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Abstract
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1 Introduction

Let G be a connected graph1. A set of vertices S is a determining set of a graph G if
every automorphism of G is uniquely determined by its action on S. The determining
number is the smallest size of a determining set.

Determining sets of connected graphs were introduced by Boutin [4], where ways of
finding and verifying determining sets are described. The author also gives natural lower
bounds on the determining number of some graphs, developing a complete study on
Kneser graphs. Concretely, tight bounds for their determining numbers are obtained and
all Kneser graphs with determining number 2, 3 or 4 are provided. Recently, Boutin [5] has
studied the determining number of Cartesian products of graphs, paying special attention
to powers of prime connected graphs. Moreover, she computes the determining number
of the hypercube Qn.

Independently, Harary [13] and Erwin and Harary [11] defined an equivalent set and
an equivalent number that they called the fixing set and the fixing number, respectively.
They found necessary and sufficient conditions for a tree to have fixing number 1, showing
that for every tree there is a minimum fixing set consisting only of leaves of the tree.
This approach has its roots on the notion of symmetry breaking which was formalized
by Albertson and Collins [2] and Harary [13]. In that approach, a subset of vertices is
colored in such a way that the automorphism group of the graph is “destroyed”, i.e., the
automorphism group of the resulting structure is trivial.

For recent papers on determining sets see the works by Albertson, Boutin, Collins,
Erwin, Gibbons, Harary, and Laison [1, 4, 5, 9, 11, 12, 13]. Determining sets are frequently
used to identify the automorphism group of a graph. Furthermore, they are obtained by
using its connection with another well-known parameter of graphs: the metric dimension
or location number.

A set of vertices S ⊆ V (G) resolves a graph G, and S is a resolving set of G, if every
vertex is uniquely determined by its vector of distances to the vertices of S. A resolving
set S of minimum cardinality is a metric basis, and |S| is the metric dimension of G.

Resolving sets in graphs were first independently defined by Slater [25], and Harary
and Melter [14]. They have since been widely studied, arising in several areas including
coin weighing problems, network discovery and verification, robot navigation, connected
joins in graphs, and strategies for Mastermind game. The works developed by Cáceres et
al. [6] and Hernando et al. [15] provide recent results and an extensive bibliography on
this topic.

Besides the above-mentioned papers, Khuller et al. provide in [19] a formula and a
linear time algorithm for computing the metric dimension of a tree. They also obtain an
upper bound for the metric dimension of the d-dimensional grid, showing that to compute
the metric dimension of an arbitrary graph is an NP-hard problem. On the other hand,
Chartrand et al. [8] characterize the graphs with metric dimension 1, n − 1, and n − 2.

1Graphs in this paper are finite, undirected and simple. The vertex-set and edge-set of a graph G are
denoted by V (G) and E(G), respectively. The order of G is the number of its vertices, written as |V (G)|.
The distance between vertices v, w ∈ V (G) is denoted by d(v, w). For more terminology we follow [26].

the electronic journal of combinatorics 17 (2010), #R63 2



They also provide a new proof for the metric dimension of trees and unicyclic graphs. See
also [22] for tight bounds on the metric dimension of unicyclic graphs.

Some other important works related to the metric dimension have to do with wheels
and Cartesian products. Shanmukha and Sooryanarayana [24] compute this parameter
for wheels, and for graphs constructed by joining, in a certain way, wheels with paths,
complete graphs, etc. The metric dimension of Cartesian products of graphs has been
studied independently by Peters-Fransen and Oellermann [21] and by Cáceres et al. [6].

Taking into account that the determining number is always less or equal than the
metric dimension, we come now to our main question: Can the difference between both
parameters of a graph of order n be arbitrarily large? This question turns out to be
interesting since an automorphism preserves distances and resolving sets are determining
sets (see for instance [4, 11]). It arises first as an open problem in [4], and its answer has
led us to a number of results on the determining number of some families of graphs in
which the metric dimension is known.

A brief plan of the paper is the following. Section 2 recalls some definitions and basic
tools. In Section 3, we study the determining number of trees, providing a linear time
algorithm for computing minimum determining sets. We also show that there exist trees
for which the difference between the determining number and the metric dimension is
arbitrarily large. Section 4 focuses on computing the determining number of Cartesian
products of graphs, also evaluating the difference between the two parameters. Finally, in
Section 5, we provide the family of graphs which attains, until now, the best lower bound
on the difference between the metric dimension and the determining number.

2 Definitions and tools

An automorphism of G, f : V (G) → V (G), is a bijective mapping such that

f(u)f(v) ∈ E(G) ⇐⇒ uv ∈ E(G).

As usual Aut(G) denotes the automorphism group of G. Every automorphism is also an
isometry, i.e., it preserves distances.

The ideas of determining set and resolving set have already been introduced in the
previous section. The following are the precise and more technical definitions provided
in [4] and [14, 25] (see also [8, 19, 22]).

