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tA family H of sets is hereditary if any subset of any set in H is in H. If twofamilies A and B are su
h that any set in A interse
ts any set in B, then we saythat (A,B) is a 
ross-interse
tion pair (
ip). We say that a 
ip (A,B) is simple if atleast one of A and B 
ontains only one set. For a family F , let µ(F) denote the sizeof a smallest set in F that is not a subset of any other set in F . For any positiveinteger r, let [r] := {1, 2, ..., r}, 2[r] := {A : A ⊆ [r]}, F (r) := {F ∈ F : |F | = r}.We show that if a hereditary family H ⊆ 2[n] is 
ompressed, µ(H) > r + s with
r 6 s, and (A,B) is a 
ip with ∅ 6= A ⊂ H(r) and ∅ 6= B ⊂ H(s), then |A| + |B|is a maximum if (A,B) is the simple 
ip (

{[r]}, {B ∈ H(s) : B ∩ [r] 6= ∅}
); Frankland Tokushige proved this for H = 2[n]. We also show that for any 2 6 r 6 sand m > r + s there exist (non-
ompressed) hereditary families H with µ(H) = msu
h that no 
ip (A,B) with a maximum value of |A|+ |B| under the 
ondition that

∅ 6= A ⊂ H(r) and ∅ 6= B ⊂ H(s) is simple (we prove that this is not the 
ase for
r = 1), and we suggest two 
onje
tures about the extremal stru
tures in general.1 Introdu
tionWe shall use small letters su
h as x to denote elements of a set or positive integers, 
apitalletters su
h as X to denote sets, and 
alligraphi
 letters su
h as F to denote families (i.e.sets whose members are sets themselves). Unless otherwise stated, it is to be assumedthat sets and families are �nite.

N is the set {1, 2, ...} of positive integers. For m, n ∈ N with m 6 n, the set {i ∈
N : m 6 i 6 n} is denoted by [m, n], and if m = 1 then we also write [n]. The power set
{A : A ⊆ X} of a set X is denoted by 2X , and {A ⊆ X : |A| = r} is denoted by (

X

r

).
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We next develop some notation for 
ertain sets and families de�ned on a family F ⊆
2X . Let U(F) denote the union of all sets in F . Let F (r) := {F ∈ F : |F | = r}. Fora set Y , let F(Y ) := {F ∈ F : F ∩ Y 6= ∅} and F [Y ] := {F ∈ F : Y ⊆ F}. Fora single-element set {y}, we may abbreviate the notation F({y}) to F(y), and we set
F〈y〉 := {F\{y} : F ∈ F(y)}.For i, j ∈ [n], let ∆i,j : 22[n]

→ 22[n] be the 
ompression operation (see [4℄) de�ned by
∆i,j(F) := {δi,j(F ) : F ∈ F , δi,j(F ) /∈ F} ∪ {F ∈ F : δi,j(F ) ∈ F},where δi,j : 2[n] → 2[n] is de�ned by

δi,j(F ) :=

{

(F\{j}) ∪ {i} if i /∈ F and j ∈ F ;
F otherwise.A family F is said to be- a hereditary family (or an ideal or a downset) if all subsets of any set in F are in F ;- uniform if the sets in F have the same size;- interse
ting if any set in F interse
ts any other set in F ;- 
entred if the sets in F 
ontain a 
ommon element;- 
ompressed if F ⊆ 2[n] and ∆i,j(F) = F for any i, j ∈ [n] with i < j;- 
ompressed with respe
t to x ∈ U(F) if ∆x,y(F) = F for any y ∈ U(F).Two familiesA and B are said to be 
ross-interse
ting if any set in A interse
ts any setin B. We say that (A,B) is a 
ross-interse
tion pair (
ip) ifA and B are 
ross-interse
ting.We say that a 
ip (A,B) is simple if at least one of A and B 
ontains only one set.Hilton and Milner [7℄ proved that if r 6 n/2 and A,B are non-empty 
ross-interse
tingsub-families of (

[n]
r

), then |A|+ |B| 6
(

n

r

)

−
(

n−r

r

)

+ 1 = |A0|+ |B0|, where A0 is {[r]} and
B0 is {B ∈

(

[n]
r

)

