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Abstract

A remarkable result of Friedman and Pippenger [4] gives a sufficient condition
on the expansion properties of a graph to contain all small trees with bounded
maximum degree. Haxell [5] showed that under slightly stronger assumptions on
the expansion rate, their technique allows one to find arbitrarily large trees with
bounded maximum degree. Using a slightly weaker version of Haxell’s result we
prove that a certain family of expanding graphs, which includes very sparse ran-
dom graphs and regular graphs with large enough spectral gap, contains all almost
spanning bounded degree trees. This improves two recent tree-embedding results of
Alon, Krivelevich and Sudakov [1].

1 Introduction

A very well-known folklore result on tree-embedding states that every graph with mini-
mum degree at least k contains all trees with at most k edges and this is best possible
(as illustrated by an arbitrarily large disjoint union of (k +1)-vertex complete graphs). A
natural question arises – what additional assumptions on a graph can force it to contain
certain trees? For an arbitrary graph H and a set X ⊆ V (H), let NH(X) denote the
set of neighbors in H of vertices in X. Extending a path-embedding result of Pósa [7],
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Friedman and Pippenger [4] proved that all graphs satisfying certain expansion properties
contain all small trees with bounded maximum degree.

Theorem 1 ([4]). Let m and d be positive integers and let H be a non-empty graph.
Moreover, assume that every X ⊆ V (H) with |X| 6 2m satisfies |NH(X)| > (d + 1)|X|.
Then H contains every tree with m vertices and maximum degree at most d.

An apparent shortcoming of Theorem 1 is that it can be helpful in finding only rela-
tively small trees. Namely, in a graph of order n, the size of the largest tree the existence
which is guaranteed by Theorem 1 is only about n/(2d + 2), where d is the maximum
degree of the tree. Building on the ideas developed by Friedman and Pippenger [4],
Haxell [5] managed to overcome this problem.

Theorem 2 ([5]). Let T be a tree with t edges and maximum degree d. Let ∅ = T0 ⊆
T1 ⊆ · · · ⊆ Tℓ ⊆ T be a sequence of subtrees of T such that T can be obtained by attaching
new leaves to Tℓ. Let d = d1 > . . . > dℓ be a sequence of integers such that for each i with
1 6 i 6 ℓ and each v ∈ V (T ) we have

δT (v) − δTi−1
(v) 6 di,

where δS(v) denotes the degree of v in the subtree S (if v 6∈ V (S), then we let δS(v) = 0).
Let ti = |E(Ti)|. Suppose that m > 1 is an integer and H is a graph satisfying the
following conditions

1. For every subset X ⊆ V (H) with 0 < |X| 6 m, |NH(X)| > d|X| + 1.

2. For every subset X ⊆ V (H) with m < |X| 6 2m, and for each i ∈ {1, . . . , ℓ},
|NH(X)| > di|X| + ti + 1.

3. For every subset X ⊆ V (H) with |X| = 2m + 1, |NH(X)| > t + 1.

Then H contains T as a subgraph. Moreover, for any vertex x0 of T1 and any y ∈ V (H),
there exists an embedding f of T into H such that f(x0) = y.

As an immediate corollary of the somewhat technical Theorem 2, we derive the fol-
lowing statement.

Theorem 3. Let d, m and M be positive integers, and let 0 6 L 6 2dm. Assume that
H is a non-empty graph satisfying the following two conditions.

1. For every X ⊆ V (H) with 0 < |X| 6 m, |NH(X)| > d|X| + 1.

2. For every X ⊆ V (H) with m < |X| 6 2m, |NH(X)| > d|X| + M .

Then H contains every tree T with M + L vertices and maximum degree at most d,
provided that T has at least L leaves.
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It turns out that Theorem 3 has a few very interesting and yet quite straightforward
consequences. First of all, it gives a sufficient condition on the edge probability that
almost surely forces the Erdős-Rényi random graph G(n, p) to contain all nearly spanning
bounded degree trees.

