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We shall use small letters such as x to denote elements of a set or positive integers, capital
letters such as X to denote sets, and calligraphic letters such as F to denote families (i.e.
sets whose members are sets themselves). Unless otherwise stated, it is to be assumed
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Abstract

A family H of sets is hereditary if any subset of any set in H is in H. If two
families A and B are such that any set in A intersects any set in B, then we say
that (A, B) is a cross-intersection pair (cip). We say that a cip (A, B) is simple if at
least one of A and B contains only one set. For a family F, let u(F) denote the size
of a smallest set in F that is not a subset of any other set in F. For any positive
integer 7, let [r] := {1,2,...,7}, 2l :={A: AC [r]}, FO) .= {F € F: |F| =r}.

We show that if a hereditary family H C 2/ is compressed, w(H) > r + s with
r < s, and (A, B) is a cip with § # A c H") and () # B ¢ H), then |A| + |B]
is a maximum if (A, B) is the simple cip ({[r]},{B € H®): BN [r] # 0}); Frankl
and Tokushige proved this for H = 2", We also show that for any 2 < r < s
and m > r + s there exist (non-compressed) hereditary families H with u(H) = m
such that no cip (A, B) with a maximum value of |4| + |B| under the condition that
0 #AcCH" and § # B c H® is simple (we prove that this is not the case for
r = 1), and we suggest two conjectures about the extremal structures in general.

Introduction

that sets and families are finite.

N is the set {1,2,...} of positive integers. For m,n € N with m < n, the set {i €
N:m < i < n}is denoted by [m,n|, and if m = 1 then we also write [n]. The power set

{A:AC X} of aset X is denoted by 2%, and {A C X: |A| = r} is denoted by ():)
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We next develop some notation for certain sets and families defined on a family F C
2%, Let U(F) denote the union of all sets in F. Let F) := {F € F: |F| = r}. For
aset Y, let F(Y) :={F € F: FNY # 0} and F[Y] .= {F € F:Y C F}. For
a single-element set {y}, we may abbreviate the notation F({y}) to F(y), and we set
Fly) ={F\{y}: F e F(y)}.

For i,5 € [n], let A, ;: 22" — 22" be the compression operation (see [4]) defined by

Ai7j(f) = {52,](F) F - f,5i7j(F) ¢ f} U {F S fﬁ (517)(F) € f},
where §; ;: 2" — 2l is defined by

sutey = {{ODVOD L L e

A family F is said to be
- a hereditary family (or an ideal or a downset) if all subsets of any set in F are in F;

- uniform if the sets in F have the same size;

- intersecting if any set in F intersects any other set in F;

- centred if the sets in F contain a common element;

- compressed if F C 2"l and A, j(F) = F for any i,j € [n] with i < j;

- compressed with respect to x € U(F) it A, ,(F) = F for any y € U(F).

Two families A and B are said to be cross-intersecting if any set in A intersects any set
in B. We say that (A, B) is a cross-intersection pair (cip) if A and B are cross-intersecting.
We say that a cip (A, B) is simple if at least one of A and B contains only one set.

Hilton and Milner |7| proved that if » < n/2 and A, B are non-empty cross-intersecting
sub-families of ([Z}), then |A|+|B] < (%) = ("27) + 1 = | Ao| + |Bo|, where Ay is {[r]} and
B, is {B € ([:f]): BN [r] # 0}. A streamlined proof of this result was later obtained by
Simpson |10] by means of the compression (also known as shifting) technique introduced
in the seminal paper [4] (see [5] for a good survey on the uses of this technique in extremal
set theory). Frankl and Tokushige [6] instead used the Kruskal-Katona Theorem [8, 9] to
establish the following extension.

Theorem 1.1 (Frankl and Tokushige [6]) Ifr < s, n > r+ s, and (A,B) is a cip
with ® # A C (") and 0 # B € (), then |A] + B < (") — ("7") + 1 = |Ao| + | By,

S
where (Ao, By) is the simple cip ({[7’]}, {B € ([Z]): BNr] # @})

In this paper we are interested in cip’s (A, B) having a maximum value of |A| + |B|
under the condition that both A and B are non-empty uniform sub-families of a hereditary
family H. Note that Theorem 1.1 deals with the special case when H is the power set
2["] which is the simplest example of a hereditary family. It is easy to see that a family is
hereditary if and only if it is a union of power sets. There are many interesting examples
of hereditary families, such as the family of independent sets of a graph or matroid.

