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Abstract

A vector coloring of a graph is an assignment of a vector to each vertex where
the presence or absence of an edge between two vertices dictates the value of the
inner product of the corresponding vectors. In this paper, we obtain results on
orthogonal vector coloring, where adjacent vertices must be assigned orthogonal
vectors. We introduce two vector analogues of list coloring along with their chro-
matic numbers and characterize all graphs that have (vector) chromatic number
two in each case.

In this paper, we define and explore possible vector-space analogues of the list-
chromatic number of a graph. The first section gives basic definitions and terminology
related to graphs, vector representations, and coloring. Section 2 introduces vector
coloring and the corresponding definitions of the list-vector and subspace chromatic
numbers of a graph and presents some results and related problems. In the final
section, we characterize all graphs that have chromatic number two in each case.

∗Research supported by National Science Foundation Grant 05-52594 and Central Michigan Univer-
sity
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1 Vector Coloring

We will assume that the reader is familiar with some of the more common definitions
in graph theory and graph coloring. For a general introduction, the reader is encour-
aged to refer to Diestel’s book [6] on graph theory or Jensen and Toft’s book [11] on
coloring problems.

Given a field F, subsets S, A, B, and C of F, a positive integer d, and a nondegen-
erate bilinear form b(x, y) on Fd, a vector representation [24] of a simple graph G with
vertices v1, . . . , vn is a list of vectors ~v1, . . . ,~vn in Fd whose components are in S such
that for all i and j, b(~vi,~vi) ∈ A, if vi is adjacent to vj in G then b(~vi,~vj) ∈ B, and if vi
is not adjacent to vj in G then b(~vi,~vj) ∈ C.

Various choices of the parameters involved have led to many interesting questions
and results using Euclidean spaces and inner products. For example, Lovász defines
an orthonormal representation with F = R = S = B, A = {1} and C = {0} in his solu-
tion of the Shannon capacity of C5 [20] and his characterization (with Saks and Schri-
jver) of k-connected graphs [17, 18]. See the survey by Lovász and Vesztergombi [19]
for further information.

Given a particular type of vector representation and a graph G, one may ask what
is the smallest dimension d that admits a vector representation of G. For example, the
case where F = S = A, B = {1}, and C = {0} is treated by Alekseev and Lozin [1].
Such investigations have produced interesting results, such as when F = S = A,
B ⊆ (−∞, 0), and C = {0}, it turns out [32] that the smallest dimension d that admits
a vector representation of G depends on whether F = R or F = Q. The minimum
semidefinite rank of a simple graph [12] is the smallest d such that G admits a vector
representation with F = C = S = A, B = C \ {0}, and C = {0}.

Peeters [27] follows the lead of Lovász in noting connections between these “geo-
metric dimensions” of a graph and the chromatic number of its complement. Others
have explored connections between vector representations and coloring problems in
minimum rank problems [29] and elsewhere: Karger, Motwani, and Sudan [13] de-
fine a vector k-coloring to be a vector representation with F = R = S = A = B and
C = (−∞,−1/(k − 1)], a problem further studied by Feige, Langberg, and Schecht-
man [8].

Of these many different vector representations, we believe the orthogonal represen-
tations of Lovász and Peeters lend themselves best to an analogue of the list-chromatic
number of a graph. However, orthogonal representations are traditionally defined in
a manner opposite to graph coloring, and this can lead to confusion or the constant
use of graph complements when trying to relate the two. To ameliorate this situation,
we will adopt the coloring approach to the vector representation definition.

Definition 1.1. For a graph G, a valid orthogonal k-vector coloring over the field F of G
is a vector representation of G with F = S = C, A = (0, ∞), B = {0}, and d = k. The
vector chromatic number χv(G, F) is the least k so that G has a valid orthogonal k-vector
coloring over F.
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From this point we will assume all vector colorings are orthogonal vector colorings
as defined here and not those of Karger, Motwani, and Sudan. Note that replacing a
vector in a valid vector coloring with a nonzero scalar multiple of that vector results
in another valid vector coloring, so that χv would be unchanged if we took A =
{1} (although not having to normalize vectors in proofs and examples is convenient).
However, we then claim unique choices of vector in proofs and examples when we
really mean unique up to nonzero scalar multiple. Finally, we will only consider the
fields C and R as choices for F, and will often use χv(G) when results apply equally
to χv(G, C) and χv(G, R).

A first attempt at finding a meaningful vector analogue for the list chromatic num-
ber might be to assign lists of vectors to each vertex. However, for any k, there exists
a k-by-k unitary matrix with no zero entries (for example, the Fourier transform on
the group Z/nZ [31, 34]). Thus, for any k, by taking an orthonormal basis and its
image under multiplication by such a unitary matrix it would always be possible to
assign lists of size k to the complete graph on two vertices that would not admit a
valid vector coloring. Similarly, two adjacent vertices of any graph could be used to
create list assignments of arbitrary size that do not admit a valid vector coloring.