: B ∩ [r] 6= ∅}. A streamlined proof of this result was later obtained bySimpson [10℄ by means of the 
ompression (also known as shifting) te
hnique introdu
edin the seminal paper [4℄ (see [5℄ for a good survey on the uses of this te
hnique in extremalset theory). Frankl and Tokushige [6℄ instead used the Kruskal-Katona Theorem [8, 9℄ toestablish the following extension.Theorem 1.1 (Frankl and Tokushige [6℄) If r 6 s, n > r + s, and (A,B) is a 
ipwith ∅ 6= A ⊆
(

[n]
r

) and ∅ 6= B ⊆
(

[n]
s

), then |A| + |B| 6
(

n

s

)

−
(

n−r

s

)

+ 1 = |A0| + |B0|,where (A0,B0) is the simple 
ip (

{[r]}, {B ∈
(

[n]
s

)

: B ∩ [r] 6= ∅}
).In this paper we are interested in 
ip's (A,B) having a maximum value of |A| + |B|under the 
ondition that both A and B are non-empty uniform sub-families of a hereditaryfamily H. Note that Theorem 1.1 deals with the spe
ial 
ase when H is the power set

2[n], whi
h is the simplest example of a hereditary family. It is easy to see that a family ishereditary if and only if it is a union of power sets. There are many interesting examplesof hereditary families, su
h as the family of independent sets of a graph or matroid.Before stating our results, we shall introdu
e a few more de�nitions.
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We say that a set M is F-maximal if M is not a subset of any set in F\{M}. Wedenote the size of a smallest F -maximal set in F by µ(F).For a family F , we denote the set {(A,B) : (A,B) is a 
ip with a maximum value of
|A| + |B| under the 
ondition that ∅ 6= A ⊂ F (r) and ∅ 6= B ⊂ F (s)} by C(F , r, s).Using the 
ompression te
hnique, we generalise Theorem 1.1 as follows.Theorem 1.2 If r 6 s, n > r + s, and H is a 
ompressed hereditary sub-family of 2[n]with µ(H) > r + s, then the simple 
ip (

{[r]}, {B ∈ H(s) : B ∩ [r] 6= ∅}
) is in C(H, r, s).Theorem 1.1 is the 
ase H = 2[n], in whi
h [n] is the only H-maximal set in H and hen
e

µ(H) = n. Note that we 
annot relax the 
ondition that µ(H) > r+s. Indeed, if H = 2[n]and s 6 µ(H) < r + s, then any set in H(r) =
(

[n]
r

) interse
ts any set in H(s) =
(

[n]
s

)(sin
e n = µ(H) < r + s), and hen
e (

H(r),H(s)
) is the only 
ip in C(H, r, s). Note thatif H = 2[n] and µ(H) < s, then C(H, r, s) = ∅ (sin
e n = µ(H) < s and hen
e H(s) = ∅).Remark 1.3 One of the 
entral problems in extremal set theory is the famous ChvátalConje
ture [2℄, whi
h 
laims that at least one of the largest interse
ting sub-families of anyhereditary family H is 
entred. Chvátal [3℄ proved his 
onje
ture for the 
ase when H is
ompressed. Snevily [11℄ improved Chvátal's result to the 
ase when H is 
ompressed withrespe
t to an element of U(H). In the next se
tion we show that no similar improvement
an be made to Theorem 1.2 for r > 2; more pre
isely, we show that for any 2 6 r 6 s and