Before stating our results, we shall introduce a few more definitions.
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We say that a set M is F-mazimal if M is not a subset of any set in F\{M}. We
denote the size of a smallest F-maximal set in F by p(F).

For a family F, we denote the set {(A, B): (A, B) is a cip with a maximum value of
|A| + |B| under the condition that ) # A C F) and § # B C F®} by C(F,r,s).

Using the compression technique, we generalise Theorem 1.1 as follows.

Theorem 1.2 Ifr < s, n > r+s, and H is a compressed hereditary sub-family of 2"
with p(H) =1+ s, then the simple cip ({[r]},{B € H¥: BN [r] # 0}) is in C(H,r, s).

Theorem 1.1 is the case H = 2" in which [n] is the only H-maximal set in H and hence
p(H) = n. Note that we cannot relax the condition that () > r+s. Indeed, if H = 2"
and s < u(H) < 7+ s, then any set in H") = (M) intersects any set in H®) = ([Z})

(since n = p(H) < r+ s), and hence (K", H®)) is the only cip in C(H,r,s). Note that
if H = 2" and p(H) < s, then C(H,r,s) =0 (since n = u(H) < s and hence H'®) = ().

Remark 1.3 One of the central problems in extremal set theory is the famous Chvatal
Conjecture [2], which claims that at least one of the largest intersecting sub-families of any
hereditary family H is centred. Chvatal [3| proved his conjecture for the case when H is
compressed. Snevily [11] improved Chvatal’s result to the case when H is compressed with
respect to an element of U(H). In the next section we show that no similar improvement
can be made to Theorem 1.2 for » > 2; more precisely, we show that for any 2 < r < s and
m > r+ s there are hereditary families H with u(H) = m such that H is compressed with
respect to an element of U(H) and no cip in C(H,r,s) is simple. We then suggest two
conjectures about the structure of at least one of the cip’s in C(H, r, s) for any hereditary
family H with u(H) > r + s.

For r =1 we do have the desired general result.

Theorem 1.4 If'H is a hereditary family with p(H) > 1+s, then C(H, 1, s) has a simple
cip (Ao, By) with Ay = {{x}} and By = {B € H®): x € B} for some x € U(H).

Proof. Let (A,B) € C(H,1,s). Suppose |A] = 1. Then, since A C HY, A = {{z}} for
some z € U(H). Since B C H® and | A|+ |B] is a maximum (under the cross-intersection
condition), B must consist of all the sets in H®) which contain .

Now suppose |A| > 1. Let Z := {z € U(H): {#} € A}; so |Z| = |A| and hence
|Z] > 1. Since every set in 5 must intersect every (single-element) set in A, we clearly
have B C HW[Z] (= {H € H®): Z C H}). Let B € B. Since every (single-element) set
in A must intersect B, we have Z C B and hence |Z| < s. Let x € Z and let M be an
H-maximal set in H such that B C M. Then |M| > 1+ s (as |[M| > p(H)), Z C M
(as Z C B), and (M) € H® (as H is hereditary). Now let (Ao, By) be the simple cip
({{z}},H®)(2)). Since (A, B) € C(H,1,s), |Ao| + |Bo| < |A| + |B]. Also,
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|Ao| + |Bo| = 1+ ‘H(S)(fb’)}

> 1+\H<8>[Z]\+'{Ae (Aj):xeA,|AmZ| = |Z|—1H

Zl =1\ ( M| =|Z]
— 1z + (7 5)
A z1-2) s - 2
> |Z) + [HW[Z]] = |Al + [HY[Z]] > |Al + |B].
So we actually have |Ay| + |By| = | A| + |B|, and hence (Ao, By) € C(H, 1, s). O

The above result will be used in the proof of Theorem 1.2. It is easy to see from its
proof that if u(H) > 1+ s, then any (A, B) in C(H, 1, s) is a simple cip as in the result.