Theorem 4. Let d > 2 and 0 < ε < 1/2. If

c > max

{

1000d log(20d),
30d

ε
log

4e

ε

}

,

then the random graph G(n, c/n) almost surely contains every tree with maximum degree
d and order at most (1 − ε)n.

Theorem 4 significantly improves the ‘c >
106d3 log d log2(2/ε)

ε
’ lower bound on the edge

probability obtained by Alon, Krivelevich and Sudakov [1] with a lengthier and more
complex argument making use of Theorem 1. Recently, in his doctoral thesis [6] the
third author, using Theorem 2 and a refinement of the piece-by-piece embedding method
from [1], obtained an improvement of the above mentioned result of Alon, Krivelevich
and Sudakov [1] that is slightly weaker than Theorem 4. Note that in [1] it is suggested
that in the statement of Theorem 4 the condition on the constant c could be lowered
to Θ(d log(1/ε)). Finally, we would like to remark that a somewhat stronger version of
Theorem 4 can be proved. In [3] it is shown that whenever c is a large enough constant
and p > c/n, then the local resilience (see, e.g., [8]) of the random graph G(n, p) with
respect to the property of containing all bounded degree almost spanning trees is almost
surely 1/2 + o(1).

For an n-vertex graph G, let λ1, . . . , λn be the eigenvalues of its adjacency matrix,
where λ1 > . . . > λn. The second eigenvalue of G is λ(G) := maxi>2 |λi|. A graph G is
called an (n, D, λ)-graph if it is D-regular, has n vertices and its second eigenvalue is at
most λ. It is well-known that if λ is much smaller than D, then G has strong expansion
properties. The following result, which is another consequence of Theorem 3, shows that
an (n, D, λ)-graph G with large spectral gap1 D/λ contains all almost spanning trees with
bounded degree.

Theorem 5. Let d > 2 and 0 < ε < 1/2. If

D

λ
>

√
8d

ε
,

then every (n, D, λ)-graph contains all trees with maximum degree d and order at most
(1 − ε)n.

Theorem 5 is again an improvement over the ‘D
λ

>
160d5/2 log(2/ε)

ε
’ lower bound obtained

by Alon, Krivelevich and Sudakov [1].

1Although the spectral gap of a matrix is defined to be the difference between the moduli of its two
largest eigenvalues, which in our setting is D − λ, the quantity D/λ, to which we refer to as the spectral
gap, is a more natural measure of quasirandomness of G in our considerations.
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Finally, the lower bounds on c and D/λ in Theorems 4 and 5 can be further improved
if we restrict our attention to trees with large number of leaves.

Theorem 6. Let d > 2, 0 < ε < 1/2 and 0 < λ < 1. If

c > max

{

1000d log(20d),
32d

λ
log

4e

ε

}

,

then the random graph G(n, c/n) almost surely contains every tree with maximum degree
d and order at most (1 − ε)n, provided that it has at least λn leaves.

Theorem 7. Let d > 2, 0 < ε < 1/2 and 0 < λ < 1. If

D

λ
>

√

18d

ελ
,

then every (n, D, λ)-graph contains every tree with maximum degree d and order at most
(1 − ε)n, provided that it has at least λn leaves.

The remainder of this note is organized as follows. In Section 2 we introduce a notion
of graph expansion that gives rise to a certain family of expanding graphs, which we call
(ε, b, α)-expanders, and prove that under certain assumptions on the expansion parameters
ε, b and α, every such graph contains all almost spanning bounded degree trees. The
most technical (but standard) parts Sections 3 and 4, are entirely devoted to the study
of expansion properties of random graphs and graphs with large spectral gap. Finally, in
Section 5, based on this study, we give very short proofs of our main results – Theorems 4,
5, 6 and 7.

2 Embedding trees in expanding graphs

We start by defining a class of expanding graphs that seems to be most adequate and
convenient in our further considerations.

Definition 8. Let b > 2, 0 < α < 1 and 0 < ε < 1/b. We will say that an n-vertex graph
G is an (ε, b, α)-expander if it possesses the following two properties.