m > r+s there are hereditary familiesH with µ(H) = m su
h that H is 
ompressed withrespe
t to an element of U(H) and no 
ip in C(H, r, s) is simple. We then suggest two
onje
tures about the stru
ture of at least one of the 
ip's in C(H, r, s) for any hereditaryfamily H with µ(H) > r + s.For r = 1 we do have the desired general result.Theorem 1.4 If H is a hereditary family with µ(H) > 1+s, then C(H, 1, s) has a simple
ip (A0,B0) with A0 = {{x}} and B0 = {B ∈ H(s) : x ∈ B} for some x ∈ U(H).Proof. Let (A,B) ∈ C(H, 1, s). Suppose |A| = 1. Then, sin
e A ⊂ H(1), A = {{x}} forsome x ∈ U(H). Sin
e B ⊂ H(s) and |A|+ |B| is a maximum (under the 
ross-interse
tion
ondition), B must 
onsist of all the sets in H(s) whi
h 
ontain x.Now suppose |A| > 1. Let Z := {z ∈ U(H) : {z} ∈ A}; so |Z| = |A| and hen
e
|Z| > 1. Sin
e every set in B must interse
t every (single-element) set in A, we 
learlyhave B ⊆ H(s)[Z] (= {H ∈ H(s) : Z ⊆ H}). Let B ∈ B. Sin
e every (single-element) setin A must interse
t B, we have Z ⊆ B and hen
e |Z| 6 s. Let x ∈ Z and let M be an
H-maximal set in H su
h that B ⊂ M . Then |M | > 1 + s (as |M | > µ(H)), Z ⊂ M(as Z ⊆ B), and (

M

s

)

⊆ H(s) (as H is hereditary). Now let (A0,B0) be the simple 
ip
(

{{x}},H(s)(x)
). Sin
e (A,B) ∈ C(H, 1, s), |A0| + |B0| 6 |A| + |B|. Also,

the electronic journal of combinatorics 17 (2010), #R60 3



|A0| + |B0| = 1 +
∣

∣H(s)(x)
∣

∣

> 1 +
∣

∣H(s)[Z]
∣

∣ +

∣

∣

∣

∣

{

A ∈

(

M

s

)

: x ∈ A, |A ∩ Z| = |Z| − 1

}
∣

∣

∣

∣

= 1 +
∣

∣H(s)[Z]
∣

∣ +

(

|Z| − 1

|Z| − 2

)(

|M | − |Z|

s − (|Z| − 1)

)

> |Z| +
∣

∣H(s)[Z]
∣

∣ = |A| +
∣

∣H(s)[Z]
∣

∣ > |A| + |B|.So we a
tually have |A0| + |B0| = |A| + |B|, and hen
e (A0,B0) ∈ C(H, 1, s). 2The above result will be used in the proof of Theorem 1.2. It is easy to see from itsproof that if µ(H) > 1 + s, then any (A,B) in C(H, 1, s) is a simple 
ip as in the result.2 A 
onstru
tion and two 
onje
turesThe following is the proof of the 
laim in Remark 1.3.Proposition 2.1 Let 2 6 l + 1 6 r 6 s, m > r + s and p >
((

m−l

s

)

−
(

m−r

s

)

+ 1
)

/
(

m−l

r−l

).For ea
h i ∈ [p], let Mi := [l]∪ [(i−1)(m− l)+ l+1, i(m− l)+ l]. Let E =
⋃p

i=1 2Mi. Then
E is hereditary, E is 
ompressed with respe
t to 1, µ(E) = m, and no 
ip in C(E , r, s) issimple.Proof. It is straightforward that E is hereditary, E is 
ompressed with respe
t to 1, and
µ(E) = |M1| = ... = |Mp| = m. Let (A,B) be a simple 
ip with ∅ 6= A ⊆ E (r) and
∅ 6= B ⊆ E (s). Let L := [l], A1 := {L ∪ C : C ∈

(

Mi\L
r−l

) for some i ∈ [p]}, B1 = E (s)(L)(= {E ∈ E (s) : E ∩ L 6= ∅}). Sin
e (A1,B1) is a non-simple 
ip with ∅ 6= A1 ⊆ E (r) and
∅ 6= B1 ⊆ E (s), the result follows if we show that |A| + |B| < |A1| + |B1|.Let R := [r], A0 := {R}, B0 := E (s)(R). We will show that

|A| + |B| 6 |A0| + |B0|. (1)Let us �rst assume this. Note that B0 is the disjoint union of B1 and the family R of setsin E (s) that interse
t R but not L. Sin
e R is a subset of M1 but not a subset of any otherset Mi, we 
learly have R = {A ∈
(

M1\L
s

)

: A ∩ (R\L) 6= ∅}. We have
(|A1| + |B1|) − (|A| + |B|) > (|A1| + |B1|) − (|A0| + |B0|) (by (1))

