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Abstract

In this paper, we give the sufficient conditions for the positivity of recurrence

sequences defined by

anun = bnun−1 − cnun−2

for n > 2, where an, bn, cn are all nonnegative and linear in n. As applications, we

show the positivity of many famous combinatorial sequences.

1 Introduction

The significance of the positivity to combinatorics stems from the fact that only the
nonnegative integer can have a combinatorial interpretation. There has been an amount
of research devoted to this topic in recent years (see [1, 2, 5, 9, 10, 14, 15] for instance).
The purpose of this paper is to present some sufficient conditions for the positivity of
recurrence sequences.

Let u0, u1, u2, . . . be a sequence of integer numbers. The sequence is called a (linear)
recurrence sequence if it satisfies a homogeneous linear recurrence relation

un = a1un−1 + a2un−2 + · · · + akun−k (1)

for n > k, where a1, a2, . . . , ak ∈ Z. The linear recurrence relation (1) defines a unique
integer sequence {un}n>0 after the first k initial terms u0, u1, . . . , uk−1 are given. Let
p(x) = xk − a1x

k−1 − · · · − ak be its characteristic polynomial with discriminant D.
Following [7], the positivity problem is stated as follows.
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Positivity Problem. Let a linear recurrence relation (1) be given together with the initial
terms ui for i = 0, 1, . . . , k−1. Is the recurrence sequence {un}n>0 nonnegative, i.e., does
it hold that un > 0 for all n?

So far there have been some results on the positivity problem. For example, Halava
et al [7] presented that the positivity problem is decidable for three-term recurrence se-
quences defined by

un = aun−1 + bun−2 (2)

for a, b ∈ Z. More precisely, we can conclude the following result from [7] when ab 6= 0.

Theorem 1.1. Suppose that the sequence {un}n>0 satisfying the three-term recurrence
relation (2) with the discriminant D = a2 + 4b > 0. Let λ and Λ be the smaller and
larger characteristic roots respectively. Then the full sequence {un}n>0 is nonnegative if
and only if one of the following conditions hold.

(i) a > 0, b < 0 and u1 > u0λ > 0.

(ii) a < 0, b > 0 and u1 = u0Λ > 0.

In this paper, we are mainly interested in the positivity problem of sequences satisfying
the following more general recurrence

anun = bnun−1 − cnun−2, (3)

where an, bn, cn are all nonnegative and linear in n. There are many combinatorial se-
quences satisfying this recurrence. For example, the central Delannoy sequence {D(n)}
satisfies the recurrence

nD(n) = 3(2n − 1)D(n − 1) − (n − 1)D(n − 2) (4)

with D(0) = 1, D(1) = 3 and D(2) = 14 (see [12] for instance). However, we cannot get
that the sequence {D(n)} is nonnegative directly from the recurrence (4).

The paper is organized as follows. In Section 2, we present the sufficient conditions
used frequently for the positivity of sequences satisfying the recurrence (3). In Section 3,
we apply these results to derive the positivity of several combinatorial sequences, including
the central Delannoy numbers, the Schröder numbers, and some orthogonal polynomials.
Finally in Appendix, we prove Proposition 2.1.

2 Sufficient conditions for the positivity

In this section, we give the sufficient conditions for the positivity of {un} satisfying
the recurrence

anun = bnun−1 − cnun−2,
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where u0, u1 > 0 and an, bn, cn are all nonnegative. Let xn = un

un−1

for n > 1. In order to

establish the positivity of the sequence {un}, it sufficies to check that {xn}n>1 satisfies

xn >
cn+1

bn+1
.

By (3), the sequence {xn}n>1 satisfies the recurrence

anxn = bn − cn

xn−1
.

