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Abstract

In this paper we give some useful combinatorial properties of polynomial paths.
We also introduce generalized majorization between three sequences of integers and
explore its combinatorics. In addition, we give a new, simple, purely polynomial
proof of the convexity lemma of E. M. de Sá and R. C. Thompson. All these results
have applications in matrix completion theory.

1 Introduction and notation

In this paper we prove some useful properties of polynomial paths and generalized ma-
jorization between three sequences of integers. All proofs are purely combinatorial, and
the presented results are used in matrix completion problems, see e.g. [2, 4, 7, 10, 11].

We study chains of monic polynomials and polynomial paths between them. Polyno-
mial paths are combinatorial objects that are used in matrix completion problems, see
[7, 9, 11]. There is a certain convexity property of polynomial paths appeared for the first
time in [5]. In Lemma 2 we give a simple, direct polynomial proof of that result. We also
show that no additional divisibility relations are needed.

∗This work was done within the activities of CELC and was partially supported by FCT, project
ISFL-1-1431, and by the Ministry of Science of Serbia, projects no. 144014 (M. D.) and 144032 (M. S.).
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Also, we explore generalized majorization between three sequences of integers. It
presents a natural generalization of a classical majorization in Hardy-Littlewood-Pólya
sense [6], and it appears frequently in matrix completion problems when both prescribed
and the whole matrix are rectangular (see e.g [1, 4, 11]).

We give some basic properties of generalized majorization, and we prove that there
exists a certain path of sequences, such that every two consecutive sequences of the path
are related by an elementary generalized majorization.

E. Marques de Sá [7] and independently R. C. Thompson [10], gave a complete solution
for the problem of completing a principal submatrix to a square one with a prescribed
similarity class. The proof of this famous classical result is based on induction on the
number of added rows and columns, and one of the crucial steps is the convexity lemma.
The original proofs of the convexity lemma, which are completely independent one from
the another one, both in [7] and [10] are rather long and involved. Later on, new combi-
natorial proof of this lemma has appeared in [8]. In Theorem 1, we give simple and the
first purely polynomial proof of this result.

1.1 Notation

All polynomials are considered to be monic.
Let F be a field. Throughout the paper, F[λ] denotes the ring of polynomials over the

field F with variable λ. By f |g, where f, g ∈ F[λ] we mean that g is divisible by f .
If ψ1| · · · |ψr is a polynomial chain, then we make a convention that ψi = 1, for any

i 6 0, and ψi = 0, for any i > r + 1.
Also, for any sequence of integers satisfying c1 > · · · > cm, we assume ci = +∞, for

i 6 0, and ci = −∞, for i > m+ 1.

2 Convexity and polynomial paths

Let α1| · · · |αn and γ1| · · · |γn+m be two chains of monic polynomials. Let

πj :=

n+j∏

i=1

lcm(αi−j , γi), j = 0, . . . , m. (1)

We have the following divisibility:

Lemma 1 πj | πj+1, j = 0, . . . , m− 1 (i.e. π0|π1| · · · |πm).

Proof: By the definition of πj , j = 0, . . . , m, the statement of Lemma 1 is equivalent to

n+j∏

i=1

lcm(αi−j , γi) |

n+j+1∏

i=1

lcm(αi−j−1, γi), j = 0, . . . , m− 1,

i.e.,
n∏

i=1

lcm(αi, γi+j) | γj+1

n∏

i=1

lcm(αi, γi+j+1), j = 0, . . . , m− 1, (2)
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which is trivially satisfied.

By Lemma 1 we can define the following polynomials

σj :=
πj

πj−1

, j = 1, . . . , m. (3)

Then, we have the following convexity property of πi’s:

Lemma 2 σj | σj+1, j = 1, . . . , m− 1 (i.e. σ1|σ2| · · · |σm).