1. Every subset X ⊆ V (G) of size at most εn satisfies |NG(X)| > b|X|.

2. Every subset X ⊆ V (G) of size at least εn satisfies |NG(X)| > (1 − α)n.

As immediate consequences of Theorem 3 we derive the following sufficient conditions
on the expansion parameters ε, b and α which guarantee that all (ε, b, α)-expanders contain
every almost spanning tree with bounded maximum degree and, additionally, many leaves.

Corollary 9. Let d > 2 and 0 < ε < 1. Suppose that α, ε0 > 0 are such that 2dε0 + α 6

ε. Then every n-vertex (ε0, d + 1, α)-expander contains all trees of order (1 − ε)n and
maximum degree d.
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Proof. Let G be an n-vertex (ε0, d + 1, α)-expander. It is straightforward to check that
G satisfies assumptions of Theorem 3 with m := ε0n, M := (1 − 2dε0 − α)n and L := 0.
Hence G contains every tree with maximum degree d and order M > (1 − ε)n.

Corollary 10. Let d > 2 and 0 < ε, λ < 1. Then every n-vertex (λ/(2d), d + 1, ε)-
expander contains all trees of order (1−ε)n and maximum degree d which contain at least
λn leaves.

Proof. Let G be an n-vertex (λ/(2d), d+1, ε)-expander. It is straightforward to check that
G satisfies assumptions of Theorem 3 with m := λn/(2d), L := λn and M := (1−ε−λ)n.
Hence G contains every tree T with maximum degree d and order M + L = (1 − ε)n,
provided that T has at least λn leaves.

3 Expanding properties of random graphs

For two not necessarily disjoint subsets of the set of vertices of a graph G, let

e(A, B) :=
∣

∣

{

(a, b) ∈ A × B : {a, b} ∈ E(G)
}
∣

∣.

Lemma 11. Let 0 < β 6 γ 6 1/2 and c >
3
β

log e
γ
. Then almost surely the random graph

G(n, c/n) does not contain two disjoint sets B, C of size at least βn and γn respectively,
such that e(B, C) = 0.

Proof. If G(n, c/n) contains two sets B and C as in the statement of this lemma, clearly
we can also find two disjoint sets B′ and C ′ of size exactly βn and γn respectively, with
e(B′, C ′) = 0. The probability that such a pair exists is at most

(

n

βn

)(

n

γn

)

·
(

1 − c

n

)βγn2

6

(

n

γn

)2

· e−cβγn
6

(

en

γn

)2γn

·
(

e

γ

)−3γn

= o(1).

Lemma 12. Let 0 < β 6 γ 6 1/2 and let c >
6γ
β

log e
γ
. Then almost surely G(n, c/n)

does not contain a pair of disjoint sets B and C of sizes at least βn and at least (1− γ)n
respectively with e(B, C) = 0.

Proof. As in the proof of Lemma 11, we only need to show that almost surely there is no
such pair with sizes exactly βn and (1 − γ)n. The probability that such a pair exists is
at most
(

n

βn

)(

n

(1 − γ)n

)

(

1 − c

n

)β(1−γ)n2

6

(

n

γn

)2

· e−cβn/2
6

(

en

γn

)2γn

·
(

e

γ

)−3γn

= o(1).

Lemma 13. Let k > 2 and let c > 10k log2 k. Then almost surely every subset A of at
most n/(ek) vertices in the random graph G(n, c/n) spans less than c|A|/k edges.
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Proof. Certainly, if a subset A of size a violates the assertion, a > c/k. The probability
that there is a bad subset A of size a, with c/k 6 a 6 n/ek, is at most

(

n

a

)(

a2/2

ac/k

)

·
( c

n

)ca/k

6

(en

a

)a

·
(

ea2

2
· k

ac

)ca/k

·
( c

n

)ca/k

(1)

=

(

en

a
·
(

eka

2n

)c/k
)a

6

(

(ek/2)c/k+1

(n/a)c/k−1

)a

.