Instead we propose two definitions, the list-vector chromatic number and the sub-
space chromatic number. While it is not clear from the work in this paper which of
these, if either, is the “right” analogue for χl, the results show that both are interesting
invariants in their own right.

Definition 1.2. A graph G is k-vector-choosable over F if for every k-list assignment,
where the elements in the lists are vectors from an orthonormal basis of Fn for some
n > k, there exists a valid vector coloring using vectors from the span of each list. The
smallest k such that G is k-vector-choosable is the list-vector chromatic number, χlv(G).

Definition 1.3. A k-subspace assignment for a graph G with V(G) = {v1, . . . , vn} is a
list of subspaces S1, . . . , Sn of Fd for some d > n where each Si has dimension k. Given
a k-subspace assignment, a valid vector coloring of G is a valid coloring of G such that
if vertex vi is colored with ~vi then ~vi ∈ Si. A graph G is k-subspace choosable over F

if every k-subspace assignment admits a valid vector coloring. The least such k for
which G is k-subspace choosable is called the subspace chromatic number, χS(G, F).

Remark 1.4. A valid coloring of a graph G using colors c1, . . . , cd yields a valid vector
coloring of G by replacing ci with ~ei, where {~e1, . . . ,~ed} is an orthonormal basis of
Fd. Thus χv(G) 6 χ(G) and χlv(G) 6 χl(G). If a graph G is k-vector choosable,
then choosing a k-list assignment where all the lists are the same yields a valid vector-
coloring of G. Thus χv(G) 6 χlv(G). Further, if G is k-subspace choosable, then
selecting a k-subspace assignment where all of the subspaces are the span of vectors
from an orthonormal basis of Fd shows that G is also k-vector choosable, so that
χlv(G) 6 χS(G).

Many results from traditional graph coloring are equally applicable to vector color-
ing. In what follows, we will use χ∗ to denote any of χ, χl, χv, χlv, or χS, although we
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will only provide proofs for the vector coloring invariants. Throughout the following,
given a vector ~v ∈ Fd, we use ~v⊥ to denote the subspace of all vectors orthogonal to
~v.

Proposition 1.5. Let G be a graph and H a subgraph of G. Then χ∗(H) 6 χ∗(G).

Proof. The span of a valid vector coloring of G contains the span of a valid vector
coloring of H.

Proposition 1.6. Let G be a graph and v a vertex of G. Then χ∗(G) 6 χ∗(G − v) + 1. In
particular, χ∗(G) 6 |G|.

Proof. Let k = χS(G − v) + 1. Given a k-subspace assignment for G, let Sw denote
the subspace assigned to a vertex w. Choose a vector ~v in Sv and use the χS(G − v)-
subspace assignment for G obtained by replacing each Sw by Sw ∩~v⊥.

Corollary 1.7. For any n, χ∗(Kn) = n.

Proof. A valid coloring (vector coloring) of Kn consists of n different colors (orthogonal
vectors).

Corollary 1.8. For any graph G, ω(G) 6 χ∗(G);

Proposition 1.9. For any graph G, χ∗(G) 6 ∆(G) + 1;

Proof. This is well-known for χl [10, pg. 345] as well as χ. Induct on |G|. The case
|G| = 1 is trivial. Assume the statement is true for graphs with k − 1 vertices, and
let G have k vertices. Let v ∈ V(G) and consider G − v. By the induction hypothesis,
χS(G − v) 6 ∆(G − v) + 1 6 ∆(G) + 1. Assign to each vertex of G a subspace of
dimension ∆(G) + 1 of Cd for some d > ∆(G) + 1. By definition, we can find a valid
vector coloring for G− v using these subspaces. Let the neighbors of v in G be colored
with vectors ~w1, . . . , ~wj. Let S be the subspace assigned to v. Since dim S = ∆(G) + 1
and j 6 ∆(G),

dim

(
S ∩

( j⋂
i=1

~w⊥
i

))
> 1,

so there exists a valid choice of vector for v.

The previous results are summarized in Figure 1. It is currently unknown whether
any relationship exists between χlv(G) and χ(G), or between χS(G) and χl(G) or
χ(G), although we conjecture that χlv(G) > χ(G) and χS(G) > χl(G).

Lemma 1.10. Let v be a vertex of a graph G. If deg(v) < χ∗(G) − 1, then χ∗(G − v) =
χ∗(G).