Let pn(x) = anx2 − bnx+ cn denote the n-th characteristic polynomial of the sequence
satisfying the recurrence (3). Assume that b2

n
− 4ancn > 0 for each n > 1. Then the n-th

characteristic roots are

λn =
bn −

√

b2
n
− 4ancn

2an

and Λn =
bn +

√

b2
n
− 4ancn

2an

respectively. Denote the limit of the sequence {λn}n>1 by λ∞. By a simple calculation
and b2

n
> 4ancn, we have

λn >
cn

bn

.

Hence we can conclude that if u0, u1 > 0 and xn > λn+1 for n > 1, then the sequence
{un}n>0 is nonnegative.

In the following, we suppose that an, bn, cn are all linear in n. More precisely, let

an = α1n + α0, bn = β1n + β0, cn = γ1n + γ0

and denote

A =

∣

∣

∣

∣

β0 β1

γ0 γ1

∣

∣

∣

∣

, B =

∣

∣

∣

∣

γ0 γ1

α0 α1

∣

∣

∣

∣

, C =

∣

∣

∣

∣

α0 α1

β0 β1

∣

∣

∣

∣

.

We can obtain the monotonicity of the n-th characteristic roots {λn}n>1 and {Λn}n>1,
which is only related to discriminants A, B, C.

Proposition 2.1. Suppose that B2 6 AC. Then the following hold.

(i) If C 6 0, then sequences {λn}n>1 and {Λn}n>1 are nonincreasing in n.

(ii) If C > 0, then sequences {λn}n>1 and {Λn}n>1 are nondecreasing in n.

For the sake of the flow, the proof of Proposition 2.1 is given as an Appendix.
We can now give the following sufficient conditions for the positivity of recurrence

sequences satisfying (3).

Theorem 2.2. Let {un}n>0be a sequence of integer numbers and satisfy the three-term
recurrence (3). Suppose that C 6 0, B2 6 AC and u1 > u0λ1 > 0. Then the positivity
problem of the sequence {un}n>0 can be solved.
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Proof. Let xn = un

un−1

for n > 1. We need to prove that xn > λn+1 for all n > 1. From

Proposition 2.1 (i), we have λn > λn+1. Hence it suffices to show xn > λn. We proceed
by induction on n. Clearly, x1 > λ1 by the condition u1 > u0λ1 > 0. Now assume that
xn−1 > λn−1 for n > 2. Note that pn(λn) = 0, i.e. bn − cn

λn

= anλn. So we have

anxn = bn − cn

xn−1
> bn − cn

λn−1
> anλn.

by induction hypothesis and Proposition 2.1 (i). Thus xn > λn for all n > 1. This
completes the proof.

Theorem 2.3. Let {un}n>0 be a sequence of integer numbers and satisfy the three-term
recurrence (3). Suppose that C > 0, B2 6 AC, Λ1 > λ∞ and u1 > u0Λ1 > 0. Then the
positivity problem of the sequence {un}n>0 can be solved.

Proof. Let xn = un

un−1

. In order to prove the positivity of {un}, it suffices to check that
xn > λn+1 for all n > 1. From Proposition 2.1, we have Λ1 > λn+1. So we only need to
show that xn > Λ1. We proceed by induction on n. Clearly, x1 > Λ1 by the condition
u1 > u0Λ1 > 0. Now assume that xn−1 > Λ1 for n > 2. Note that λn 6 Λ1 6 Λn following
from Proposition 2.1 and the condition Λ1 > λ∞. Hence pn(Λ1) = anΛ2

1 − bnΛ1 − cn 6 0.
Furthermore,

anxn = bn − cn

xn−1

> bn − cn

Λ1

> anΛ1

by the induction hypothesis. Then xn > Λ1 for all n > 1. The proof is complete.

When an, bn, cn are all constants, we have A = B = C = 0 by the definition. So
the sufficiency of Theorem 1.1 (i) is a special case of Theorem 2.2. In particular, if
B2 = AC, then we can obtain the following corollary which is interesting and useful from
Proposition 2.1, Theorems 2.2 and 2.3.