Proof: By the definition of σj , j = 1, . . . , m, the statement of Lemma 2 is equivalent to

∏n+j

i=1
lcm(αi−j , γi)∏n+j−1

i=1
lcm(αi−j+1, γi)

|

∏n+j+1

i=1
lcm(αi−j−1, γi)∏n+j

i=1
lcm(αi−j, γi)

, j = 1, . . . , m− 1,

i.e. for all j = 1, . . . , m− 1, we have to show that

γj lcm(α1, γj+1) lcm(α2, γj+2) · · · lcm(αn, γj+n)

lcm(α1, γj) lcm(α2, γj+1) · · · lcm(αn, γj+n−1)

|
γj+1 lcm(α1, γj+2) lcm(α2, γj+3) · · · lcm(αn, γj+n+1)

lcm(α1, γj+1) lcm(α2, γj+2) · · · lcm(αn, γj+n)
. (4)

Before proceeding, note that for every two polynomials ψ and φ we have

lcm (ψ, φ) =
ψφ

gcd(ψ, φ)
(5)

Thus, for every i and j, we have

lcm (αi, γi+j) = lcm(lcm(αi, γi+j−1), γi+j) =
γi+j lcm(αi, γi+j−1)

gcd(lcm(αi, γi+j−1), γi+j)
. (6)

By applying (6), equation (4) becomes equivalent to

γj

n∏

i=1

gcd(lcm(αi, γi+j), γi+j+1) | γn+j+1

n∏

i=1

gcd(lcm(αi, γi+j−1), γi+j). (7)

By shifting indices, the right hand side of (7) becomes

γn+j+1 gcd(lcm(α1, γj), γj+1)

n−1∏

i=1

gcd(lcm(αi+1, γi+j), γi+j+1).

This, together with obvious divisibilities γj| gcd(lcm(α1, γj), γj+1) and
gcd(lcm(αn, γn+j), γn+j+1)|γn+j+1, proves (7), as wanted.
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Frequently when dealing with polynomial paths we have the following additional as-
sumptions

γi | αi, i = 1, . . . , n (8)

and
αi | γi+m, i = 1, . . . , n. (9)

Then the following lemma follows trivially from the definition of πi’s, for i = 0 and
i = m:

Lemma 3 π0 =
∏n

i=1
αi and πm =

∏n+m

i=1
γi.

2.1 Polynomial paths

Let α = (α1, . . . , αn) and γ = (γ1, . . . , γn+m) be two systems of nonzero monic polynomials
such that α1| · · · |αn and γ1| · · · |γn+m. A polynomial path between α and γ has been
defined in a following way in [7, 9], see also [11]:

Definition 1 Let ǫj = (ǫj1, . . . , ǫ
j
n+j), j = 0, . . . , m, be a system of nonzero monic poly-

nomials. Let ǫ0 := α and ǫm := γ. The sequence

ǫ = (ǫ0, ǫ1, . . . , ǫm)

is a path from α to γ if the following is valid:

ǫ
j
i |ǫ

j
i+1
, i = 1, . . . , n+ j − 1, j = 0, . . . , m, (10)

ǫ
j
i |ǫ

j−1

i |ǫji+1
, i = 1, . . . , n+ j − 1, j = 1, . . . , m. (11)

Consider the polynomials βj
i := lcm(αi−j, γi), i = 1, . . . , n + j, j = 0, . . . , m from

(1). Let βj = (βj
1, . . . , β

j
n+j), j = 0, . . . , m. Then the following proposition is valid (see

Proposition 3.1 in [11] and Section 4 in [7]):

Proposition 1 There exists a path from α to γ, if and only if

γi|αi|γi+m, i = 1, . . . , n. (12)

Moreover, if (12) is valid, then β = (β0, . . . , βm) is a polynomial path between α and
γ, and for every path ǫ between α and γ hold

β
j
i | ǫji , i = 1, . . . , n+ j, j = 0, . . . , m.

Hence, β is a minimal path from α to γ.

The polynomials πj from (1) are defined as πj =
∏n+j

i=1
β

j
i . The polynomials σi were

used by Sá [7, 9] and by Zaballa [11], but the convexity of πj ’s, i.e. the result of Lemma
2, was obtained later by Gohberg, Kaashoek and van Schagen [5]. We gave a direct poly-
nomial proof of this result and we have shown that it holds even without the divisibility
relations (12).
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3 Generalized majorization

Let d1 > · · · > dρ, f1 > · · · > fρ+l and a1 > · · · > al, be nonincreasing sequences of
integers.