Proof. Assume that χ∗(G − v) 6 χ∗(G)− 1. Take a (minimal) valid (vector) coloring
of G − v. To finish (vector) coloring G, we would need only to (vector) color v, which
is adjacent to at most χ∗(G)− 2 vertices. However, we have χ∗(G)− 1 (dimensions)
colors to pick a vector for v, showing that χ∗(G) 6 χ∗(G)− 1, a contradiction.
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∆(G) + 1

χl(G) χS(G)

χ(G) χlv(G)

χv(G)

ω(G)

Figure 1: The chromatic numbers and their bounds

Proposition 1.11 (cf. Wallis [36, pg. 87]). If a graph G satisfies χv(H) < χv(G) for every
proper subgraph H of G, then χv(G) 6 δ(G) + 1.

Proof. Let χv(G) = n and let x be any vertex in G. Since χv(H) < χv(G) for every
proper subgraph H of G, χv(G − x) 6 n − 1, so that there exists a valid vector color-
ing of G − x in Fn−1. Suppose by way of contradiction that deg(x) < n − 1. Then
Lemma 1.10 contradicts the fact that χv(G) = n. Thus, deg(x) > n − 1, but x was an
arbitrary vertex, so that δ(G) > n − 1 and n = χv(G) 6 δ(G) + 1.

Proposition 1.12 (cf. Thomassen [35]). If G is a planar graph, then χS(G) 6 5.

Proof. Because of Proposition 1.5, we can assume that adding any edge to G will result
in a graph that is not planar (G is plane triangulated). Assign subspaces to each vertex,
where Sv denotes the subspace assigned to vertex v assuming the following stricter
conditions. Let B denote the boundary of G. Then

• If v ∈ B, then dim Sv > 3.
• If v is not in B, then dim Sv = 5.
• Assume we have already chosen 2 vectors for some 2 adjacent vertices on the

boundary.
Following the third condition, say we assign x ∈ B with vector α, and y ∈ B is
assigned vector β where 〈α, β〉 = 0.

We will now proceed by induction on |G|. We know that for |G| = 3, χS(G) 6 5. So
assume that χS(G) 6 5 for |G| < k and let |G| = k. Assume that the three additional
conditions hold for G. We now have 2 cases, where G contains a chord and where it
does not.

Suppose G has a chord, uv. Consider the 2 subgraphs G1 and G2 defined by this
chord. Assume x, y ∈ G1. Now by the induction hypothesis, we can find vectors
for each vertex of G1 to define a valid vector coloring. This assigns u and v valid
vectors. Then G2 now satisfies the three additional conditions, since u and v are on
the boundary of G2. By the induction hypothesis, there exists a valid vector coloring
G2 in F5. Then combining these colorings gives a valid vector coloring of G.
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Assume then that G does not have a chord. Let w − v0 − x − y be a path on
B. Without loss of generality, we can assume that α ∈ Sv0 . Then span{α, γ, δ} is
a subspace of Sv0 for some orthogonal γ, δ which are also orthogonal to α. Define
S′v0

:= span{γ, δ}. Consider vertices v1, . . . , vt of G which are adjacent to v0 but not
on B. Then by the near-triangulation of G, we have that w − v1 − v2 − · · · − vt − x is
a path in G. Consider Svi , the subspace assigned to vi. Note that dim Svi = 5. Define
S′vi

:= Svi ∩ S′⊥v0
. Then anything in S′vi

is orthogonal to δ and γ, and S′vi
> 3. Consider

G − v0. This subgraph satisfies the additional conditions if we assign S′vi
to each new

boundary vertex vi. Then by the induction hypothesis, this yields a valid 5-vector
coloring of G − v0. We are left now with only the task of assigning a vector to v0. Let
~w be the vector assigned to w.

If 〈γ, ~w〉 = 0, we can assign γ to v0. Similarly, if 〈δ, ~w〉 = 0, we can assign δ to
v0. Otherwise, ~w = a1γ + a2δ + · · · for some scalars a1, a2. Then for v0, we can pick
a vector b1γ + b2δ such that b1a1 + b2a2 = 0 for nonzero b1, b2. Then we have found a
valid coloring using subspaces of dimension 5, so χS(G) 6 5.

1.1 Almost Orthogonal Vectors

We now give the vector equivalent of a well-known result of Gaddum and Nordhaus
[22] that bounds the sum of the chromatic number of a graph and its complement.

Lemma 1.13. Let G be a graph. Then χS(G) + χS(G) 6 |G|+ 1.

Proof. We proceed by induction on |G|. If |G| = 1, χS(G) = 1 = χS(G). Suppose that
for any graph G on n vertices, we have that χS(G) + χS(G) 6 n + 1. Let H be a graph
on n + 1 vertices with complement H. Consider the graph that remains when some
vertex, v, is removed from H and H. Let G = H − v. Then G is a graph on n vertices,
and by the induction hypothesis, χS(G) + χS(G) 6 n + 1. Also, by Proposition 1.6 we
have that χS(H) 6 χS(G) + 1 and χS(H) 6 χS(G) + 1 so that

χS(H) + χS(H) 6 χS(G) + χS(G) + 2 6 n + 3.

