal vertex has label x̄ before the
exchange, with x 6= k, k + 1, then x > y, z where x, y, z are the minimum leaf labels for
the three corresponding component subtrees. After the exchange, x must still be greater
than y and z since they are either unchanged or were equal to one of k or k + 1, which
implies x > k + 1 and they are still either k or k + 1.

If k = 1 then nothing happens, since there are no labels 1̄ and 2̄ and all other labels
remain unchanged as shown above. If k = 2 then all internal labels remain unchanged
except possibly 3̄, and since it must occur at some internal vertex it remains at the only
available vertex.

Now suppose that k > 3. If the leaves labeled k and k + 1 are adjacent then the
tree is unchanged and so the maxmin labeling is unchanged. Suppose k and k + 1 are
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not together in a cherry. Consider Figure 23, showing the tree divided into component
subtrees by the vertices x = k̄ and y = ¯k + 1. Let a, b, c, d (and e if it exists) denote the
smallest leaf labels in each component subtree. Therefore, a = k − 1, b < k + 1, d = k,
c < k, which means that b, c < k, k + 1 since b 6= k. Therefore, swapping leaf labels k and
k + 1 swaps labels k̄ and ¯k + 1. �

What about exchanging two general labels?

Proposition 23 If the labels of two leaves are exchanged then the label of any internal
node not along the shortest path between these two leaves remains unchanged.

Proof. For any internal vertex, v, not on the shortest path between these two leaves,
the two leaves are contained in the same component subtree of that vertex and so ex-
changing their labels does not change the minimum leaf label of that component subtree.
Therefore, the maxmin labeling of vertex v remains unchanged. �

5 A Gray code for cladograms

This section describes a perfect Gray code for cladogram names based on the bar coding.
This is a systematic sequence which contains the name of every cladogram with n leaves
exactly once (Gray code) and for which adjacent elements differ by a minimal amount
(perfect). The names of adjacent cladograms in this Gray code differ by a single transpo-
sition of symbols. The corresponding cladograms differ by a single branch-regraft move,
as described in Section 3.6. See [11] for a definition and discussion of perfect Gray codes.
A recursive construction is given here, as well as an algorithms for finding the next and
previous cladogram, the number of a cladogram in the Gray code, and the cladogram
corresponding to a given number. Gray codes exist for other sets of trees, such as binary
trees with n leaves [17]. The Combinatorial Object Server [16] uses Gray codes to provide
lists of many types of objects but does not yet provide cladograms.

5.1 Defining the Gray code

This section gives a recursive definition of the perfect Gray code which flows naturally
from the bar encoding. In general, a perfect Gray code is a sequential enumeration of a
set so that adjacent elements of the sequence differ by ‘a small amount’. Gray codes were
first developed by Frank Gray [10] for the purposes of minimizing error in digital signal
transmissions over analogue channels. In the context of cladograms, they provide an easy
way of iterating over all cladograms of a particular size. This is useful, for example, when
computing the exact distribution of statistics on trees, such as the number of cherries or
the average depth, or the exact likelihood of observed data, such as a DNA sequence at
each leaf, given a prior on the set of cladograms.

Diaconis and Holmes [7] indicate a Gray code for cladograms which flows from a Gray
code on perfect matchings. This Gray code on perfect matchings similarly defines a Gray
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code on cladograms for each of the two new bijections presented above. However, this
section is devoted to a perfect Gray code for the name of a Cladogram.

Let Cl(n) denote the set of cladograms with n leaves. This Gray code has the property
that the code for Cl(n+1) when projected to Cl(n) by deletion of the largest leaf is given
by taking the Gray code for Cl(n) and, starting with the first element, repeating an
element of the code (2n + 1) times in succession before moving onto the next element.

(2n−1)!

2n+1

Figure 24: How the Gray code for trees of with n+2 leaves is related to the code for trees
with n + 1 leaves.

Call a tree odd, respectively even, if its position in the Gray code is odd, respectively
even. As is often the case, counting starts at 0 rather than 1 as this makes later definitions
cleaner. Thus, the first cladogram is even. The sign of a cladogram is discussed in more
detail in the next section.