= (|A1| + |B1|) − (|A0| + |B1| + |R|) = |A1| − |A0| − |R|

= p

(

m − l

r − l

)

−

(

m − l

s

)

+

(

m − r

s

)

− 1

> 0 (by 
hoi
e of p)and hen
e |A| + |B| < |A1| + |B1| as required.
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We now prove (1). Suppose A 
ontains only one set A. Then B ⊆ E (s)(A). Sin
e
l < r and Mi ∩ Mj = L for any distin
t i and j in [p], there is a unique k in [p] su
hthat A ⊂ Mk, and it is therefore easy to see that ∣

∣E (s)(A)
∣

∣ 6 |B0|; so (1) holds in this
ase. Now suppose |A| > 1. Then, sin
e (A,B) is a simple 
ip, B 
ontains only oneset B and A ⊆ E (r)(B). Let S := [s], C0 := E (r)(S), D0 := {S}. Similarly to theabove, it is easy to see that ∣

∣E (r)(B)
∣

∣ 6 |C0|; so |A| + |B| 6 |C0| + |D0|. If r = s then
|C0| + |D0| = |A0| + |B0| and hen
e (1) holds again. Suppose r < s. For ea
h i ∈ [p], let
Fi :=

(

Mi

s

) and Gi :=
(

Mi

r

). Sin
e R ⊂ M1 and R ∩ Mi = S ∩ Mi = L for ea
h i ∈ [2, p],we 
learly have |B0| = |F1(R)|+
∑p

i=2 |Fi(L)| and |C0| = |G1(S)|+
∑p

i=2 |Gi(L)|. We have
|G1(S)| < |F1(R)| sin
e
|F1(R)| − |G1(S)| =

((

m

s

)

−

(

m − r

s

))

−

((

m

r

)

−

(

m − s

r

))

=

((

m

s

)

−

(

m

r

))

−

((

m − r

s

)

−

(

m − s

r

))

=

(

m

r

) (

r!(m − r)...(m − s + 1)

s!
− 1

)

−

(

m − s

r

) (

r!(m − r)...(m − s + 1)

s!
− 1

)

> 0.By a similar 
al
ulation, we obtain that |Gi(L)| < |Fi(L)| for ea
h i ∈ [2, p]. So we have
|C0| + |D0| = |G1(S)| +

p
∑

i=2

|Gi(L)| + 1 < |F1(R)| +

p
∑

i=2

|Fi(L)| + 1 = |A0| + |B0|and hen
e, sin
e |A| + |B| 6 |C0| + |D0|, (1) holds again. 2Something 
ommon to the 
ip (A1,B1) in the above proof and the extremal stru
turesdetermined in Theorems 1.2 and 1.4 is that the �rst family in the pair is 
entred. We
onje
ture that there always exist 
ip's (A,B) with A 
entred that are extremal underthe 
onditions we have been 
onsidering, where by extremal we mean that |A| + |B| is amaximum.Conje
ture 2.2 (Weak Form) If r 6 s and H is a hereditary family with µ(H) > r+s,then for some (A0,B0) ∈ C(H, r, s), A0 is 
entred.Conje
ture 2.3 (Strong Form) If r 6 s and H is a hereditary family with µ(H) > r+
s, then there exists a set H in H with 1 6 |H| 6 r su
h that for some (A0,B0) ∈ C(H, r, s),
A0 = {A ∈ H(r) : H ⊆ A} and B0 = {B ∈ H(s) : B ∩ H 6= ∅}.Note that the families A1 and B1 in the proof of Proposition 2.1 have the stru
ture of A0and B0 in the above 
onje
ture.3 Some toolsThis se
tion provides the main tools we need for the proof of Theorem 1.2. We start witha 
ru
ial lemma 
on
erning the levels of a hereditary family (see [1, Corollary 3.2℄).
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Lemma 3.1 (Borg [1℄) If H is a hereditary family and r < s 6 µ(H) − r, then
∣

∣H(r)
∣

∣ 6

(

s

s−r

)

(

µ(H)−r

s−r

)