Suppose that H has q edges from v to G. Then there are n − q edges from v to G
in H. If χS(H) < χS(G) + 1 or χS(H) < χS(G) + 1, we have that

χS(H) + χS(H) < χS(G) + χS(G) + 2 6 n + 3

and thus χS(H) + χS(H) 6 n + 2.
Otherwise, removing v strictly decreases the subspace chromatic number of the

graph. Then q > χS(G) and n − q > χS(G) so that

χS(G) + χS(G) 6 n − q + q = n

and χS(H) + χS(H) 6 n + 2.
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Lemma 1.14. Let G1 and G2 be graphs on the same vertex set. Then χv(G1 ∪ G2) 6
χv(G1)χv(G2).

Proof. Let χv(G1) = n1 and χv(G2) = n2. We begin by taking a n1-vector coloring
of G1. Define V1 to be the n1-dimensional subspace spanned by the vectors in this
coloring. Similarly, let V2 denote the n2-dimensional subspace spanned by the vectors
in a n2-vector coloring of G2. If vertex v is represented by ~v1 ∈ V1 and also represented
by ~v2 ∈ V2, then in the coloring of G1 ∪ G2, represent v by ~v1 ⊗ ~v2, where ⊗ is the
tensor product.

Corollary 1.15. Let G be a graph with |G| = n. Then n 6 χv(G)χv(G).

Proof. By Lemma 1.14, n = χv(Kn) = χv(G ∪ G) 6 χv(G)χv(G).

Lemma 1.16. For any graph G, 2
√
|G| 6 χv(G) + χv(G).

Proof. Follows from Corollary 1.15 and the inequality of arithmetic and geometric
means.

Proposition 1.17. For any graph G, 2
√
|G| 6 χ∗(G) + χ∗(G) 6 |G|+ 1.

Proof. That χl(G) + χl(G) 6 |G|+ 1 was proved by Erdős, Rubin and Taylor [7]. The
rest follows from Lemma 1.16 and Lemma 1.13.

Using Lemma 1.14 to show Corollary 1.15 is an idea found in Cameron et al. [5]
and borrowed from a similar result for the original coloring problem found in Ore’s
book [23]. The proof of the lower bound, specifically the assertion that n 6 χ(G)χ(G),
in the original paper by Gaddum and Nordhaus, relies on the Pigeonhole Principle:
if we let ni be the number of vertices assigned the ith color, n1 + n2 + · · ·+ nχ(G) =
|G| and so χ(G) > maxi ni > |G|/k. A first attempt to prove Proposition 1.17 for
the vector chromatic numbers led to wondering whether there exists a vector space
version of the Pigeonhole Principle. As it turns out, this question has already been
asked by Erdős [21], and answered in the negative by Furedi and Stanley: for two
positive integers d and k, define α(d, k) to be the maximum cardinality of a set of
nonzero vectors in Rd such that every subset of k + 1 vectors contains an orthogonal
pair [2] (almost orthogonal vectors). In order to use Gaddum and Nordhaus’ original
argument, we would require that α(d, k) = dk for all d and k. While α(d, 2) = 2d [30]
and α(2, k) = 2k, α(4, 5) > 24 [9], and little else seems to be known.

1.2 The Bell-Kochen-Specker Theorem

We have already seen that χv(G) 6 χ(G) for any graph G. An example of a graph for
which χv(G) < χ(G) is surprisingly difficult to find. In fact, the first examples come
from proofs of a well-known theorem in quantum theory.

Kochen and Specker [14–16, 33] (and Bell independently [3]) showed that in a
Hilbert space H of dimension at least three there does not exist a function f from
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the set of projection operators on H to the set {0, 1} such that for every subset of
projections {Pi} that commute and satisfy ∑i Pi = I (where I is the identity operator
on H), then ∑i f (Pi) = 1. Note that, if ~e1, . . . ,~en is an orthonormal basis for a Hilbert
space H of dimension n, and Pi is the orthogonal projection on the span of ~ei, then
∑i Pi = I and the Pi commute. Thus one way to prove the Kochen-Specker theorem is
to provide a set of Kochen-Specker vectors, where it is impossible to assign either 1 or 0
to each vector in the set so that no two orthogonal vectors are both assigned 1 and in
any subset of n mutually orthogonal vectors not all of the vectors are assigned zero.

If G is the graph of a set of Kochen-Specker vectors in Fn that does contain n mu-
tually orthogonal vectors, then χv(G, F) < χ(G), since coloring G requires at least n
colors, and if G could be colored using n colors, then assigning the value 1 to every
vertex of a specified color and 0 to the others would contradict the Kochen-Specker
property of the set of vectors. The original proof of the Kochen-Specker theorem con-
sisted of 117 vectors in R3 whose graph has chromatic number 4. Successive papers
have presented examples of sets of Kochen-Specker vectors of decreasing cardinal-
ity [4]. In 2005, using an algorithm for the exhaustive construction of sets of Kochen-
Specker vectors, Pavičić et al. [25, 26] generated all sets of Kochen-Specker vectors
with less than 25 vectors in R4, and with less than 31 vectors in R3. In dimension 3
and dimension 4, this approach has shown that a set of Kochen-Specker vectors must
have at least 18 elements.