An algorithm for constructing the Gray code, for cladograms of size n.
Algorithm: GrayCode
Input: a positive integer n.
Output: A sequence of names of cladograms of size n.

1: if n == 1 then
2: Return a sequence with one element, the empty name (corresponding to the unique

one-leaf cladogram), and terminate.
3: end if
4: Let s be an empty sequence.
5: for i = 0 to (2n− 5)!!− 1 do
6: Let x be the i-th name in sequence GrayCode(n− 1).
7: for j = 1 to 2n− 3 do
8: Let y be a copy of name x.
9: Let k = 2n− 2− j if x is even (ie. i is even) and k = j otherwise.

10: Append symbol n to y. Insert symbol n immediately before the k-th symbol of
y.

11: Append name y to sequence s.
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12: end for
13: end for
14: Return sequence s.

The Gray codes for cladograms with 1 to 4 leaves are:
GrayCode(1) = [ ′′ ]
GrayCode(2) = [ 2̄2 ]
GrayCode(3) = [ 3̄2̄23, 2̄3̄23, 2̄23̄3 ]
GrayCode(4) = [ 4̄3̄2̄234, 3̄4̄2̄234, 3̄2̄4̄234, 3̄2̄24̄34, 3̄2̄234̄4,

2̄3̄234̄4, 2̄3̄24̄34, 2̄3̄4̄234, 2̄4̄3̄234, 4̄2̄3̄234,
4̄2̄23̄34, 2̄4̄23̄34, 2̄24̄3̄34, 2̄23̄4̄34, 2̄23̄34̄4 ]

Cladograms which are adjacent in the sequence have names which differ only by a
single transposition. As noted in Section 3.6, this means they differ by a single branch-
regraft move: a single branch has been pruned and regrafted onto the cladogram in a
different position.
In general, the first cladogram in the Gray code GrayCode(n) is the comb
(1)n̄(n− 1) . . . 3̄2̄23 . . . (n− 1)n
and the last cladogram is the comb
(1)2̄23̄3 . . . (n− 1)(n− 1)n̄n.
See Figures 25 and 26 for examples of the first and last trees in the Gray code for clado-
grams with 6 leaves.

1 6 5 4 3 2

6

5

4

3

2

Figure 25: The first cladogram, (1)6̄543223456, in the Gray code for cladograms with 6
leaves, GrayCode(6)

These trees differ only in the position of the leaf 1 (ignoring the internal node la-
bels): leaf 1 has moved from the bottom of the comb to the top. Thus, the sequence
GrayCode(n), for n > 2, makes a cycle where adjacent cladograms differ by exactly one
branch-regraft move.
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Figure 26: The last cladogram, (1)2̄23̄3 . . . 66, in the Gray code for cladograms with 6
leaves, GrayCode(6)

Finally, these Gray codes for each n > 0 give a way to enumerate all non-empty
cladograms in a single sequence. Start with the cladogram with 1 leaf, then append the
cladogram with 2 leaves, then append the Gray code for cladograms with 3 leaves, then the
reversal of sequence GrayCode(4), then GrayCode(5), then the reversal of GrayCode(6)
and so on, alternating direction each time. The inductive construction ensures that the
transitions between cladograms with n leaves and those with n + 1 leaves involves only
the insertion of the new leaf n+1 into the previous cladogram with n leaves. This assigns
a unique number to any finite non-empty cladogram, its position in this sequence.

Section 5.4 gives algorithms for determining the position in the Gray code of a clado-
gram with n leaves, GrayCode(n), given its name, as well as the name of the cladogram
in a given position.

5.2 The sign of a cladogram

This section introduces the sign of a cladogram, analogous to the sign of a permutation.
An easy way to determine the sign of a cladogram, presented below, leads to an easy way
to determine the next and previous elements of the Gray code.

The sign of a cladogram was defined in the previous section as the parity of the position
of the cladogram in the Gray code: either even or odd. Recall that the counting starts at
0 so the first cladogram in the sequence is even.