Definition 2 We say that
f ≺′ (d, a),

i.e., we have a generalized majorization between the partitions d = (d1, . . . , dρ), a =
(a1, . . . , al) and f = (f1, . . . , fρ+l), if and only if

di > fi+l, i = 1, . . . , ρ, (13)
∑ρ+l

i=1
fi =

∑ρ

i=1
di +

∑l

i=1
ai, (14)

∑hq

i=1 fi −
∑hq−q

i=1 di 6
∑q

i=1
ai, q = 1, . . . , l, (15)

where hq = min{i|di−q+1 < fi}, q = 1, . . . , l.

Remark 1 Recall that in Section 1.1 we have made a convention that fi = +∞ and
di = +∞, for i 6 0, and that fi = −∞, for i > ρ + l, and di = −∞, for i > ρ. Thus,
hq’s are well-defined. In particular, for every q = 1, . . . , l, we have q 6 hq 6 q + l, and
h1 < h2 < . . . < hl.

Note that if ρ = 0, then the generalized majorization reduces to a classical majorization
(in Hardy-Littlewood-Pólya sense [6]) between the partitions f and a (f ≺ a).

If l = 1, (13)–(15) are equivalent to

di > fi+1, i = 1, . . . , ρ, (16)
∑ρ+1

i=1
fi =

∑ρ

i=1
di + a1, (17)

di = fi+1, i > h1. (18)

Indeed, for l = 1, (15) becomes

h1∑

i=1

fi 6

h1−1∑

i=1

di + a1.

The last inequality together with (14), gives

ρ+1∑

i=h1+1

fi >

ρ∑

i=h1

di. (19)

Finally, from (13), we obtain that (19) is equivalent to (18), as wanted.

Generalized majorization for the case l = 1 will be called elementary generalized
majorization, and will be denoted by

f ≺′

1 (d, a).
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In particular, if l = 1, and f , d and a satisfy di > fi, i = 1, . . . , ρ and (17), then
h1 = ρ+ 1, and so f ≺′

1 (d, a).

Note that if f ≺′ (d, a), then in the same way as in the proof of the equivalence of
(15) and (18), we have

di = fi+l, i > hl − l + 1. (20)

The aim of this section is to show that there is a generalized majorization between
the partitions d, a and f if and only if there are elementary majorizations between them,
i.e. if and only if there exist intermediate sequences that satisfy (16)–(18). In certain
sense, we show that there exists a path of sequences between d and f such that every
neighbouring two satisfy the elementary generalized majorization (see Theorems 5 and 7
below).

More precisely, we shall show that

f ≺′ (d, a)

if and only if there exist sequences gi = (gi
1, . . . , g

i
ρ+i), i = 1, . . . , l−1, with gi

1 > · · · > gi
ρ+i,

and with the convention g0 := d and gl := f , such that

gi ≺′

1 (gi−1, ai), i = 1, . . . , l.

Lemma 4 Let f , d and a be the sequences from Definition 1. If

f ≺′ (d, a),

then there exist integers g1 > · · · > gρ+l−1, such that

(i) gi > fi+1, i = 1, . . . , ρ+ l − 1,

(ii) di > gi+l−1, i = 1, . . . , ρ,

(iii) gi = fi+1, i > h, where h := min{i|gi < fi},

(iv)

h̃q∑

i=1

gi −

h̃q−q∑

i=1

di 6

q∑

i=1

ai, q = 1, . . . , l − 1, where h̃q = min{i|di−q+1 < gi},

(v)

ρ+l∑

i=1

fi =

ρ+l−1∑

i=1

gi + al.

Proof: Let H1, . . . , Hl−1 be integers defined as

Hq :=

q∑

i=1

ai −

hq∑

i=1

fi +

hq−q∑

i=1

di, q = 1, . . . , l − 1,

and
H0 := 0.
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Note that from (15), we have that Hq > 0, q = 1, . . . , l − 1.
Let

Sq :=

hq−q∑

i=hq−1−q+2

di −

hq∑

i=hq−1+1

fi, q = 1, . . . , l − 1.

Thus
Hq −Hq−1 = Sq + aq, q = 1, . . . , l − 1.