Corollary 2.4. Let {un}n>0be a sequence of integer numbers and satisfy the three-term
recurrence (3). Suppose that B2 = AC. Then the following results hold.

(i) If bnC + 2anB has the same sign as C for all n > 1, then the sequence {λn}n>1 is
constant. In addition, if u1 > u0λ1 > 0, then the positivity problem of the sequence
{un}n>0 can be solved.

(ii) If bnC + 2anB has opposite sign of C for all n > 1, then the sequence {Λn}n>1 is
constant. In addition, if u1 > u0Λ1 > 0, then the positivity problem of the sequence
{un}n>0 can be solved.

3 Applications

In this section, we apply results obtained in the previous section to derive the positivity
of several recurrence sequences in a unified manner.
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Let ν > −1
2

be a parameter. The Gegenbauer polynomials sequence {C(ν)
n (t)}n>0

satisfies the recurrence relation

nC(ν)
n

(t) = 2t(ν + n − 1)C
(ν)
n−1(t) − (2ν + n − 2)C

(ν)
n−2(t) (5)

with C
(ν)
0 (t) = 1 and C

(ν)
1 (t) = 2tν. Then we have the following corollary.

Corollary 3.1. The positivity problem of the Gegenbauer polynomials sequence {C(ν)
n (t)}

can be solved for t > 1, ν >
1
2
.

Proof. From the recurrence (5), we have A = −2t(ν − 1), B = 2(ν − 1), C = −2t(ν − 1).
Clearly, b2

n
− 4ancn = 4[(t2 − 1)n2 + 2(ν − 1)(t2 − 1)n + t2(ν − 1)2] > 0 for t > 1 by direct

calculation.
First consider the case t = 1. We have B2 = AC and bnC + 2anB = −4(ν − 1)2 6 0.

If ν > 1, then C < 0. By Corollary 2.4 (i), we have λn = 1 for n > 1. And if 1
2

6 ν 6 1,
then C > 0. By Corollary 2.4 (ii), we have Λn = 1 for n > 1. Thus the positivity of

{C(ν)
n (t)}n>0 follows from Corollary 2.4.
For t > 1, we have B2 6 AC. If ν > 1, then C < 0 and if 1

2
6 ν 6 1, then C > 0.

Also, Λ1 = tν +
√

t2ν2 − 2ν + 1 and λ∞ = t −
√

t2 − 1. Thus the sequence {C(ν)
n (t)}n>0

is nonnegative from Theorems 2.2 and 2.3 respectively.

In particular, for ν = 1
2
, C

( 1

2
)

n (t) reduces to the Legendre polynomials Pn(t) and for

ν = 1, we have C
(1)
n (t) = Un(t) is the Chebyshev polynomials of the second kind. So

the Legendre polynomials sequence {Pn(t)}n>0 and the Chebyshev polynomials sequence
{Un(t)}n>0 are nonnegative for t > 1.

The derivative sequence of Gegenbauer polynomials { d

dt
C

(ν)
n (t)}n>0 satisfies the follow-

ing recurrence relation

(n − 1)
d

dt
C(ν)

n
(t) = 2t(ν + n − 1)

d

dt
C

(ν)
n−1(t) − (2ν + n − 1)

d

dt
C

(ν)
n−2(t) (6)

with d

dt
C

(ν)
n (0) = 0, d

dt
C

(ν)
n (1) = 2ν and d

dt
C

(ν)
n (2) = 4ν(ν+1)t. Then we have the following.

Corollary 3.2. The positivity problem of the derivative sequence of Gegenbauer polyno-
mials { d

dt
C

(ν)
n (t)}n>0 can be solved for t > 1, ν > 0.