A Smaller Example

One of the first authors to give a smaller set of Kochen-Specker vectors than the
original 117 was Peres [28], who provides sets of 33 vectors in R3 and 24 vectors in R4.
We are able to exhibit a subset S of 17 of the later Kochen-Specker vectors of Peres
with orthogonality graph G for which χv(G) = 4 and χ(G) = 5. As mentioned above,
S cannot be a Kochen-Specker set.

We begin to construct this example by deleting only 6 vertices from Peres’ graph.
We describe the resulting 18-vertex graph G by the vectors assigned to each vertex.
Following Peres, we use 1 to denote −1.

1000 0100 0010 0001 1100 1100

1111 1111 1111 1111 1010 1010

1111 1111 1111 1111 1001 1001

Note that the first four vectors of each row form a clique. We wish to show that
χ(G) > 4. Suppose that there is a coloring of G using four colors. Call the color
associated with the vertex 1000 green. Then at the end of the first row, one of the
vertices 1100 and 1100 must be green, since both vectors are orthogonal to 0010 and
0001. Similar reasoning shows that at the right of the second row, we also must have a
green vertex from the vectors 1010 and 1010. This gives four possible options that are
displayed below, each of which leads to a contradiction. Besides the original choice of
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1100 or 1100 and 1010 or 1010, the resulting colorings, with green vectors indicated,
are forced. In each case, by reasoning as above, we must also have one of the vectors
1001 and 1001 colored green, and it may be seen this is not possible.

1000 0100 0010 0001 1100 1100
1111 1111 1111 1111 1010 1010

1111 1111 1111 1111 1001 1001

1000 0100 0010 0001 1100 1100

1111 1111 1111 1111 1010 1010

1111 1111 1111 1111 1001 1001

1000 0100 0010 0001 1100 1100

1111 1111 1111 1111 1010 1010

1111 1111 1111 1111 1001 1001

1000 0100 0010 0001 1100 1100

1111 1111 1111 1111 1010 1010

1111 1111 1111 1111 1001 1001

Note that in the 18-vertex graph, the vertex assigned to vector 1000 has degree
three. But since χ(G) = 5, we know that by Lemma 1.10, we can remove this vertex
to get a 17-vertex graph with the same chromatic number. Thus the graph described
by the following vectors satisfies χv(G) < χ(G), and can be seen in Figure 2.

0100 0010 0001 1100 1100
1111 1111 1111 1111 1010 1010
1111 1111 1111 1111 1001 1001

Quantum Chromatic Number

Another specific example of a graph on 18 elements for which χv < χ is the orthogo-
nality graph of the vectors

0011 1000 0111 0101 0010 1101
1100 0001 1110 1010 0100 1011
0110 1001 1111 1111 1111 1111,

which is given in a paper by Cameron et al. [5] that explores the quantum chromatic
number χq of a graph. In general, ω(G) 6 χq(G) 6 χ(G). The rank-one quantum

chromatic number of a graph G = (V, E), χ
(1)
q (G), is the smallest positive integer c such

the electronic journal of combinatorics 17 (2010), #R55 9



11̄11

11̄1̄1
1111

0001

11̄00

0010

1̄111

101̄0

0100

1001̄

11̄11̄

1111̄

111̄1

1100

111̄1̄

1010

1001

Figure 2:

that there exist unitary matrices {Uv}v∈V ∈ Mc(C) such that the diagonal entries of
U∗

v Uw are all zero whenever v and w are adjacent in G. In general, χv(G, C) 6 χ
(1)
q (G),

since given the unitary matrices {Uv}, taking the first row of each matrix yields a valid
vector coloring of G.

Lemma 1.18 ([5]). Let G be a graph with a valid vector coloring in R4. Then χ
(1)
q (G) = 4.

By Lemma 1.18, we will also have that χq(G) = 4, yielding a smaller example that
was previously known for both χv(G) < χ(G) and χq(G) < χ(G). The relationship
between χv and χq is currently unknown.

2 2-Choosable Graphs

In 1979, Erdős, Rubin and Taylor characterized all 2-choosable graphs [7]. By repeat-
edly removing degree-one vertices, this characterization is given in terms of the core
of the graph, which is what remains after repeatedly removing all vertices of degree
one. The graph Θa,b,c is defined to be the graph where two vertices joined by three
distinct paths of a, b, and c edges.

Theorem 2.1 ([7]). A graph G is 2-choosable if and only if the core of G is K1, an even cycle,
or Θ2,2,2n for n ∈ N.