2 A construction and two conjectures
The following is the proof of the claim in Remark 1.3.

Proposition 2.1 Let 2 <I[l+1<r<s,m>=r+sandp > ((ms_l) — (ms_r) + 1) /(T__ll).
For each i € [p], let M; == [JU[(i—1)(m—1)+1+1,i(m—1)+1]. Let &€= J_, 2™, Then
E is hereditary, £ is compressed with respect to 1, u(€) = m, and no cip in C(E,r,s) is

simple.

Proof. It is straightforward that £ is hereditary, £ is compressed with respect to 1, and
wé&) = |My| = ... = [M,| = m. Let (A,B) be a simple cip with § # A C £ and
0 #BCES. Let L:=[l], Ay :={LUC:C € (J‘;I’_\IL) for some i € [p|}, By = EC)(L)
(={E € &¥:ENL#0}). Since (A, B;) is a non-simple cip with () # A; € £ and
0 # B, C £®), the result follows if we show that [A| 4 |B| < |A.| + |Bi].

Let R :=[r], Ao := {R}, By := £¥(R). We will show that

| A+ |B| < [Ao| + |Bo- (1)

Let us first assume this. Note that By is the disjoint union of B; and the family R of sets
in £©) that intersect R but not L. Since R is a subset of M, but not a subset of any other
set M;, we clearly have R = {A € (M;\L) : AN(R\L) # 0}. We have

(M| + [Bi]) = (JA] + [B]) = (JA] + [B1]) = (Aol +|Bol)  (by (1))
= (] + [Bi]) = (JAo| + |Bi| + [R]) = | Ai| = [Ao| — R

<m—l) (m—l) <m—r)
r—1 s s
>0 (by choice of p)

and hence |A| + |B| < |Ay| + |By] as required.
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We now prove (1). Suppose A contains only one set A. Then B C £()(A). Since
I < rand M; N M; = L for any distinct ¢ and j in [p|, there is a unique k in [p] such
that A C My, and it is therefore easy to see that |E¢)(A)| < |By|; so (1) holds in this
case. Now suppose |A| > 1. Then, since (A, B) is a simple cip, B contains only one
set B and A C EM(B). Let S := [s], C := ET(S), Dy := {S}. Similarly to the
above, it is easy to see that |£0)(B)| < |Col; so |A| + |B| < |Co| + [Do|. If r = s then
|Co| + |Do| = |Ao| + |Bo| and hence (1) holds again. Suppose r < s. For each i € [p], let
Fi = (Afl) and G; := (Afl) Since R C My and RN M; = SN M; = L for each i € [2,p],
we clealy have |Bo| = [F(R)|+ Xy IF:(L)] and [Col = [G1(S)] + S0y |G:(L)]. We have
|91(S)| < ‘fl(R)‘ since

== () - (") - (C) - (")
=(()-C))-()-"7)
_ (T) (r!(m—r)...s(!m—sﬂ) _1> - (mr—s) (N(m—r)...s(!m—sﬂ) - 1) o

By a similar calculation, we obtain that |G;(L)| < |Fi(L)| for each i € [2,p]. So we have

P p
Col + [Do] = 1G1(S)| + Y 1Gi(L) + 1 < |Fu(R)| + D IF(L)] + 1 = [ Ao| + |Bo]
=2 =2
and hence, since |A| 4 |B| < |Co| + |Dpl, (1) holds again. O

Something common to the cip (Aj, By) in the above proof and the extremal structures
determined in Theorems 1.2 and 1.4 is that the first family in the pair is centred. We
conjecture that there always exist cip’s (A, B) with A centred that are extremal under
the conditions we have been considering, where by extremal we mean that |A| 4 |B] is a
maximum.

Conjecture 2.2 (Weak Form) Ifr < s and H is a hereditary family with u(H) > r+s,
then for some (Ao, By) € C(H,r,s), Ao is centred.

Conjecture 2.3 (Strong Form) Ifr < s and H is a hereditary family with p(H) > r+
s, then there exists a set H in H with 1 < |H| < r such that for some (Ao, By) € C(H,r,s),
Ay ={AcHY: HC A} and By ={B € H®: BN H # (}.

Note that the families A; and B, in the proof of Proposition 2.1 have the structure of A
and By in the above conjecture.