Since a1 > · · · > al−1, we have

H1 − S1 > H2 −H1 − S2 > · · · > Hl−1 −Hl−2 − Sl−1. (21)

Now, define the numbers

H ′

i := min(Hi, Hi+1, . . . , Hl−1), i = 0, . . . , l − 1. (22)

Thus, we have

H ′

1 6 · · · 6 H ′

l−1, (23)

H ′

l−1 = Hl−1 and H ′

i 6 Hi, i = 1, . . . , l − 2. (24)

We are going to define certain integers g′1, . . . , g
′

ρ+l−1
. The wanted g1 > · · · > gρ+l−1

will be defined as the nonincreasing ordering of g′1, . . . , g
′

ρ+l−1
.

Let
g′i := di−l+1, i > hl−1. (25)

We shall split the definition of g′1, . . . , g
′

hl−1
into l − 1 groups. For arbitrary j =

1, . . . , l − 1, we define g′i, i = hj−1 + 1, . . . , hj, (with convention h0 := 0) in a following
way:

If
fhj

> H ′

j −H ′

j−1 − Sj, (26)

then we define g′hj−1+1
> · · · > g′hj−1

as a nonincreasing sequence of integers such that

di−j+1 > g′i > fi

and
hj−1∑

i=hj−1+1

g′i −

hj−1∑

i=hj−1+1

fi = H ′

j −H ′

j−1

(this is obviously possible because of (26)). Also, in this case, we define

g′hj
:= fhj

.

If
fhj

< H ′

j −H ′

j−1 − Sj, (27)
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then we define
g′i := di−j+1, i = hj−1 + 1, . . . , hj − 1,

and
g′hj

:= H ′

j −H ′

j−1 − Sj.

Note that in both of the previous cases, (26) and (27), we have

hj∑

i=hj−1+1

g′i −

hj∑

i=hj−1+1

fi = H ′

j −H ′

j−1, j = 1, . . . , l − 1. (28)

and
g′hi

= max(fhi
, H ′

i −H ′

i−1 − Si), i = 1, . . . , l − 1.

Now, let i ∈ {1, . . . , l − 2}.
If g′hi+1

= fhi+1
, then g′hi+1

6 fhi
6 g′hi

.
If g′hi+1

= H ′

i+1 −H ′

i − Si+1 > fhi+1
, then, from (28), we have that H ′

i+1 > H ′

i, and so
H ′

i = Hi. However, this together with (21), gives

g′hi+1
= H ′

i+1 −H ′

i − Si+1 6 Hi+1 −H ′

i − Si+1 = Hi+1 −Hi − Si+1

6 Hi −Hi−1 − Si = H ′

i −Hi−1 − Si 6 H ′

i −H ′

i−1 − Si 6 g′hi
.

Hence, we have
g′h1

> g′h2
> · · · > g′hl−1

. (29)

Also, from the definition of hi, i = 1, . . . , l− 1, the subsequence of g′i’s for i ∈ {1, . . . , ρ+
l − 1} \ {h1, . . . , hl−1} is in nonincreasing order, and satisfies:

di−j+1 > g′i > fi, hj−1 < i < hj , j = 1, . . . , l. (30)

For i > hl, from (20), we have

di−l+1 = g′i = fi+1, i > hl. (31)

Now, since g′i > fi+1 for all i = 1, . . . , ρ + l − 1, and since gi’s are the nonincreasing
ordering of g′i’s, we have (i).

Moreover, since g′hl−1
> fhl−1

> dhl−1−l+2 = g′hl−1+1
, we have that gi = g′i, for i > hl−1.

Then, from (30), we have gi > fi, for i < hl, which together with ghl
= g′hl

= dhl−l+1 < fhl
,

implies h = hl. Thus, (31) implies (iii).
If we denote by ν1 > · · · > νρ the subsequence of g′i’s for i ∈ {1, . . . , ρ + l − 1} \

{h1, . . . , hl−1}, then from (30) and (31) we have

di > νi, i = 1, . . . , ρ, (32)

which implies (ii).
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Also, by summing all inequalities from (28), for j = 1, . . . , l − 1, we have

hl−1∑

i=1

g′i −

hl−1∑

i=1

fi = H ′

l−1,

which together with (24) and the definition of Hl−1, gives

hl−1∑

i=1

g′i −

hl−1−l+1∑

i=1

di =

l−1∑

i=1

ai.