We now proceed to characterize all 2-vector choosable and 2-subspace choosable
graphs, and begin by considering the subspace-chromatic number of trees, even cycles,
and Θ2,2,2n.
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Lemma 2.2. Let T be a tree. Assign a vector ~v to any vertex v of T, and assign subspaces of
dimension two to the remaining vertices of T. Then T has a valid vector coloring.

Proof. The proof is by induction on |T|. If |T| = 1, then T = K1, and one vector
suffices. Now suppose that |T| = k and that the statement holds for all trees on
k − 1 vertices. T − v is either a tree or a forest with two connected components.
Orthogonally project the subspace(s) assigned to the neighbor(s) of v on ~v⊥, choose a
vector for each neighbor from the result, and apply the induction hypothesis.

Proposition 2.3. Let T be a tree. Then χS(T) = 1 if T = K1, and χS(T) = 2 otherwise.

Proof. Given a subspace assignment, choosing any vertex of T and any vector at that
vertex results in the assumptions of Lemma 2.2.

We now turn our attention to even cycles and discover the surprising result that
the choice of field makes a difference in the subspace-chromatic number, even in small
examples. We first consider C4.

Lemma 2.4. The subspace-chromatic number χS(C4, R) = 3.

Proof. Using Proposition 1.9, we only need to show that there is a set of real subspace
assignments of dimension 2 for C4 which does not yield a valid coloring. Consider
the following subspace assignments:

S1 S2

S3S4

where
S1 = span{~e1,~e2}

S2 = span{~e2 +~e3,~e1 −~e4 +~e5}
S3 = span{~e1 − 3~e2 + 2~e3 + 4~e5,~e4}
S4 = span{~e1 +~e3,~e2 −~e4 + 2~e5}

Suppose there exists a valid vector coloring. Then we have three choices of vector
for ~v1 ∈ S1, ~e1, ~e2, and ~e1 + b ·~e2, where b is a nonzero scalar. Suppose for ~v1, we
choose~e1. Then for ~v2 we must choose~e2 +~e3 from S2, and continuing in this way, we
have ~v3 = ~e4 in S3 and ~v4 = ~e1 +~e3 in S4, which is not a valid vector coloring.

If instead we choose ~v1 = ~e2, then we must choose~e1 +~e3 for ~v4, and continuing in
this direction, from the respective subspaces, we have ~v3 = ~e4 and ~v2 = ~e2 +~e3, which
is also not a valid vector coloring.
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Thus ~v1 = ~e1 + b~e2, where b is a nonzero real number. This forces

~v4 = b(~e1 +~e3)− (~e2 −~e4 + 2~e5)
~v2 = b(~e1 −~e4 +~e5)− (~e2 +~e3)

and the choice of ~v2 gives

~v3 = b(~e1 − 3~e2 + 2~e3 + 4~e5) + (5b + 1)~e4.

To be a valid coloring, we need

〈b(~e1 − 3~e2 + 2~e3 + 4~e5) + (5b + 1)~e4, b(~e1 +~e3)− (~e2 −~e4 + 2~e5)〉 = 0.

This forces 3b2 + 1 = 0, contradicting that b is real.

Unlike the real case, we will see that over the complex numbers, the subspace
chromatic number of C2n is 2 for all natural n. First, we extend this counterexample
to find the subspace chromatic number of any even cycle over the real numbers.

Lemma 2.5. Let G be a graph, let v be a vertex of G of degree two such that the two neighbors
of v in G are not adjacent, and let e and f be the edges incident on v in G. If χS(G/e/ f ) > 2
then χS(G) > 2 as well.

Proof. Let x and y be the neighbors of v in G. Since χS(G/e/ f ) > 2, there exists
a subspace assignment for G/e/ f where each subspace has dimension two and for
which there is no valid vector coloring of G/e/ f . Let S be the subspace assigned
to the vertex ve f that has replaced vertices v, x, and y in G/e/ f . Create a subspace
assignment for G from that for G/e/ f by assigning S to v, x, and y. Suppose there
exists a valid vector coloring for G from this subspace assignment. Then, since S has
dimension two, vertices x and y must be assigned the same vector, giving a valid
vector coloring for the original subspace assignment on G/e/ f , a contradiction.

Proposition 2.6. For any cycle C, χS(C, R) = 3.

Proof. If C is an odd cycle, note that χv(C) = 3 so that χS(C) = 3 by Remark 1.4.
Use Lemma 2.5 to extend the counterexample of Lemma 2.4 to any C2n, giving that
χS(C2n, R) > 3, and apply Proposition 1.9.

Corollary 2.7. For any n ∈ N, χS(Θ2,2,2n, R) = 3.

Proof. Any graph of the form Θ2,2,2n will have an induced even cycle and the result
follows from Proposition 2.6.