∣

∣H(s)
∣

∣ .The following is our se
ond important lemma, whi
h purely 
on
erns the parameter
µ(F) of a family F .Lemma 3.2 Let ∅ 6= F ⊆ 2[n] and a ∈ [n]. Let D := F\F(a) and E := F\F(n).(i) If F(a) 6= ∅, then µ(F〈a〉) > µ(F) − 1.(ii) If F is hereditary, then µ(D) > µ(F) − 1.(iii) If F is 
ompressed and [n] /∈ F , then µ(E) > µ(F).Proof. Suppose F(a) 6= ∅. Let M be an F〈a〉-maximal set in F〈a〉. Then M ′ := M ∪{a}is an F -maximal set in F . So |M | = |M ′| − 1 > µ(F) − 1. Hen
e (i).Suppose F is hereditary. Then, sin
e F 6= ∅, ∅ ∈ F . So D 6= ∅. Let M be a D-maximal set in D. Suppose also that |M | < µ(F). So M is not F -maximal, and hen
ethere exists a set M ′ ∈ F(a) su
h that M ⊂ M ′ and M ′ is F -maximal. Sin
e F ishereditary, M ′′ := M ′\{a} ∈ F . Sin
e M is D-maximal and M ⊆ M ′′ ∈ D, M = M ′′. So
M ′ = M ∪ {a}. Therefore |M | = |M ′| − 1 > µ(F) − 1. Hen
e (ii).Suppose F is 
ompressed and [n] /∈ F . Let M be an E-maximal set in E . Suppose
|M | < µ(F). Then there exists a set M ′ ∈ F(n) su
h that M ⊂ M ′. Sin
e [n] /∈ F ,
X := [n]\M ′ 6= ∅. Let x ∈ X and M ′′ := δx,n(M

′) = (M ′\{n}) ∪ {x}. Sin
e F is
ompressed, M ′′ ∈ F . But then M ( M ′′ ∈ E , a 
ontradi
tion (as M is E-maximal). So
|M | > µ(F). Hen
e (iii). 2We remark that the inequalities above 
annot be repla
ed by equalities. An examplefor (iii) is that if n > 3 and F is the 
ompressed (hereditary) family 2[n−1] ∪ 2[n−3]∪{n},then µ(E) = n − 1 > n − 2 = µ(F).We shall say that a family F ⊆ 2[n] is quasi-
ompressed if δi,j(F ) ∈ F for any F ∈
F and any i, j ∈ U(F) with i < j. Therefore a quasi-
ompressed family F ⊆ 2[n]is isomorphi
 to a 
ompressed sub-family of 2[|U(F)|], and the isomorphism is indu
edby the bije
tion β : U(F) → [|U(F)|] de�ned by β(ui) := i, i = 1, ..., |U(F)|, where
{u1, ..., u|U(F)|} = U(F) and u1 < ... < u|U(F)|.The next lemma is straightforward, so we omit its proof.Lemma 3.3 Let H ⊆ 2[n] and a ∈ [n].(i) If H is hereditary, then H\H(a) and H〈a〉 are hereditary.(ii) If H is quasi-
ompressed, then H\H(a) and H〈a〉 are quasi-
ompressed.We shall frequently use the following property of quasi-
ompressed families.Lemma 3.4 Let F ⊆ 2[n] be a quasi-
ompressed family with U(F) 6= ∅. Let Z ⊆ [n] andlet i, j ∈ U(F), i 6 j. Then |F(Z)| 6 |F(δi,j(Z))|.
the electronic journal of combinatorics 17 (2010), #R60 6



Proof. Let Y := δi,j(Z). Suppose Y 6= Z, and let W := Z ∩ Y . Then i < j,
Z = W ∪ {j} 6= W and Y = W ∪ {i} 6= W . Let D := {F ∈ F : i ∈ F, F ∩ W = ∅},
E := {F ∈ F : j ∈ F, F ∩ W = ∅}. Sin
e F is quasi-
ompressed and i, j ∈ U(F),we have ∆i,j(E\E(i)) ⊆ D\D(j); so |D\D(j)| > |∆i,j(E\E(i))| = |E\E(i)|. Note that
D(j) = E(i). Thus, sin
e |F(Y )| − |F(Z)| = (|F(W )| + |D|) − (|F(W )| + |E|) =
(|D(j)|+ |D\D(j)|)− (|E(i)|+ |E\E(i)|) = |D\D(j)| − |E\E(i)| > 0, the result follows. 2For a set X := {x1, ..., xn} ⊂ N with x1 < ... < xn and r ∈ [n], 
all {x1, ..., xr} theinitial r-segment of X. For 
onvenien
e, we 
all ∅ the initial 0-segment of X.Corollary 3.5 Let F ⊆ 2[n] be quasi-
ompressed. Let ∅ 6= Z ⊆ [n] and let Y ∈