3 Some tools

This section provides the main tools we need for the proof of Theorem 1.2. We start with
a crucial lemma concerning the levels of a hereditary family (see |1, Corollary 3.2|).
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Lemma 3.1 (Borg [1]) If H is a hereditary family and r < s < u(H) —r, then

()

(H(H)—T)

S—Tr

‘H(r)} < }H(s)} ]

The following is our second important lemma, which purely concerns the parameter

p(F) of a family F.

Lemma 3.2 Let () # F C 2" and a € [n]. Let D := F\F(a) and & := F\F(n).
(i) If F(a) # (0, then w(Fla)) = u(F)—1.

(i1) If F is hereditary, then u(D) > u(F) — 1.

(111) If F is compressed and [n] & F, then p(€) = pu(F).

Proof. Suppose F(a) # (). Let M be an F(a)-maximal set in F(a). Then M' := MU{a}
is an F-maximal set in F. So |M| = |M'| — 1 > u(F) — 1. Hence (i).

Suppose F is hereditary. Then, since F # (), ) € F. So D # (). Let M be a D-
maximal set in D. Suppose also that |[M| < u(F). So M is not F-maximal, and hence
there exists a set M’ € F(a) such that M C M’ and M’ is F-maximal. Since F is
hereditary, M" := M’\{a} € F. Since M is D-maximal and M C M" € D, M = M". So
M' = M U {a}. Therefore |M| = |M'| —1 > u(F) — 1. Hence (ii).

Suppose F is compressed and [n] ¢ F. Let M be an &-maximal set in £. Suppose
|M| < (F). Then there exists a set M’ € F(n) such that M C M’'. Since [n] ¢ F,
X = [n\M" # 0. Let z € X and M" := 6,,(M') = (M'"\{n}) U {z}. Since F is
compressed, M” € F. But then M C M” € £, a contradiction (as M is £-maximal). So
|M| > u(F). Hence (iii). O

We remark that the inequalities above cannot be replaced by equalities. An example
for (iii) is that if n > 3 and F is the compressed (hereditary) family 2"~ y 2r=3lu{n}
then (&) =n—1>n—2= u(F).

We shall say that a family F C 2" is quasi-compressed if 0;;(F) € F for any F €
F and any 4,j € U(F) with i < j. Therefore a quasi-compressed family F C 2
is isomorphic to a compressed sub-family of 20V and the isomorphism is induced
by the bijection 5: U(F) — [|[U(F)|] defined by B(u;) := i, i = 1,...,|U(F)|, where
{ul, ...,U|U(]:)|} = U(f) and u; < ... < Uy (F)|-

The next lemma is straightforward, so we omit its proof.

Lemma 3.3 Let H C 2" and a € [n].
(1) If H is hereditary, then H\H(a) and H{a) are hereditary.
(11) If H is quasi-compressed, then H\'H(a) and H(a) are quasi-compressed.

We shall frequently use the following property of quasi-compressed families.

Lemma 3.4 Let F C 2" be a quasi-compressed family with U(F) # (. Let Z C [n] and
leti,j e UF), i <j. Then |F(Z)| < |F(6:;(2))]

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R60 6



Proof. Let Y := §,;(Z). Suppose Y # Z, and let W := ZNY. Then i < j,
Z=WU{}#WandY = WU{i} #W. Let D= {F € F:ie FLEAW = 0},
E={F € F:je€ FFFNW = 0}. Since F is quasi-compressed and i,j7 € U(F),
we have A, ;(E\E(i)) € D\D(j); so |D\D(j)| = |A;;(E\E®))] = |E\E(Z)|. Note that
D(j) = &(i). Thus, since |F(Y)| — |F(Z)| = (|FW)| + |D|) — (|FW)| + €]) =
(PG +IP\D()]) — (€@ + [ENE@)]) = [D\D(j)] — [E\E(@)] = 0, the result follows. O

For a set X = {z,...,2,} C N with 2y < ... <z, and r € [n], call {z1,...,x,} the
initial r-segment of X. For convenience, we call () the initial 0-segment of X.

Corollary 3.5 Let F C 2" be quasi-compressed. Let ) # Z C [n] and let Y € (@‘) such

that Y contains the initial |Z N U(F)|-segment of U(F). Then |F(Z)| < |F(Y)|.