The following proposition, which completely characterizes all graphs with sub-
space chromatic number 2 over the real numbers, follows directly from Proposi-
tion 2.6.
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Proposition 2.8. Let G be a graph. Then χS(G, R) 6 2 if and only if G is a tree.

Now that we have characterized all graphs that are 2-vector choosable over the
real numbers, we return to the case of the even cycle to find the subspace chromatic
number over the complex numbers.

Lemma 2.9. Let S and T be two-dimensional subspaces of Cn for some n > 2 such that for
every nonzero vector ~s ∈ S there exists a nonzero vector ~t ∈ T such that 〈~s,~t〉 6= 0. Then
given an orthonormal basis ~s1,~s2 of S, there exists an orthonormal basis ~t1,~t2 of T such that
〈~si,~tj〉 = 0 if and only if i = j.

Proof. Extend the orthonormal basis~s1,~s2 of S to an orthonormal basis~s1, . . . ,~sn of Cn.
By assumption, there exists a nonzero vector ~w1 ∈ T such that ~w1 is not orthogonal to
~s1. Extend ~w1 to an orthonormal basis ~w1, ~w2 of T. Also by assumption, ~w2 cannot be
orthogonal to both~s1 and~s2, and~s2 cannot be orthogonal to both ~w1 and ~w2 Thus we
may write ~w1 and ~w2 uniquely as

~w1 = a1~s1 + a2~s2 + · · ·+ an~sn

~w2 = b1~s1 + b2~s2 + · · ·+ bn~sn

where a1 6= 0 and a1b2 − b1a2 6= 0. Applying Gauss-Jordan elimination and normaliz-
ing the resulting vectors yields the desired basis of T.

Proposition 2.10. The subspace chromatic number χS(C2n, C) = 2.

Proof. Begin by labeling the vertices of C2n as v1, . . . , v2n (where vi is adjacent to vi+1)
and assign these vertices corresponding subspaces S1, . . . , S2n of dimension 2. Without
loss of generality, assume that S1 = span{~e1,~e2}. If there are adjacent vertices u and
v of C2n that have been assigned subspaces Su and Sv where there exists a nonzero
vector ~u in Su that is orthogonal to every vector in Sv, choose ~u for vertex u, and
apply the reasoning of Lemma 2.2 to get a vector coloring of the vertices of C2n. Since
whatever vector is chosen for v is orthogonal to ~u, we have a valid vector coloring.

Thus we may assume that for every pair of adjacent vertices, u and v of C2n that
have been assigned subspaces Su and Sv, and for every nonzero vector ~u ∈ Su, there
exists a nonzero vector ~v ∈ V such that ~u is not orthogonal to ~v. Choose a basis~e11,~e12
of the subspace S1 assigned to v1. If there exists a valid vector coloring of C2n where
v1 is assigned ~e11 or ~e12, we are done. Thus we may assume that we have exhausted
these two cases and are now forced to choose~e11 + b~e12 for vertex v1, where b is some
nonzero complex scalar.

By Lemma 2.9 there is an orthonormal basis~e21 and~e22 of S2 such that 〈~e1i,~e2j〉 = 0
if and only if i = j. Applying Lemma 2.9 repeatedly, for each i, there exists an
orthonormal basis ~ek1 and ~ek2 of Si such that 〈~e(k−1)i,~ekj〉 = 0 if and only if i = j.
Starting again with vector ~v1 = ~e11 + b~e12 for vertex v1, assign the vectors

~vk =

{
~ek1 + b~ek2 if k is odd,
b~ek1 −~ek2 if k is even,

the electronic journal of combinatorics 17 (2010), #R55 13



to the remaining vertices. Then, by construction, the inner product of the vectors
representing any two adjacent vertices will be zero regardless of the choice of b, with
the exception of

〈~v1,~v2n〉 = 〈~e11 + b~e12, b~e(2n)1 −~e(2n)2〉
= b2〈~e12,~e(2n)1〉+ b(〈~e11,~e(2n)1〉 − 〈~e12,~e(2n)2〉)− 〈~e11,~e(2n)2〉 .

By the Fundamental Theorem of Algebra, there exists a complex number b for which
〈~v1,~v2n〉 = 0, yielding a valid vector coloring of C2n for any assignment of two-
dimensional subspaces.

We can now turn our attention to the subspace chromatic number over the complex
numbers of the third type of 2-choosable graph, Θ2,2,2n. We find here that unlike in
the case with even cycles, the subspace chromatic number over the complex numbers
of Θ2,2,2n is the same as that over the reals.

Lemma 2.11. The subspace chromatic number χS(Θ2,2,2, C) > 3.

Proof. We show that Θ2,2,2 is not 2-vector colorable. Consider the following subspace
assignments:

S1

S3

S5

S4S2

where
S1 = span{~e1,~e2}

S2 = span{~e1 +~e3,~e2}
S3 = span{~e1,~e2 +~e3}
S4 = span{~e1,~e2 +~e4}

S5 = span{~e1 +~e2 +~e4,~e3}.