If
√

n 6 a 6 n/ek, then

(ek/2)c/k+1

(n/a)c/k−1
6

(

1

2

)c/k

· (ek)2
6 k−10 · (ek)2

6
1

2
,

and consequently (1) is bounded by 2−
√

n. In case c/k 6 a 6
√

(n), (1) can be further
estimated as follows

(

(ek/2)c/k+1

(n/a)c/k−1

)a

6

(

(ek/2)11

(
√

n)9

)10

= o(n−1).

Summing these estimates over all values of a yields the desired result.

Lemma 14. Let 0 < ρ < 1/2. If c > 64 log e
ρ
, then almost surely the random graph

G(n, c/n) contains an induced subgraph G′ with at least (1 − ρ)n vertices and minimum
degree at least c/4.

Proof. Let G be our random graph G(n, c/n). While G contains a vertex with degree
less than c/4, delete that vertex. Denote the remaining induced subgraph of G by G′.
If G′ has at least (1 − ρ)n vertices, we have found the subgraph we were looking for. It
suffices to show that the probability of G′ having less than (1−ρ)n vertices is small. First
observe that if we were forced to delete more than ρn vertices, then the original graph G
contained a set A of size ρn such that eA := e(A, V (G)−A) < ρcn/4. Note that E[eA] =
ρ(1 − ρ)cn > ρcn/2. By standard Chernoff-type estimates (see, e.g., Theorem A.1.13
in [2]), the probability of this event in our random graph is at most

P
(

eA < cρn/4
)

6 P
(

eA − E[eA] < −ρcn/4
)

6 e−
(ρcn/4)2

2ρcn = e−ρcn/32.

Hence the probability that such a set A exists in our graph G is bounded by
(

n

ρn

)

· e−ρcn/32
6

(

en

ρn

)ρn

·
(

e

ρ

)−2ρn

= o(1).

Theorem 15. Let b > 2 and 0 < ρ 6 ε 6 α < 1/2, where ε < 1/(2b + 4). If

c > max

{

500b log(12b),
6

ε
log

2e

α
, 64 log

e

ρ

}

,

then almost surely the random graph G(n, c/n) contains an induced subgraph G′ of order
at least (1 − ρ)n that is an (ε, b, α)-expander.
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Proof. By Lemma 14, almost surely G(n, c/n) contains an induced subgraph G′ of order
n′, with n′ > (1− ρ)n and δ(G′) > c/4. Conditioning on that event, we will show that G′

is almost surely an (ε, b, α)-expander.
Suppose that G′ fails to possess property 1 from Definition 8. Then there is a set

X ⊆ V (G′) of size t, with t 6 εn′ and |NG′(X)| 6 bt. Let A := X ∪ NG′(X). Clearly
|A| 6 (b + 1)t. We consider three cases, depending on the order of t.

Case 1. t 6
n

8e(b+1)2
.

Let k := 8(b + 1). Since edges incident to vertices in X are contained in A, e(A) >

δ(G′)|X|/2 > ct/8 > c|A|/k. By our assumptions, |A| 6 n/(ek), and c > 10k log2 k. By
Lemma 13, such non-expanding set X almost surely does not exist.

Case 2. n
8e(b+1)2

6 t 6
n

20e(b+1)
.

Since G′ is an induced subgraph, in G there are no edges between X and Y := V (G′)−A.
By our assumptions on t and ε, the latter set has at least

n′ − |A| > (1 − ρ)n − (b + 1)t > n − n/(b + 1) − (b + 1)t > n − (8e + 1)(b + 1)t

vertices. Let β := t/n and γ := (8e + 1)(b + 1)β. By our assumption on t, we have that
β >

1
8e(b+1)2

and consequently e/γ < 12b. Moreover, note that 6γ/β < 500b. It follows

that c > 6 γ
β

log e
γ

and, by Lemma 12, such non-expanding set X almost surely does not
exist.

Case 3. n
20e(b+1)

6 t 6 εn′.

Again, in G there are no edges between X and Y := V (G′) − A. By our assumptions on
t and ε, the latter set has at least

n′ − |A| > (1 − (b + 1)ε)n′
> (1 − (b + 1)ε)(1 − ε)n > (1 − (b + 2)ε)n >

n

2

vertices. Let β := 1
20e(b+1)

and γ := 1/2. Clearly c > (3/β) log(e/γ). By Lemma 11, such
non-expanding set X almost surely does not exist.