The last equation, together with the definition of the remaining g′i’s (25), the fact that∑ρ+l−1

i=1
gi =

∑ρ+l−1

i=1
g′i, and (14), gives (v).

Before going to the proof of (iv), we shall establish some relations between hq’s and
h̃q’s. So, let q ∈ {1, . . . , l − 1}. The sequence of gi’s is defined as the nonincreasing
ordering of g′i’s. As we have shown, the sequence of g′i’s is the union of two nonincreasing
sequences: g′h1

> g′h2
> . . . > g′hl−1

and ν1 > ν2 > . . . > νρ.
Let rq be the index such that

νrq
> g′hq

> νrq+1.

First of all, from the definition of g′hq
and hq, we have that g′hq

> fhq
> dhq−q+1 > νhq−q+1,

and so
rq 6 hq − q. (33)

Furthermore, the subsequence g1 > g2 > . . . > grq+q is the nonincreasing ordering of
the union of sequences g′h1

> g′h2
> . . . > g′hq

and ν1 > ν2 > . . . > νrq
, with g′hq

being the
smallest among them, i.e. grq+q = g′hq

. Thus, νi > gi+q−1, for i = 1, . . . , rq, and so from
(32), for every i 6 rq we have that di > νi > gi+q−1, i.e.

h̃q > rq + q. (34)

By (33), we have two possibilities for rq:
If rq = hq − q, as proved above, we have ghq

= g′hq
, which then implies ghq

> fhq
>

dhq−q+1 > νhq−q+1, and so h̃q 6 hq, which together with (34) in this case gives h̃q = hq =
rq + q.

If rq < hq − q, then g′hq
> νhq−q > fhq

, and so from the definition of g′i’s, we have that

νi = di, for i = rq + 1, . . . , hq − q. Thus grq+q = g′hq
> νrq+1 = drq+1, and so h̃q 6 rq + q,

which together with (34) gives h̃q = rq + q.
Thus, altogether we have that h̃q 6 hq, and g1 > g2 > . . . > gh̃q

is the nonincreasing
ordering of the union of sequences g′h1

> g′h2
> . . . > g′hq

and ν1 > ν2 > . . . > νh̃q−q, with

gh̃q
= g′hq

, and that h̃q < hq implies νi = di, for i = h̃q − q + 1, . . . , hq − q.
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Finally, we can pass to the proof of (iv). Let q ∈ {1, . . . , l − 1}. We shall prove (iv)
for this q in the following equivalent form

h̃q∑

i=1

g̃i −

h̃q−q∑

i=1

di 6 Hq +

hq∑

i=1

fi −

hq−q∑

i=1

di. (35)

If h̃q = hq, (35) is equivalent to

hq∑

i=1

(g′i − fi) 6 Hq, (36)

which follows from (24) and (28).
If h̃q < hq, we have that νi = di, for i = h̃q − q + 1, . . . , hq − q. Hence, the condition

(35) is again equivalent to (36), which concludes our proof.

By iterating the previous result, we obtain the following

Theorem 5 Let f, d and a be the sequences from Definition 1. If

f ≺′ (d, a),

then there exist sequences of integers gj = (gj
1, . . . , g

j
ρ+j), j = 1, . . . , l− 1, with gj

1 > · · · >

g
j
ρ+j, such that

gj ≺′

1 (gj−1, aj), j = 1, . . . , l,

where g0 = d and gl = f .

Proof: For l = 1, the claim of theorem follows trivially.
Let l > 1, and suppose that theorem holds for l − 1. By Lemma 4, there exists a

sequence g = (g1, . . . , gρ+l−1), such that g1 > · · · > gρ+l−1 and such that they satisfy
conditions (i) − (v) from Lemma 4. Set gl−1 := g. From (i), (iii) and (v) we have

f ≺′

1 (gl−1, al). (37)

From (ii), (iv) and (v), we have
gl−1 ≺′ (d, a′), (38)

where a′ = (a1, . . . , al−1).
By induction hypothesis there exist sequences g1, . . . , gl−2, such that

gj ≺′

1 (gj−1, aj), j = 1, . . . , l − 1.

This together with (37) finishes our proof.