(

[n]
|Z|

) su
hthat Y 
ontains the initial |Z ∩ U(F)|-segment of U(F). Then |F(Z)| 6 |F(Y )|.Proof. Let Z ′ := Z ∩ U(F). If Z ′ = ∅ then |F(Z)| = 0 6 |F(Y )|. Suppose Z ′ 6= ∅.Let Y ′ be the initial |Z ′|-segment of U(F). Sin
e F is quasi-
ompressed and Z ′ ⊆ U(F),we 
an 
onstru
t a 
omposition of 
ompressions δi,j with i, j ∈ U(F), i 6 j, that yields
Y ′ when applied on Z ′. Thus |F(Z ′)| 6 |F(Y ′)| by repeated appli
ation of Lemma 3.4.Sin
e Y ′ ⊆ Y and |F(Z)| = |F(Z ′)|, we have |F(Z)| 6 |F(Y ′)| 6 |F(Y )|. 2The following is a well-known fundamental property of 
ompressions that emerged in[4℄ and that is not di�
ult to prove.Lemma 3.6 If A ⊂ 2[n] is interse
ting and i, j ∈ [n], then ∆i,j(A) is interse
ting.4 Proof of Theorem 1.2Lemma 4.1 Let r, s, n and H be as in Theorem 1.2, and let (A,B) be a 
ip with ∅ 6=
A ⊂ H(r) and ∅ 6= A ⊂ H(s). Let 1 6 i < j 6 n. Then:(i) ∆i,j(A) and ∆i,j(B) are 
ross-interse
ting;(ii) if either ∆m,n(A) = A for all m ∈ [n − 1] or ∆m,n(B) = B for all m ∈ [n − 1], then
(A ∩ B)\{n} 6= ∅ for any A ∈ A and B ∈ B.Proof. Let A′ := {A ∪ {n + 1} : A ∈ A}, A′′ := {A∗ ∪ {n + 1} : A∗ ∈ ∆i,j(A)},
B′ := {B ∪ {n + 2} : B ∈ B}, B′′ := {B∗ ∪ {n + 2} : B∗ ∈ ∆i,j(B)}. Clearly, the family
C := A′ ∪ B′ is interse
ting, and hen
e ∆i,j(C) is interse
ting by Lemma 3.6. Sin
e
∆i,j(C) = A′′ ∪ B′′, (i) 
learly follows.Suppose without loss of generality that ∆m,n(A) = A for all m ∈ [n − 1]. Suppose
A∩B = {n} for some A ∈ A and B ∈ B. Then, sin
e |(A∪B)\{n}| = r + s− 2 < n− 1,the set X := [n− 1]\(A ∪B) is non-empty. Let x ∈ X. Sin
e ∆x,n(A) = A, δx,n(A) ∈ A.But δx,n(A) ∩ B = ∅, a 
ontradi
tion. Hen
e (ii). 2Proof of Theorem 1.2. Let R := [r] and let (A0,B0) be the simple 
ip ({R},H(s)(R)).We 
learly have [µ(H)] ∈ H (sin
e H is 
ompressed) and hen
e

2[µ(H)] ⊆ H (2)
the electronic journal of combinatorics 17 (2010), #R60 7



(sin
eH is hereditary). So R ∈ H(r). We therefore have ∅ 6= A0 ⊂ H(r) and ∅ 6= B0 ⊂ H(s).It remains to show that |A|+ |B| 6 |A0|+ |B0| for any 
ip (A,B) with ∅ 6= A ⊂ H(r) and
∅ 6= B ⊂ H(s), and we do this using indu
tion on r.Consider the base 
ase r = 1. By Theorem 1.4, there exists a (single-element) set
Z ∈ H(1) su
h that (