If a scalar multiple of ~e1 is chosen for vertex v1, then for vertex v2 we require
~e2. Then for vertex v5, we need ~e3, which leads us to choose ~e1 for vertex v3, a
contradiction.

On the other hand if we chose ~e2 for vertex v1, then ~e1 must be chosen for vertex
v4, and then ~e3 for vertex v5. This forces ~e2 to be assigned to vertex v2, which is not
orthogonal to ~e2.

Then we are left only with the choice of ~e1 + b~e2 for vertex v1, for some nonzero
scalar b. This causes the choice of b(~e1 +~e3) −~e2 for vertex v2, and ~e2 +~e3 − b~e1 for

the electronic journal of combinatorics 17 (2010), #R55 14



vertex v3. This assignment for vertex v2 causes the choice of b(~e1 +~e2 +~e4) + (1− b)~e3
for vertex v5. For this vector to be orthogonal to the choice for vertex v3, we require
that

0 = b − 1 + b2 − b = b2 − 1

which means that b must be ±1.
If we had chosen ~e1 −~e2 for the first vertex, we must choose ~e1 +~e2 +~e4 for vertex

v4, and the vector assigned to vertex v5 is now ~e1 +~e2 − 2~e3 +~e4, a contradiction.
If we had chosen instead~e1 +~e2 for vertex 1, we must choose~e1 −~e2 −~e4 for vertex

v4, and the vector assigned to vertex v5 is now~e1 +~e2 +~e4, a contradiction. Thus there
does not exist a valid vector coloring and χS(Θ2,2,2) > 3.

Proposition 2.12. For any l, m, n > 0, the subspace chromatic number χS(Θ2l,2m,2n, C) = 3.

Proof. That χS(Θ2,2,2n, C) > 3 follows from Lemma 2.11 by using Lemma 2.5. To show
that Θ2,2,2 is 3-vector colorable, notice that we can vector color one of the induced
even cycles by Proposition 2.10. If one vertex remains uncolored, it was assigned a
subspace of dimension three and has at most two already colored neighbors. If more
than one vertex remains uncolored, the remaining vertices induce a tree and have
at most one already colored neighbor, a situation which exceeds the assumptions of
Lemma 2.2.

Proposition 2.13. If a graph G contains more than one induced even cycle, then χS(G, C) >
3.

Proof. If a graph contains multiple even cycles, then it either has an induced Θ2n,2m,2k
and we are done by Proposition 2.12, or it has an induced subgraph consisting of two
even cycles connected by a path. Using Lemma 2.5, we need only consider two copies
of C4 that share a vertex and two copies of C4 that are connected by a path of one
vertex not on either cycle.

For the latter case, consider the following subspace assignments, where the sub-
spaces are the spans of the vectors found in each vertex.

v1

~e1 ,~e3 ~e1 ,~e2

~e1 ,~e2~e2 ,~e3

v2

~e1 ,~e2 ~e2 ,~e3

~e1 ,~e3~e1 ,~e2

~e1 ,~e2

odd

Here a choice of some vector ~v for v1 causes a nonzero scalar multiple of ~v to be
assigned to v2. This will then cause a contradiction in vector coloring one of the
copies of C4.
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For the first case, consider the following subspace assignments.

v1

~e1 ,~e3 ~e1 ,~e2

~e1 ,~e2~e2 ,~e3

v2

~e1 ,~e2 ~e1 ,~e3

~e2 ,~e3~e1 ,~e2

even

Here a choice of some vector ~v for v1 causes a scalar multiple of the orthogonal vector,
~v⊥ to be assigned to v2. This will again cause a contradiction in vector coloring one
of the copies of C4.

We can now classify all graphs with subspace chromatic number 2 over the com-
plex numbers.

Theorem 2.14. For any graph G, χS(G, C) 6 2 if and only if G is a tree or G contains
exactly one cycle and that cycle is even.

Proof. Follows from Proposition 2.10 and Proposition 2.13.

Knowing the characterization of all 2-choosable graphs and having completely
characterized all 2-subspace choosable graphs we now ask: when is a graph 2-vector
choosable? Can there be a graph which is not 2-choosable but is 2-vector choosable?

Proposition 2.15. For any graph G, χlv(G) = 2 if and only if χl(G) = 2.

Proof. If χl(G) = 2, then we know that χlv(G) = 2, so we just need to show that there
are no graphs such that χlv(G) = 2 but χl(G) 6= 2. If a graph contains an odd cycle,
then χlv(G) > 3. So, again, we must show that if G includes multiple even cycles,
then χlv(G) > 3. Notice, however, that the subspace assignments in Proposition 2.13
are all spans of lists of basis elements.
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