The sign/parity of an n-leaf cladogram is also the sign of the number of adjacent
transpositions required to change the name of the cladogram to 2̄2 . . . n̄n. This is the same
as the parity of the number of adjacent transpositions of symbols required to move from the
cladogram (1)n̄(n− 1) . . . 3̄2̄23 . . . (n−1)n to the cladogram in question. The equivalence
of these two definitions for the sign of a cladogram follows directly from the corresponding
results for representations of the symmetric group with adjacent transpositions and the
fact that adjacent names in the Gray code differ by exactly one adjacent transposition.
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5.3 The next and previous elements of the Gray code

Now that the sign of a cladogram name is easily determined, the next and previous
elements in the Gray code are also easy to determine.

In this section a cladogram and its name are often treated as synonymous. The
leading symbol 1 is not included in the names used here. Let sign(t) denote the sign of a
cladogram: +1 for an even cladogram and −1 for an odd cladogram.

The algorithm for the next element in the Gray code is as follows:
Algorithm: nextGrayElement
Input: The name, s, of a cladogram t with n leaves.
Output: The name of the next cladogram in the Gray code, or the same string if this is
the last element.

1: if s is empty then
2: Return s
3: end if
4: Let s′ = Dns, the name s with symbols n̄ and n deleted.
5: if sign(s′) == +1 then
6: if n̄ is not adjacent to n in s then
7: Move n̄ one position to the right in s and return this string.
8: else
9: Let s2 = nextGrayElement(s′).

10: Return s2 with string n̄n added to the end.
11: end if
12: else
13: if n̄ is not the first symbol in s then
14: Move n̄ one position to the left in s and return this string.
15: else
16: Let s2 = nextGrayElement(s′).
17: Return s2 with symbol n̄ added to the front and n added to the end.
18: end if
19: end if

Changing sign(s′) == +1 to sign(s′) == −1 gives the previous element rather than
the next one. Correctness of these algorithms follows directly from the recursive definition
of the Gray code.

5.4 The number of a cladogram

Following on from the previous section, this section gives a simple recursive algorithm
to calculate the number of a given cladogram (its position in the Gray code), a so-called
ranking algorithm. This algorithm follows directly from the recursive construction of
the Gray code. An algorithm to produce the name of the cladogram in position k, an
unranking algorithm, is also given. Recall that cladograms in the Gray code are counted
starting from 0.

the electronic journal of combinatorics 17 (2010), #R54 35



Algorithm: numberOfName
Input: The name, s, of a cladogram with n leaves.
Output: The position of this cladogram in the Gray code.

1: if s is empty then
2: Return 0.
3: end if
4: Let k1 be the position of n̄ in string s (counting from 0 to 2n− 4).
5: Let s′ be the string given by removing n̄ and n from string s.
6: Let k2 = numberOfName(s′).
7: if sign(s′) == +1 then
8: Return (2n− 3)k2 + k1.
9: else

10: Return (2n− 3)k2 + (2n− 4− k1).
11: end if

This leads to a simple recursive construction for the name of the cladogram with a give
number:
Algorithm: nameOfNumber
Input: A number n > 1 (the number of leaves) and a number k between 0 and (2n−3)!!−1
inclusive
Output: The name of the cladogram with n leaves which has position k in the Gray code
on cladograms with n leaves.

1: if n==1 then
2: Return the empty string.
3: end if
4: Let k2 = b k

2n−3
c.

5: Let s2 = nameOfNumber(n− 1, k2).
6: Let k3 = k − (2n− 3)k2.
7: if sign(s2) == +1 then
8: Let s be string s2 with symbol n̄ inserted into position k3 and n appended to the

end.
9: else

10: Let s be string s2 with symbol n̄ inserted into position 2n− 4− k3 and n appended
to the end.

11: end if
12: Return string s.

Note: inserting a symbol into position x places it immediately after the x-th symbol
in the sequence. Inserting a symbol at position 0 makes it the first symbol.

Correctness of this algorithm follows directly from the recursive definition of the Gray
code.

Note that s2 is the name s with symbols n̄ and n removed. In general, given a
cladogram with n leaves and number k, the number of the cladogram obtained by deleting
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the m largest leaves is b k
(2n−3)(2n−5)···(2n−1−2m)

c.
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