Proof. From the recurrence (6), we have A = −2tν, B = 2ν, C = −2tν. And b2
n
−4ancn =

4[(t2 − 1)n2 + 2(ν − 1)(t2 − 1)n + t2(ν − 1)2 + 2ν − 1] > 0 for t > 1.
For t > 1, ν > 0, we have C < 0 and B2 6 AC. Also, x2 = 2t(ν + 1) and Λ2 =

t(ν + 1) +
√

t2(ν + 1)2 − (2ν + 1). Thus the positivity of the sequence { d

dt
C

(ν)
n (t)}n>0

follows from Theorem 2.2.

In what follows we list some more examples of recurrence sequences which are easy
seen to satisfy the assumption of Theorem 2.3 or Corollary 2.4. Thus the positivity of
these sequences is an immediate consequence of Theorem 2.3 or Corollary 2.4.
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Example 3.3. The central Delannoy number D(n) is the number of lattice paths, king
walks, from (0, 0) to (n, n) with steps (1, 0), (0, 1) and (1, 1) in the first quadrant. It is
known that the central Delannoy numbers satisfy the recurrence

nD(n) = 3(2n − 1)D(n − 1) − (n − 1)D(n − 2)

with D(0) = 1, D(1) = 3 and D(2) = 14 (see [12] for a bijective proof). By the recurrence,
we have A = 3, B = −1, C = 3. Also, Λ1 = 3 and λ∞ = 3 − 2

√
2. Hence the positivity of

{D(n)}n>0 follows from Theorem 2.3.

Example 3.4. The (large) Schröder number rn is the number of king walks, Schröder
paths, from (0, 0) to (n, n), and never rising above the line y = x. The Schröder paths
consist of two classes: those with steps on the main diagonal and those without. These
two classes are equinumerous, and the number of paths in either class is the little Schröder
number sn (half the large Schröder number). It is known that the Schröder numbers of
two kinds satisfy the recurrence

(n + 2)zn+1 = 3(2n + 1)zn − (n − 1)zn−1

with s0 = s1 = r0 = 1, r1 = 2, s2 = 3 and r2 = 6 (see Foata and Zeilberger [4] and
Sulanke [16]). By the recurrence, we have A = 9, B = −3, C = 9. Also, Λ2 = 3 and
λ∞ = 3 − 2

√
2. Hence the positivity of {rn}n>0 follows from Theorem 2.3.

Example 3.5. Let hn be the number of the set of all tree-like polyhexes with n + 1
hexagons (Harary and Read [8]). It is known that hn counts the number of lattice paths,
from (0, 0) to (2n, 0) with steps (1, 1), (1,−1) and (2, 0), never falling below the x-axis
and with no peaks at odd level. The sequence {hn}n>0 is Sloane’s A002212 and satisfies
the recurrence

(n + 1)hn = 3(2n − 1)hn−1 − 5(n − 2)hn−2

with h0 = h1 = 1 and h2 = 3. By the recurrence, we have A = 45, B = −15, C = 9. Also,
Λ2 = 3 and λ∞ = 1. So {hn}n>0 is nonnegative by Theorem 2.3.

Example 3.6. Let wn be the number of walks on cubic lattice with n steps, starting and
finishing on the xy plane and never going below it (Guy [6]). The sequence {wn}n>0 is
Sloane’s A005572 and satisfies the recurrence

(n + 2)wn = 4(2n + 1)wn−1 − 12(n − 1)wn−2

with w0 = 1, w1 = 4 and w2 = 17. By the recurrence, we have A = 144, B = −36, C = 12.
Also, Λ1 = 4 and λ∞ = 2. So {wn}n>0 is nonnegative by Corollary 2.4.

4 Concluding Remarks

Let u0, u1, u2, . . . be a sequence of nonnegative numbers. The sequence is called log-
convex (resp. log-concave) if for all k > 1, uk−1uk+1 > u2

k
(resp. uk−1uk+1 6 u2

k
). Clearly,
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a sequence {uk}k>0 of positive numbers is log-convex (resp. log-concave) if and only if
the sequence {uk+1/uk}k>0 is increasing (resp. decreasing). For the positive sequence
satisfying the recurrence (3), we have recently established the following result for the
log-convexity and log-concavity (see [11] for instance).