Proof. Let Z' := ZNU(F). If Z' = () then |F(Z)] = 0 < |F(Y)|. Suppose Z' # 0.
Let Y’ be the initial | Z’|-segment of U(F). Since F is quasi-compressed and Z' C U(F),
we can construct a composition of compressions ¢; ; with 4,5 € U(F), i < j, that yields
Y’ when applied on Z’. Thus |F(Z")] < |F(Y")| by repeated application of Lemma 3.4.
Since Y/ CY and |F(Z)| = |F(Z')|, we have |F(Z)| < |FY')| < |F(Y)]. O

The following is a well-known fundamental property of compressions that emerged in
[4] and that is not difficult to prove.

Lemma 3.6 If A C 2" is intersecting and i, j € [n], then A;;(A) is intersecting.

4 Proof of Theorem 1.2

Lemma 4.1 Let r,s,n and H be as in Theorem 1.2, and let (A, B) be a cip with O #
ACHD and O # A CHS. Let 1 <i<j<n. Then:

(1) A;;(A) and A; ;(B) are cross-intersecting;

(ii) if either Ay, ,(A) = A for allm € [n— 1] or Apn(B) = B for all m € [n — 1], then
(AN B)\{n} #0 for any A€ A and B € B.

Proof. Let A" :== {AUu{n+1}: A e A}, A7 = {A*U{n+1}: A* € A;;(A)},
B :={BU{n+2}: Be B}, B" . ={B*U{n+2}: B* € A;;(B)}. Clearly, the family
C := AU B is intersecting, and hence A,;;(C) is intersecting by Lemma 3.6. Since
A;;(C)=A"UB", (i) clearly follows.

Suppose without loss of generality that A,,,(A) = A for all m € [n — 1]. Suppose
AN B = {n} for some A € Aand B € B. Then, since |(AUB)\{n}|=r+s—-2<n-—1,
the set X := [n — 1]\(AU B) is non-empty. Let z € X. Since A, ,(A) = A, 0,,(A) € A.
But 0,,,(A) N B =0, a contradiction. Hence (ii). O

Proof of Theorem 1.2. Let R := [r] and let (A, By) be the simple cip ({R}, H®(R)).
We clearly have [u(H)] € H (since H is compressed) and hence

oMl C H (2)
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(since H is hereditary). So R € H). We therefore have ) # Ay C H") and () # By € H).
It remains to show that |A| + |B| < |Ao| + |Bo| for any cip (A, B) with ) # A € H") and
0 # B c H®, and we do this using induction on 7.

Consider the base case r = 1. By Theorem 1.4, there exists a (single-element) set
Z € HW such that ({Z}, H9(Z)) € C(H,1,s) and hence |[A| + |B| <1+ |H®(Z)|. By
Corollary 3.5, |H®)(Z)| < |Bo|. So |A| + |B| < |Ao| + |Bol.

Now consider r > 2. Suppose n = r +s. So p(H) = n and hence [n] € H. Thus,
since H is hereditary, H® = ([Z]) for each p € [n|. Having n = r + s means that for
every A € ([Z}) there is only one set B € ([Z]) such that AN B = 0, so |A| + |B| <
JAI+ ((3) = [A]) = Aol + [ Bol.

We now consider n > r + s + 1 and proceed by induction on n. Let n’ :=n — 1.

In view of Lemma 4.1(i) and the assumption that H is compressed, if A,, ,(A) # A or
Ay, (B) # B for some m € [n — 1], then we can replace A and B by A’ := A, ,,(A) and
B' := A,,.(B), respectively, and repeat the procedure until we obtain families A* C H®)
and B* C ‘H® such that A,,,(A*) = A* and A,,,,(B*) = B* for all m € [n — 1] (it is
well-known and easy to see that such a procedure indeed takes a finite number of steps).
We can therefore assume that

Apn(A) =Aand A, ,(B) = B for all m € [n — 1]. (3)
Thus, by Lemma 4.1(ii),
(AN B)\{n} # 0 for any A € A and B € B. (4)

Let Z := H\H(n) = {H € H: n ¢ H}. Similarly, let C := A\ A(n), D := B\B(n),
£ = By\By(n). So C c I and D, C I®. Note that C # () and D # () by (3). Since
H is hereditary, if [n] € H then u(Z) = n — 1. Thus, if [n] € H then u(Z) > r + s, and if
[n] ¢ H then, since u(H) = r+ s, it follows by Lemma 3.2(iii) that u(Z) > r + s. Clearly
7 is a compressed hereditary sub-family of 2*~1. Therefore, by the inductive hypothesis,

