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Abstract

The main purpose of this paper is to show that many inequalities in functional
analysis, probability theory and combinatorics are immediate corollaries of the best
approximation theorem in inner product spaces. Besides, as applications of the
de Caen-Selberg inequality, the finite field Kakeya and Nikodym problems are also
studied.
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1 Brief Introduction

Let (H, < -,- >) be an inner product space over R throughout. Given = € H and a finite
dimensional subspace M, denote by xj; the orthogonal projection of xz onto M. It is
geometrically evident that (we always assume 3 = 0 in this paper)

< xar,y >3 <x,y>2
]| = e = maXM72 = max ————. (1)
ved— ly| veM |yl
Particularly, if M = span{y;}_, for some given set of elements vy, ..., y,, then

n 2
|z|? >  max <7, z;le aly22>
((XL---,Q’n)ERn || Zi:1 a2y2||

(2)
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The main purpose of this paper is to show that many inequalities in functional analysis,
probability theory and combinatorics are immediate corollaries of (2). For the sake of
completeness we determine the unique orthogonal projection x,; (many authors of text-
books on functional analysis only dealt the case when {y;}" , are linear independent).
Write zpr = Y1, Biy; for some (f4,. .., 3,) € R". Since the smooth function

U(ar, .. on) = [l =Y amil> = 2P = 2> s <2y >+ )Y oy <yiy; >
i=1 =1

i=1 j=1

attains its minimum d(z, M)? at (B4, ..., (),

ov
v B =0 (1=1,2,...,n).
(B ) =0 )
Equivalently,
<y, > <ynyYy2> - <Y,Yn > B <Z,y1 >
<Y2, > <Y2,Y2> - < Y2,Yn > B2 B <Z,Y2 > (3)
<yn>yl> <yn>y2> <ynayn> /Gn <x>yn>

If (71,...,7) € R™ is another solution to (3), then

n Br—m
IS 6 = v)wi]|* = (B =1, B = 9) (< Y Uy > :
=1 B — n
0
== Ba—m) | | =0
0

Consequently @y = Y7 | By = >0 Vivi-
Among many inequalities will be discussed later, we show particular interest in the de
Caen-Selberg inequality [1, 2]:

>y (4)
i=1 i=1 Z |A; N Al

j=1

where {A;}, are finite sets. In Section 5 we will present some applications of the de
Caen-Selberg inequality to the study of the finite field Kakeya and Nikodym problems in
classical analysis.
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2 Inequalities in Functional Analysis

2.1 Known inequalities

a2 +a?
For any (a,...,a,) € R", by (2) and the Cauchy-Schwarz inequality (Jouoy;| < Z;r )
one obtains the Pecari¢ inequality [13]
(Z o <X, Y; >
i=1
l=)l* > == : ()
>l <wiy; > |
i=1 j=1
(The following arguments are standard [13]) Substituting «; = % into (5) yields
=1 iy
the Selberg inequality [1]
n 2
<Z,Y; >
[E R : (6)

U <y > |
j=1

Substituting a; = sgn(< x,y; >) into (5) or applying the Cauchy-Schwarz inequality from
(6) yields the Heilbronn inequality [10]

n

(Sl<am=1)

lz)® > <= : (7)

n n

DX <oy > |

i=1 j=1

The Selberg inequality (6) is certainly stronger than the Bombieri inequality [1]

zn: < Z,Yi >2

l]|* > (8)

ggZa<X2|<yz,y]>|

If {y;}1, are orthogonal, then the Selberg inequality (6) turns out to be the classical
Bessel inequality

lalf? > Z =Dz (9)

< yl? yl
Substituting «; = 1 into (2) yields the Chung—Erdos inequality [3]

(Y <o)

l2)* > == : (10)

ZZ <yi>yj >

i=1 j=1
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In a partial summary;,
(2) = (5) = (6) > (7),

where (o) > (ee) means Estimate (e) is stronger than Estimate (ee).

3 From Functional Analysis to Combinatorics

3.1 Immediate corollaries

In this section we always choose H = [2. Let A, B be finite subsets of N and x4, x5 be
the corresponding indictor functions. Then

< xa,xB >=|AN B,

and x4, xp are orthogonal means A, B are disjoint sets. Given finite subsets {A4;}!, of
N, define y; = x4, (¢ € [n]) and = = xy,4,- Then < z,y; >= [(U;4;) N 4;| = |A;|. By (2)
and (3), we obtain

Theorem 3.1.
. (> el .
i=1 _ A.1A. .
- YD) aalAn Ay s
i=1 j=1

where (B, ..., 03,) € R™ is any solution to

Ay N A AN Ay - AN A, B | As
A5 N Ar| |AsN Ay -+ [AsN Ay B | As|

. . . . =1 |- (12)
A, N ALl AN As| - A, N A, Bn | Al

Note in this context the Selberg inequality (6) turns out to be the de Caen inequality
(4) and the Bessel inequality (9) turns out to be a trivial equality. Also note that

éaiimif <iaz~|Ai|>2 .