The following two results give converse of Lemma 4 and Theorem 5:
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Lemma 6 Let d1 > · · · > dρ, f1 > · · · > fρ+l and g1 > · · · > gρ+1 be integers. Let a′1
and a′2 > · · · > a′l be integers. Let a1 > · · · > al be integers such that

(a′1, a
′

2, . . . , a
′

l) ≺ (a1, a2, . . . , al). (39)

If

(i) di > gi+1, i = 1, . . . , ρ,

(ii) gi > fi+l−1, i = 1, . . . , ρ+ 1,

(iii) di = gi+1, i > h̄1, where h̄1 = min{i|di < gi},

(iv)

h̃q∑

i=1

fi −

h̃q−q∑

i=1

gi 6

q+1∑

i=2

a′i, q = 1, . . . , l − 1, where h̃q = min{i|gi−q+1 < fi},

(v)

ρ+l∑

i=1

fi =

ρ+1∑

i=1

gi +

l∑

i=2

a′i =

ρ∑

i=1

di +

l∑

i=1

a′i,

then
hq∑

i=1

fi −

hq−q∑

i=1

di 6

q∑

i=1

ai, q = 1, . . . , l, (40)

where hq = min{i|di−q+1 < fi}, q = 1, . . . , l.

Proof: From the definition of hq, h̃q and h̄1, we obtain the following inequalities

hq > max(h̃q−1,min(h̄1 + q − 1, h̃q)), q = 1, . . . , l − 1, (h̃0 = 0), (41)

and
hl > max(h̃l−1, h̄1 + l − 1). (42)

This is true since for q = 1, . . . , l − 1, and j < min(h̄1 + q − 1, h̃q), we have that

dj−q+1 > gj−q+1 > fj .

Therefore, hq > min(h̄1 + q − 1, h̃q). Also, for every q = 1, . . . , l, and j < h̃q−1, we have
dj−q+1 > gj−q+2 > fj, which gives hq > h̃q−1. Furthermore, for every j < h̄1 + l − 1, we
have dj−l+1 > gj−l+1 > fj, and so hl > h̄1 + l − 1. Altogether, we have (41) and (42).

Let q ∈ {1, . . . , l − 1}. From (41), we have the following three possibilities on hq:

a) hq > h̃q, in the case h̃q 6 h̄1 + q − 1,

b) h̃q > hq > max(h̃q−1, h̄1 + q − 1) if h̃q > h̄1 + q − 1,

c) hq > h̃q > max(h̃q−1, h̄1 + q − 1) if h̃q > h̄1 + q − 1.

Observe these cases separately:
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a) Let hq > h̃q (h̃q 6 h̄1 + q − 1), then by (iv) we have

hq∑

i=1

fi =

h̃q∑

i=1

fi +

hq∑

h̃q+1

fi 6

h̃q−q∑

i=1

gi +

hq∑

h̃q+1

fi +

q+1∑

i=2

a′i

6

h̃q−q∑

i=1

di +

hq−q∑

h̃q−q+1

di +

q+1∑

i=2

a′i =

hq−q∑

i=1

di +

q+1∑

i=2

a′i.

The second inequality is true since h̃q − q < h̄1. So, we have di > gi for all i 6 h̃q − q.
Also, from hq < hq+1, we obtain fi 6 di−q, for all i 6 hq < hq+1.

Finally, from (39), we have
q+1∑

i=2

a′i 6

q∑

i=1

ai,

and so
hq∑

i=1

fi 6

hq−q∑

i=1

di +

q∑

i=1

ai,

which proves (40), as wanted.

b) Let h̃q > hq > max(h̄1 + q − 1, h̃q−1), then by (iv), we have

hq∑

i=1

fi =

h̃q−1∑

i=1

fi +

hq∑

h̃q−1+1

fi 6

h̃q−1−q+1∑

i=1

gi +

hq∑

h̃q−1+1

fi +

q∑

i=2

a′i

6

h̃q−1−q+1∑

i=1

gi +

hq−q+1∑

h̃q−1−q+2

gi +

q∑

i=2

a′i.