IC| + |D| < | Ao| + |€]. (5)

Let J := H(n). Clearly J is a compressed hereditary sub-family of 2"~1 and p(J) >
w(H) — 1 by Lemma 3.2(i). Let 7’/ :=r —1 and s :==s—1. So
r<s and w(I)zZpH)—1=2r+s—1>1+54. (6)

We have A(n) c J) and B(n) ¢ J). By (4), A(n) and B(n) are cross-intersecting.

Suppose A(n) # @ and B{n) # 0. Let R’ := [r'] = R\{r}. By the inductive hypothesis,
|A(n)| + |B(n)| < 1+ |T¢V(R)]. Similarly to (2), 2 C 75 50 () € 769, Since
Bo(n) = T)(R),

Bo(m)| = |7 (R)

+){Bej<s’>: BOR’:(Z),TEBH
N HB . ([M(J)]\R’) e BH = |7 m)

S/

> ‘J(S')(R’)

. (W) = 1)

s —1

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R60 8



and hence, by (6), |By(n ‘J(S (R")|+1. So |A(n)|+|B(n)| < |Bo(n)|. Since |A|+|B| =
|C|+|D|+|A(n)|+|B(n )| ( )and the last inequality give us | A|+|B| < |Ao|+|E|+|Bo(n)| =
| Ao| + [ Bol-

Next, suppose A(n) = (). Let A € C (recall that C # 0). By (4), |[B(n)| < [T (A)|. Tt
is easy to see that U(J") = [I] for some [ € [n/] (since J is compressed); so |7 (A)|
AR } )| by Corollary 3.5. Since |A|+ |B| = |C| + |D| + | A(n)| + | B(n)|, where A(n) =
and |B ) < |TENR)| = [Bo(n)l, it follows by (5) that |A| + |B| < |Ao| + |Bol.

Finally, suppose B{ny = 0. If v = & (ie. r = s) then |A| + |B|] < |Ao| + |Bo
follows by an argument similar to the one for the previous case. Suppose " < s'. Let
Ko:=J\J():={JeJ:1¢ J}and K; := J(1). So Ko, K; C 2271 By Lemma 3.3,
Ko and KC; are hereditary and quasi-compressed. By (i) and (ii) of Lemma 3.2, u(ICo) >
W) — 1 and p(Ky) = p(J) — 1. Thus, by (6), u(Ky) = "+ §. Let R* = [2,r]
and S* := [2,s]. It is clear from (2) that R*,S* € Ky. Note that therefore R* and

S* are initial segments of U(Ky). Since <IC8T/)(S*), {S*}) is a cip with the first family

= /N

contained in IC(()T/) and the second family contained in IC((]SI), the inductive hypothesis gives

us [KK§7(5%)| + {8} < R + K67 ()

and hence

(7)

Let Lo := {Ac JU(S):1¢ A} and £, := {A\{1}: 1 € A € JU)(9)}. Let M, :=
{B € By(n): 1 ¢ B} and My := {B\{1}: 1 € B € By(n)}. Note that £, = K (5*) and
My = /C(()S/)(R*). So [Lo| < |[My| by (7). Let v := 7" — 1 and s” := s’ — 1. Similarly
to (6), u(Ky) > r” + s". By Lemma 3.1, |K{"| < |K\|. Thus, since £; = K" and
M, = ngs"), |£1| < |M;|. We therefore have

’IC(T’ S*

‘/c (R .

TS| = 1Ll + 1£4] < (Mo + [Ma| = |Ban). ®

Now let D € D. By (4), [A(n)| < [T

D)|.
[ € [n'] (since J is compressed SO }j (D)
|A(n)| < |Bo(n)|. Together with (5) and B(n

It is easy to see that U(J ™)) = []] for some
| < |7(8)] by Corollary 3.5. Thus, by (8 )
) = 0, this gives us |A| + |B| < |Ag| + |By|. O
Acknowledgements: The author is indebted to an anonymous referee for checking the
paper carefully and suggesting helpful comments.
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