{Z},H(s)(Z)
)

∈ C(H, 1, s) and hen
e |A| + |B| 6 1 + |H(s)(Z)|. ByCorollary 3.5, |H(s)(Z)| 6 |B0|. So |A| + |B| 6 |A0| + |B0|.Now 
onsider r > 2. Suppose n = r + s. So µ(H) = n and hen
e [n] ∈ H. Thus,sin
e H is hereditary, H(p) =
(

[n]
p

) for ea
h p ∈ [n]. Having n = r + s means that forevery A ∈
(

[n]
r

) there is only one set B ∈
(

[n]
s

) su
h that A ∩ B = ∅, so |A| + |B| 6

|A| +
((

n

s

)

− |A|
)

= |A0| + |B0|.We now 
onsider n > r + s + 1 and pro
eed by indu
tion on n. Let n′ := n − 1.In view of Lemma 4.1(i) and the assumption that H is 
ompressed, if ∆m,n(A) 6= A or
∆m,n(B) 6= B for some m ∈ [n − 1], then we 
an repla
e A and B by A′ := ∆m,n(A) and
B′ := ∆m,n(B), respe
tively, and repeat the pro
edure until we obtain families A∗ ⊂ H(r)and B∗ ⊂ H(s) su
h that ∆m,n(A∗) = A∗ and ∆m,n(B∗) = B∗ for all m ∈ [n − 1] (it iswell-known and easy to see that su
h a pro
edure indeed takes a �nite number of steps).We 
an therefore assume that

∆m,n(A) = A and ∆m,n(B) = B for all m ∈ [n − 1]. (3)Thus, by Lemma 4.1(ii),
(A ∩ B)\{n} 6= ∅ for any A ∈ A and B ∈ B. (4)Let I := H\H(n) = {H ∈ H : n /∈ H}. Similarly, let C := A\A(n), D := B\B(n),

E := B0\B0(n). So C ⊂ I(r) and D, E ⊂ I(s). Note that C 6= ∅ and D 6= ∅ by (3). Sin
e
H is hereditary, if [n] ∈ H then µ(I) = n − 1. Thus, if [n] ∈ H then µ(I) > r + s, and if
[n] /∈ H then, sin
e µ(H) > r + s, it follows by Lemma 3.2(iii) that µ(I) > r + s. Clearly
I is a 
ompressed hereditary sub-family of 2[n−1]. Therefore, by the indu
tive hypothesis,

|C| + |D| 6 |A0| + |E|. (5)Let J := H〈n〉. Clearly J is a 
ompressed hereditary sub-family of 2[n−1], and µ(J ) >

µ(H) − 1 by Lemma 3.2(i). Let r′ := r − 1 and s′ := s − 1. So
r′ 6 s′ and µ(J ) > µ(H) − 1 > r + s − 1 > r′ + s′. (6)We have A〈n〉 ⊂ J (r′) and B〈n〉 ⊂ J (s′). By (4), A〈n〉 and B〈n〉 are 
ross-interse
ting.Suppose A〈n〉 6= ∅ and B〈n〉 6= ∅. Let R′ := [r′] = R\{r}. By the indu
tive hypothesis,

|A〈n〉| + |B〈n〉| 6 1 +
∣

∣J (s′)(R′)
∣

∣. Similarly to (2), 2[µ(J )] ⊆ J ; so (

[µ(J )]
s′

)

⊆ J (s′). Sin
e
B0〈n〉 = J (s′)(R),
|B0〈n〉| =

∣

∣

∣
J (s′)(R′)

∣

∣

∣
+

∣

∣

∣

{

B ∈ J (s′) : B ∩ R′ = ∅, r ∈ B
}

∣

∣

∣

>

∣

∣

∣
J (s′)(R′)

∣

∣

∣
+

∣

∣

∣

∣

{

B ∈

(

[µ(J )]\R′

s′

)

: r ∈ B

}
∣

∣

∣

∣

=
∣

∣

∣
J (s′)(R′)

∣

∣

∣
+

(

µ(J ) − r′ − 1

s′ − 1

)
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and hen
e, by (6), |B0〈n〉| >
∣