Hence almost surely the graph G′ satisfies property 1 from definition 8. Finally,
suppose that G′ fails to possess the other property. Then there is a set X of size exactly
εn′ with |NG′(X)| 6 (1 − α)n′. It follows that in G there are no edges between X
and Y := V (G′) − X − NG(X). Clearly Y contains at least αn′ > αn/2 vertices. Let
β := ε/2 and γ := α/2. Since c > (3/β) log e

γ
, by Lemma 11, this almost surely does not

happen.

4 Expanding properties of quasi-random graphs

In [2], it is proved that for every two subsets A and B of the set of vertices of an (n, D, λ)-
graph G,

∣

∣

∣

∣

e(A, B) − |A||B|D
n

∣

∣

∣

∣

6 λ
√

|A||B|. (2)
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Theorem 16. Let b > 2, α > 0 and 0 < ε < 1/b. If

D

λ
> max

{ √
b

1 − bε
,

1√
αε

}

(3)

then every (n, D, λ)-graph G is an (ε, b, α)-expander.

Proof. Suppose that G fails to possess property 1 from Definition 8. Then there is a set
X ⊆ V (G′) of size t, with t 6 εn and Y := NG(X) 6 bt. Since G is D-regular, clearly
e(X, Y ) > Dt. On the other hand, by (2) and (3),

e(X, Y ) 6
|X||Y |D

n
+ λ
√

|X||Y | =
bt2D

n
+ λ

√
bt = Dt

(

bt

n
+

λ
√

b

D

)

6 Dt

(

bε +
λ
√

b

D

)

< Dt(bε + (1 − bε)) = Dt,

which is a clear contradiction.
Finally, suppose that G fails to have property 2 from Definition 8. Then there are sets

X, Y ⊆ V (G′) with sizes εn and αn respectively such that e(X, Y ) = 0. But, by (2) and
(3),

e(X, Y ) >
|X||Y |D

n
− λ
√

|X||Y | = αεDn −√
αελn > 0.

Again, this is a contradiction.

5 Proofs of Theorems 4, 5, 6 and 7

Proof of Theorem 4. Let ε0 := ε
4d+2

. By Theorem 15, (substituting with α := ε/2, b :=
d + 1, ρ = ε0 and ε := ε0), G(n, c/n) almost surely contains a subgraph G′ of order at
least (1 − ε0)n, which is an (ε0, d + 1, ε/2)-expander. By Corollary 9, G′ contains every
tree with maximum degree d and order

(1 − 2dε0 − ε/2)|V (G′)| > (1 − (4d + 1)ε0) · (1 − ε0)n > (1 − ε)n.

Proof of Theorem 6. Let ε0 := λ
2d

. By Theorem 15, (substituting with α := ε/2, ρ :=
min{ε0, ε/2}, ε := ε0, and b := d + 1), G(n, c/n) almost surely contains a subgraph G′ of
order at least (1 − ρ)n, which is an (ε0, d + 1, α)-expander. By Corollary 10, G′ contains
every tree T with maximum degree d and order

(1 − ε/2)|V (G′)| > (1 − ε/2) · (1 − ε/2)n > (1 − ε)n,

provided that T has at least λn leaves.
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Proof of Theorem 5. Let ε0 := ε
4d

. By Theorem 16, (substituting with α := ε/2, b := d+1
and ε := ε0), every (n, D, λ)-graph G is an (ε0, d + 1, ε/2)-expander. By Corollary 9, G
contains every tree with maximum degree d and order (1 − 2dε0 − ε/2)n = (1 − ε)n.

Proof of Theorem 7. Let ε0 := λ
2d

. By Theorem 16, (substituting with α := ε, b := d + 1
and ε := ε0), every (n, D, λ)-graph G is an (ε0, d + 1, ε)-expander. By Corollary 10, G
contains every tree T with maximum degree d and order (1− ε)n, provided that T has at
least λn leaves.
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