Qv |A ‘2
sup — = sup —; = Sup

‘“>°ZZ%%|A N A, ‘“>°ZZOP|A na,| “7= Zoz] 14, N A |

i=1 j=1 i=1 j5=1
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3.2 A slightly different variant

In this subsection, we provide a slightly different variant of (12).

Theorem 3.2. The following matriz equation always has a solution

a1 1

|A; N A ) 1
= : 13

In 1

any solution to (13) satisfies

n (D ailail)’
ZQi:( max ___=l : (14)

i=1 j=1
Proof. Write P = (15544) ..., @ = (|4 N 4j]), ., and R = diag(1/|A4],...,1/|A.]).
Obviously, P = RQR, Q@ = R™'PR™. Let (34,...,03,) € R be a solution to (12). Then
Bi] A B B | Ay | 1
P 52‘:’42‘ — RR'PR™ ﬂf ~ RQ 6:2 = ‘A:ﬂ - 1
This solves the existence. Suppose (¢1,q2, -, ¢n)T is a solution to (13), that is,
q1 1 q1/| A4 | Ay
1 A A
ROR q:2 _ : =0 CI2/‘: 2‘ _ ‘ :2‘
Gn 1 Gn /| An| |Anl
By (11), (12) and (13),
- 2
(Z OKZ|AZD n n
i=1 4 4q;
max = AN A
(a1,...,an)ER n n Z_; — |Az| |AJ| ‘ J‘
Z Z aa A 0 Al T
i=1 j=1
¢ 1
a2 1 u
(q17q27 7qn>P - (Q17Q27' 7qn> = Z%
: : i=1
n 1
So we get (14). This concludes the whole proof. O
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3.3 A combinatorial proof

In this subsection, we provide a combinatorial proof for the inequality in (11) to help
understand the equality case. To achieve the goal we need only prove

ZO&,|A|
=1 ZZa,aﬂA NA; |

=1 j5=1

holds for all integral weights «; € Z such that )", a;|A;| > 0. Suppose this is the case.
Let U = U, A; and x; be the indicator function of A;. Define f(z) = >, a;xi(z) and
for all k € Z,

Ur={xcU: flx) =k}, AF=A,nU"

Obviously, f = >, ., kxyr. Note

Z%\Aﬂ :Zai/XAmUk IZOéz/Xi'XUk :/f'XUk :k'\Uk|a (15)
i=1 i=1 U i=1 U U

and

ka—zk/xz xwe= [ 3 ke = /Zam Z%IAHAI, (16)

kEZ kEZ Ai keZ A j=1

here the integration means [, g = > ., g(z). By (15),

U= Yt > 30 L= ]

keZ k0

Now we need an inequality: for all r,s > 0 one has
1>g_i <@(1_1)2>Q)‘
s
By (15) again, >, o;|AF| and k have the same sign, and consequently for r > 0,

iy 6l AT| 23 | AF = E Y ag]AF] itk >0
k 7SI A = BT oAk if k<0

2 & k& ,
> ;Zai\Aﬂ—ﬁZaiMﬂ if k 0.
=1 =1

Recall that 23" | oy AF| — £ 5" | ;| A¥| = 0 when k = 0. By (16),

=Y ( 3 oAb - Za,]Ak ) _ %Zai\Ai\ - %Zzai%—mi N A = W ().
=1

kez i=1 i=1 j=1
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Finally,

(3" ailAil)
o =1
Z Z OéiOéj‘Ai N AJ‘

i=1 j=1

where r* = (370, ai| Ail)/ (D072, D05, caicrj|Ai M Aj]). This concludes the whole proof. A
byproduct of this proof is the following characterization of the equality case:

|U| = max W (r) = W(r")

r>0

n

\ (D ailAi)’ \

| = —— & E a;Xi(x) is a non-zero constant function.

. . Uiz As
=1 ZZO&Z'OKJ"AZ' N AJ| =1 '

4 From Functional Analysis to Probability Theory

4.1 Finitely many events

In this section we choose H to be the L? space of the given probability space (€2, F, P). Let
E, F be two events and xg, xr be the corresponding indicator functions. It is well-known
that Hilbert space theory and probability theory are intimately connected by

< xm,Xr >=P(ENF).

Note xg, xr are orthogonal means E, F' are disjoint. Given events {E;}! , define y; =
Xe;, (1 € [n]) and © = xyu,g,. By (2) and (3), we extend the Gallot-Kounias inequality
9, 11] to its full generality in the following form.

Theorem 4.1 (Gallot-Kounias).