∣J (s′)(R′)
∣

∣+1. So |A〈n〉|+|B〈n〉| 6 |B0〈n〉|. Sin
e |A|+|B| =
|C|+|D|+|A〈n〉|+|B〈n〉|, (5) and the last inequality give us |A|+|B| 6 |A0|+|E|+|B0〈n〉| =
|A0| + |B0|.Next, suppose A〈n〉 = ∅. Let A ∈ C (re
all that C 6= ∅). By (4), |B〈n〉| 6

∣

∣J (s′)(A)
∣

∣. Itis easy to see that U(J (s′)) = [l] for some l ∈ [n′] (sin
e J is 
ompressed); so ∣

∣J (s′)(A)
∣

∣ 6
∣

∣J (s′)(R)
∣

∣ by Corollary 3.5. Sin
e |A|+ |B| = |C|+ |D|+ |A〈n〉|+ |B〈n〉|, where A〈n〉 = ∅and |B〈n〉| 6
∣

∣J (s′)(R)
∣

∣ = |B0〈n〉|, it follows by (5) that |A| + |B| 6 |A0| + |B0|.Finally, suppose B〈n〉 = ∅. If r′ = s′ (i.e. r = s) then |A| + |B| 6 |A0| + |B0|follows by an argument similar to the one for the previous 
ase. Suppose r′ < s′. Let
K0 := J \J (1) := {J ∈ J : 1 /∈ J} and K1 := J 〈1〉. So K0,K1 ⊆ 2[2,n−1]. By Lemma 3.3,
K0 and K1 are hereditary and quasi-
ompressed. By (i) and (ii) of Lemma 3.2, µ(K0) >

µ(J ) − 1 and µ(K1) > µ(J ) − 1. Thus, by (6), µ(K0) > r′ + s′. Let R∗ := [2, r]and S∗ := [2, s]. It is 
lear from (2) that R∗, S∗ ∈ K0. Note that therefore R∗ and
S∗ are initial segments of U(K0). Sin
e (

K
(r′)
0 (S∗), {S∗}

) is a 
ip with the �rst family
ontained in K
(r′)
0 and the se
ond family 
ontained in K

(s′)
0 , the indu
tive hypothesis givesus ∣

∣

∣
K

(r′)
0 (S∗)

∣

∣

∣
+ |{S∗}| 6 |{R∗}| +

∣

∣

∣
K

(s′)
0 (R∗)

∣

∣

∣
and hen
e

∣

∣

∣
K

(r′)
0 (S∗)

∣

∣

∣
6

∣

∣

∣
K

(s′)
0 (R∗)

∣

∣

∣
. (7)Let L0 := {A ∈ J (r′)(S) : 1 /∈ A} and L1 := {A\{1} : 1 ∈ A ∈ J (r′)(S)}. Let M0 :=

{B ∈ B0〈n〉 : 1 /∈ B} and M1 := {B\{1} : 1 ∈ B ∈ B0〈n〉}. Note that L0 = K
(r′)
0 (S∗) and

M0 = K
(s′)
0 (R∗). So |L0| 6 |M0| by (7). Let r′′ := r′ − 1 and s′′ := s′ − 1. Similarlyto (6), µ(K1) > r′′ + s′′. By Lemma 3.1, |K(r′′)

1 | < |K(s′′)
1 |. Thus, sin
e L1 = K(r′′)

1 and
M1 = K

(s′′)
1 , |L1| < |M1|. We therefore have

∣

∣

∣
J (r′)(S)

∣

∣

∣
= |L0| + |L1| < |M0| + |M1| = |B0〈n〉|. (8)Now let D ∈ D. By (4), |A〈n〉| 6

∣

∣J (r′)(D)
∣

∣. It is easy to see that U(J (r′)) = [l] for some
l ∈ [n′] (sin
e J is 
ompressed); so ∣

∣J (r′)(D)
∣

∣ 6
∣

∣J (r′)(S)
∣

∣ by Corollary 3.5. Thus, by (8),
|A〈n〉| < |B0〈n〉|. Together with (5) and B〈n〉 = ∅, this gives us |A|+ |B| < |A0|+ |B0|. 2A
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