The second inequality is true, since hq < h̃q, and so, gi−q+1 > fi, for all i 6 hq.
Moreover, since hq − q + 1 > h̄1, by conditions (iii) and (v), we have

hq−q+1∑

i=1

gi =

ρ+1∑

i=1

gi −

ρ+1∑

i=hq−q+2

gi =

ρ∑

i=1

di + a′1 −

ρ∑

i=hq−q+1

di =

hq−q∑

i=1

di + a′1,

and so
hq−q+1∑

i=1

gi +

q∑

i=2

a′i =

hq−q∑

i=1

di +

q∑

i=1

a′i.

Last equality together with (39) gives

hq∑

i=1

fi 6

hq−q∑

i=1

di +

q∑

i=1

ai,
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which proves (40), as wanted.

c) Let hq > h̃q > max(h̄1 + q − 1, h̃q−1), then by (iv), we have

hq∑

i=1

fi =

h̃q−1∑

i=1

fi +

hq∑

h̃q−1+1

fi 6

h̃q−1−q+1∑

i=1

gi +

hq∑

h̃q−1+1

fi +

q∑

i=2

a′i

=

h̃q−1−q+1∑

i=1

gi +

h̃q−1∑

h̃q−1+1

fi +

hq∑

h̃q

fi +

q∑

i=2

a′i

6

h̃q−1−q+1∑

i=1

gi +

h̃q−q∑

h̃q−1−q+2

gi +

hq−q∑

h̃q−q

di +

q∑

i=2

a′i

=

hq−q∑

i=1

di + a′1 +

q∑

i=2

a′i.

The second inequality follows from the definition of h̃q and the fact that hq < hq+1, while
the last equality is true since h̃q−q > h̄1. Now, we finish the proof as in the previous case.

The only remaining case is q = l. Let i > hl. Since hl > max(h̃l−1, h̄1 + l−1), we have
i > h̃l−1. From (ii), (iv) and (v) we have that f ≺′ (g, a′′), where a′′ = (a′2, a

′

3, . . . , a
′

l),
and so (see (20)) we have fi = gi−l+1. Also, since i > h̄1 + l − 1, from (iii) we have
gi−l+1 = di−l, and thus

fi = di−l, i > hl. (43)

Now, by (v), condition (40) for q = l is equivalent to

ρ+l∑

i=hl+1

fi >

ρ∑

i=hl−l+1

di.

Finally, from (i), we have that di > fi+l, i = 1, . . . , ρ, and so condition (40) for q = l is
equivalent to (43), which concludes our proof.

By iterating the previous result, we obtain the following one:

Theorem 7 Let d1 > · · · > dρ, f1 > · · · > fρ+l, a1 > · · · > al and a′1, . . . , a
′

l be
integers, such that

(a′1, . . . , a
′

l) ≺ (a1, . . . , al).

Moreover, for every j = 1, . . . , l − 1, let gj = (gj
1, . . . , g

j
ρ+j) be such that gj

1 > · · · > g
j
ρ+j.

Also, let g0 := d, and gl := f .
If gj ≺′

1 (gj−1, a′j) for j = 1, . . . , l, then f ≺′ (d, a).
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Thus, Theorems 5 and 7 prove the existence of a path of sequences, as announced
before Lemma 4. In particular, we have

Corollary 8 Let l > 2, d1 > · · · > dρ, f1 > · · · > fρ+l, a1 > · · · > al be integers.
Then

f ≺′ (d, a)

if and only if there exists g = (g1, . . . , gρ+s), for some 0 < s < l, such that g1 > · · · > gρ+s

and
f ≺′ (g, a′)

g ≺′ (d, a′′)

where a′ = (a1, . . . , al−s) and a′′ = (al−s+1, . . . , al).

4 Convexity lemma

In this section we give a short polynomial proof of the convexity lemma, which is the
crucial step in Sá-Thompson theorem [7, 10]. The original proofs of Sá and Thompson
were long and complicated, and relied on very involved techniques. The proof in [7]
(Proposition 4.1 and Lemma 4.2) uses nonelementary analytical tools, while the proof in
[10] is elementary but very long and does not involve the concept of convexity. Later on
shorter, combinatorial proof was given in [8].

Here we give the first purely polynomial proof of the convexity lemma.

Let α1| · · · |αn and γ1| · · · |γn+m be two polynomial chains.