P(JE)> I o =Y > uP(ENE), (17)
Q... an ) ER™ - -
=1 ' Z Z OéiOéjP(Ei N EJ) =1 j=1
i=1 j=1
where (Y1, ...,7) € R™ is any solution to
P(E,NE) P(E.OEy) - P(E,NE) - P(E,)
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To the authors’ knowledge, it seems that the Gallot-Kounias inequality, being discov-
ered 40 years ago, was almost forgotten by Mathematicians. Gallot and Kounias originally
expressed their results in terms of generalized inverse of matrices, and this may prevent
their results from being appreciated by others. So we restate their results in a more natural
way in Theorem 4.1. Note in this context (10) turns out to be the original Chung-Erdés
inequality [3]

. (3 P(E))”

P(JE) > 55 , (19)
T X ) PENE)
i=1 j=1
and the Bessel inequality (9) turns out to be a trivial equality. Also note that
g 2 g 2
(; ) (; ) - a; P(E;)°
sup ——, = sup ——— = sup — :
a; >0 a;>0 2 ;>0 i=1
> Y @i P(E N E)) >N alP(E;NE) > a;P(E;NE))
i=1 j=1 i=1 j=1 j=1
Similar to Theorem 3.2 one can establish the following theorem.
Theorem 4.2. The following matrix equation always has a solution
q1 1
P(E;NE; 1
(DELELY = (20)
P(E;)P(Ej)/ nxn :
Gn 1

any solution to (20) satisfies

n (ZaiP(Ei)f
Z %= max ___=l . (21)
Z Z OéiOéjP(Ei N Ej)

i=1 j=1

4.2 Borel-Cantelli lemma

Let {E;}2, be infinitely many events on the probability space (€2, F,P). The Borel-
Cantelli lemma states that: (a) if > .° P(E;) < oo, then P(limsup E;) = 0; (b) if
S 2, P(E;) = oo and {E;}°; are mutually independent, then P(limsup E;) = 1. Here
limsup £; = N2, U2, Ex. The Borel-Cantelli lemma played an exceptionally important
role in probability theory, and many investigations were devoted to the second part of the
Borel-Cantelli lemma in the attempt to weaken the independence condition on {E;}7°,.
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Towards this question, Erdés and Rényi [6, 14] obtained a nice result closely related to
(19): if > .2, P(E;) = oo, then

Z P(Ek))z

P(limsup E;) > limsup ———

e S>> P(E N E;)

=1 j=1

(22)

Recently, by carefully studying the effect of the denominator in the right hand of (22),
the authors [8] established a weighted version of the Erdés-Rényi theorem which states:

Theorem 4.3 (Feng-Li-Shen). If Y~ «;P(E;) = 0o, then

Z OékP(Ek))2

P(limsup E;) > limsup ——

o ZZaa] (E; ﬂE)

=1 j=1

5 Applications of the de Caen-Selberg Inequality

5.1 The finite field Kakeya set

Let F, denote a finite field of ¢ elements. Define a set K C [y to be Kakeya if it contains
a translate of any given line. The finite field Kakeya problem, posed by Wolff in his
influential survey [17], conjectured that | K| > C,,¢" holds for some constant C,,. Recently,
using the polynomial method in algebraic extremal combinatorics, Dvir [4] completely
confirmed this conjecture by proving

w= (") (21)

If n = 2, it is well-known that (24) is sharp [7] and can be established by a simple counting
argument [15]. For n > 3, see [16] for further improvement.

Similarly, we say a subset ' C Fy is an (n, k)-set if it contains a translate of any given
k-plane. Ellenberg, Oberlin and Tao [5] proved that if 2 < k < n, then

n\ ,_ -
B2 0 = ()¢ ol ™) g o0) (25)

Using the de Caen-Selberg inequality we can slightly improve (25) when k =n —1 > 2.
Theorem 5.1. Any (n,n —1)-set E CF; (n > 3) satisfies
Bl > q" =" +o(¢")  (q— 00),

where F, denotes a finite field of q elements.
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Proof. Since the total number s of (n — 1)-dimensional hyperplanes passing through the
origin equals the total number of lines passing through the origin,
q"—1

S = q—]_

Let {P;};_, be such hyperplanes. By the de Caen-Selberg inequality (4),

ST g
E| > =
‘ ‘ Z S qn—l + (3 _ 1>qn—2
=LY PN
j=1

S P2+ =) =" (" =)
("' =q" ) +s-q"7
o @ =g
¢ (s — 1)gn?
=q¢"— ¢ +o(¢®) (q¢— ).

n—1 __

5.2 The finite field Nikodym set

Define a set B C Fy to be Nikodym if for each z € B¢ there exists a line L, passing
through z such that L,\{z} C B. Obviously, all such lines {L,},cp are different from
each other. Similar to (24) Li [12] proved (i)

|B|><n+2_2); (26)

(ii) any two-dimensional Nikodym set B C IF. satisfies

81> 2+ 0(g) (4 ). C0

Using the de Caen-Selberg inequality we can improve (27) substantially as follows, which
shows some difference between the two-dimensional Kakeya sets and Nikodym sets.

Theorem 5.2. Any Nikodym set B C F2 satisfies
Bl > ¢ —¢"* —q,

where F, denotes a finite field of q elements.
Proof. Let s = |B¢|. By the de Caen-Selberg inequality (4),

- —1)? s(q—1)?
22:( (¢—1)°  slg—1)

g—1)+s—1 s+q—2

¢ —s=18> | J L\(:}

zeBe¢ =1
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Equivalently,

s —(q+1)s — ¢*(¢ —2) <0.

Hence

g+ 1+ +1)? +43(g - 2)

Bl=¢*—5>¢° 5 >q¢ —¢"*—q
U
We thank a referee for many valuable suggestions leading to the clear presentation of
the paper.
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