Theorem 4.1 ([11]). Let {un}n>0 be a sequence of positive numbers and satisfy the three-
term recurrence

(α1n + α0)un+1 = (β1n + β0)un − (γ1n + γ0)un−1 (7)

for n > 1, where α1n+α0, β1n+β0, γ1n+γ0 are positive for n > 1. Suppose that AC > B2.
Then the following results hold.

(i) If B < 0, C > 0, u0B+u1C > 0 and u2
1 6 u0u2, then the sequence {un} is log-convex.

(ii) If B > 0, C < 0, z0B+z1C 6 0 and u2
1 > u0u2, then the sequence {un} is log-concave.

Using Theorem 4.1, we can get that sequences appeared in this paper are either log-
concave or log-convex. For example, the central Delannoy sequence {D(n)}n>0 is log-

convex [11] and the sequence {C(t)
n (t)}n>0 is log-concave for ν > 1, t > 1 [3].

By the same technique used in the proof of Proposition 2.1, Theorems 2.2 and 2.3,
we can also give more sufficient conditions for the positivity of sequences satisfying the
recurrence (3) when B2 > AC. As consequences, we can obtain the positivity problem of
the Laguerre polynomials sequence {Ln(t)}n>0 can be solved for t 6 0.

5 Appendix. Proof of Proposition 2.1

The purpose of this Appendix is to prove Proposition 2.1.

Proof. We prove the result only for the case λn of (i) since the case (ii) is similar. In order
to prove that {λn}n>1 is nonincreasing, it suffices to show λ′

n
6 0 for n > 1. It is easy to

get that the derivative of λn with respect to n is

λ′

n
=

(

bn −
√

b2
n
− 4ancn

2an

)

′

=
(anb′

n
− a′

n
bn)(

√

b2
n
− 4ancn − bn) + 2an(anc′

n
− a′

n
cn)

2a2
n

√

b2
n
− 4ancn

=
(α0β1 − α1β0)(

√

b2
n
− 4ancn − bn) + 2an(α0γ1 − α1γ0)

2a2
n

√

b2
n
− 4ancn

= −bnC + 2anB − C
√

b2
n
− 4ancn

2a2
n

√

b2
n
− 4ancn

. (8)
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After rationalizing numerator, we have

λ′

n
= − (bnC + 2anB)2 − C2(b2

n
− 4ancn)

2a2
n

√

b2
n
− 4ancn(bnC + 2anB + C

√

b2
n
− 4ancn)

= − 2(anB2 + bnBC + cnC2)

an

√

b2
n
− 4ancn(bnC + 2anB + C

√

b2
n
− 4ancn)

.

Note that bnB + cnC = −anA since

anA + bnB + cnC =

∣

∣

∣

∣

∣

∣

an α1 α0

bn β1 β0

cn γ1 γ0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

α1n + α0 α1 α0

β1n + β0 β1 β0

γ1n + γ0 γ1 γ0

∣

∣

∣

∣

∣

∣

= 0.

Hence

λ′

n
= − 2(B2 − AC)

√

b2
n
− 4ancn(bnC + 2anB + C

√

b2
n
− 4ancn)

. (9)

If C = 0, then B = 0 since B2 6 AC = 0. Hence we have A = 0 by the definition. It
follows that λ′

n
= 0 from the recurrence (8).

Suppose now that C < 0. Then bnC + 2anB is linear in n. Note that it changes sign
at most once. Without loss of generality, we assume that it changes from nonnegative to
nonpositive. Thus we can get λ′

n
6 0 first from (8), and then (9). This completes our

proof of Proposition 2.1.
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[15] A. Straub, Positivity of Szegö’s rational function, Adv. in Appl. Math. 41 (2008)
255–264.

[16] R.A. Sulanke, Bijective recurrences concerning Schröder paths, Electron. J. Combin.
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