For every j = 0, . . . , m, let

δ
j
i := lcm(αi−2j, γi), i = 1, . . . , n+ j,

δj :=

n+j∏

i=1

δ
j
i .

The difference between the convexity in this case and the result from Lemma 2 is in
a different shift in the definition of δj comparing to πj . This makes the problem much
more difficult, and in particular here we do not have that δj−1|δj. However, the convexity
of the degrees of δj holds:

Theorem 9 (Convexity Lemma)

d(δj) − d(δj−1) 6 d(δj+1) − d(δj), for j = 1, . . . , m− 1.

Before going to the proof we give one simple lemma:
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Lemma 10 Let φ1, φ2, ψ1 and ψ2 be polynomials such that φ1|φ2 and ψ1|ψ2. Then

lcm(φ1, ψ1) lcm(φ2, ψ2)| lcm(φ2, ψ1) lcm(φ1, ψ2). (44)

Proof: For i = 1, 2, we have

lcm(φi, ψ2) = lcm(φi, ψ1, ψ2) = lcm(lcm(φi, ψ1), ψ2) =
lcm(φi, ψ1)ψ2

gcd(lcm(φi, ψ1), ψ2)
.

Now, by replacing this expression for i = 1 and i = 2 into (44), it becomes equivalent to
the following obvious divisibility relation:

gcd(lcm(φ1, ψ1), ψ2) | gcd(lcm(φ2, ψ1), ψ2).

Proof of Theorem 9:

In order to prove the convexity, it is enough to prove that

δjδj | δj−1δj+1, j = 1, . . . , m− 1. (45)

By definition, we have

δj =

n+j∏

i=1

lcm(αi−2j , γi), j = 0, . . . , m. (46)

Since for all i and j we have

lcm(αi−2j , γi) = lcm(αi−2j , lcm(αi−2j−2, γi)) =
αi−2j lcm(αi−2j−2, γi)

gcd(αi−2j , lcm(αi−2j−2, γi))
,

we can rewrite (46) as

δj =

n+j∏

i=1

αi−2j lcm(αi−2j−2, γi)

gcd(αi−2j , lcm(αi−2j−2, γi))
=

∏n−j

i=1
αi

∏n+j

i=1
lcm(αi−2j−2, γi)∏n−j

i=1
gcd(αi, lcm(αi−2, γi+2j))

. (47)

We replace one δj on the left hand side and δj+1 on the right hand side of (45) by the
expression (46), while we replace the other δj and δj−1 by the expression (47). Then (45)
becomes equivalent to

∏n+j

i=1
lcm(αi−2j , γi)

∏n−j

i=1
αi

∏n+j

i=1
lcm(αi−2j−2, γi)∏n−j

i=1
gcd(αi, lcm(αi−2, γi+2j))

|

∏n+j+1

i=1
lcm(αi−2j−2, γi)

∏n−j+1

i=1
αi

∏n+j−1

i=1
lcm(αi−2j, γi)∏n−j+1

i=1
gcd(αi, lcm(αi−2, γi+2j−2))

.
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After cancellations, the last divisibility becomes equivalent to

lcm(αn−j , γn+j)

n−j+1∏

i=1

gcd(αi, lcm(αi−2, γi+2j−2))

| lcm(αn−j−1, γn+j+1)αn−j+1

n−j∏

i=1

gcd(αi, lcm(αi−2, γi+2j)).

By using the obvious divisibility relation

gcd(αi, lcm(αi−2, γi+2j−2)) | gcd(αi, lcm(αi−2, γi+2j)),

we are left with proving that

lcm(αn−j, γn+j) gcd(αn−j+1, lcm(αn−j−1, γn+j−1)) | αn−j+1 lcm(αn−j−1, γn+j+1). (48)

However, since

gcd(αn−j+1, lcm(αn−j−1, γn+j−1)) =
αn−j+1 lcm(αn−j−1, γn+j−1)

lcm(αn−j+1, γn+j−1)
,

(48) becomes equivalent to the following

lcm(αn−j−1, γn+j−1) lcm(αn−j, γn+j) | lcm(αn−j−1, γn+j+1) lcm(αn−j+1, γn+j−1),

which follows directly from Lemma 10.
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