Definition 1. [4] A subset S ⊆ V (G) is said to be a determining set of G if whenever
g, h ∈ Aut(G) so that g(s) = h(s) for all s ∈ S, then g(v) = h(v) for all v ∈ V (G).
The smallest size of a determining set of G, denoted by Det(G), is called the determining
number of G.

An equivalent definition of determining set is provided by Boutin in [4] by using the
concept of pointwise stabilizer of S as follows. For any S ⊆ V (G),

Stab(S) = {g ∈ Aut(G) | g(v) = v, ∀v ∈ S} =
⋂

v∈S

Stab(v).
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Proposition 1. [4] S ⊆ V (G) is a determining set of G if and only if Stab(S) = {id}.

Some examples of graphs whose determining number can be easily computed are the
following. An extreme is a minimum determining set of a path Pn and so Det(Pn) = 1.
Any pair of non-antipodal vertices is a determining set of a cycle, thus Det(Cn) = 2.
A minimum determining set of the complete graph Kn is any set containing all but one
vertex, and hence Det(Kn) = n−1. The determining number of the multipartite complete
graph Kn1,n2,...,ns

can be also easily computed, since a minimum determining set contains
nj − 1 vertices of each of the s classes,

Det(Kn1,n2,...,ns
) = (n1 + n2 + · · ·+ ns) − s.

Observe that every graph has a determining set. It suffices to consider any set con-
taining all but one vertex. Thus, Det(G) 6 |V (G)| − 1. The only connected graphs
with Det(G) = |V (G)| − 1 are the complete graphs. On the other hand, a graph G has
Det(G) = 0 if and only if G is an identity graph, i.e., Aut(G) is trivial. Those graphs are
also called asymmetric graphs (Albertson and Collins [2] use the term rigid graphs. In
fact, almost all graphs are rigid [3], hence most graphs have determining number 0).

The characterization of those graphs with Det(G) = 1 is observed by Erwin and
Harary [11] as follows: Let G be a nonidentity graph. Then Det(G) = 1 if and only if G

has an orbit of cardinality |Aut(G)|. They also point out that the group of automorphisms
of a graph with Det(G) = 1 can be arbitrarily large: For every positive integer t, there is
a graph Gt with determining number 1 and |Aut(Gt)| = t.

The metric dimension is formally defined as follows.

Definition 2. [14, 25] A set of vertices S resolves a graph G if every vertex of G is uniquely
determined by its vector of distances to the vertices in S, that is, d(u, s) 6= d(v, s) for all
s ∈ S and u, v ∈ V (G) with u 6= v. The metric dimension of G, denoted by β(G), is the
minimum cardinality of a resolving set of G.

The following result was independently proved by Harary [13], Erwin and Harary [11]
(using fixing sets instead of determining sets), and Boutin [4].

Proposition 2. [4, 11, 13] If S ⊆ V (G) is a resolving set of G then S is a determining
set of G. In particular, Det(G) 6 β(G).

Given a graph G of order n, the set of all its vertices but one is both a resolving set
and a determining set. Moreover, every graph G has both a minimum resolving set and
a minimum determining set. Thus,

0 6 Det(G) 6 β(G) 6 n − 1.

There are many examples where both parameters are equal. For any graph G of order
n, it is clear that 0 6 β(G)−Det(G) 6 n−2, and Boutin [4] poses the following question:
Can the difference between the determining number and the metric dimension of a graph
of order n be arbitrarily large? In order to answer it, we first compute the determining
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number of some specific families of graphs in which the metric dimension is known. More
concretely, the two sections following are devoted to study these two parameters, and
the difference between them for trees and for Cartesian products of graphs. Throughout
this paper, β(G)−Det(G) will be considered as a function of the order of G, denoted by
n = |V (G)|.

3 Trees

In this section, we focus on computing minimum determining sets of trees, and comparing
the metric dimension with the determining number. We provide bounds on the difference
between the two parameters.

Let T = (V (T ), E(T )) be a n-vertex nonidentity tree, n > 2, Det(T ) > 1. Assume,
unless otherwise stated, that T is not the path Pn. Clearly, Det(Pn) = 1 and most of the
results proved in this section are trivial in that case. Any set formed by all but one leaf
is a determining set of T . In fact, the following result holds.

Lemma 1. [11] There exists a minimum determining set of T formed by leaves.

Theorem 1. The determining number of a tree T with at least two vertices satisfies the
following statements:

1. 0 6 Det(T ) 6 n − 2 and both bounds are tight.

2. Given n, k ∈ N with 0 6 k 6 n − 2 and k 6= n − 3, there exists a tree T of order n

such that Det(T ) = k.

3. (a) There exists a tree T so that Det(T ) = n − 3 if and only if n = 4.

(b) A tree T such that Det(T ) = 0 can only exist if n = 1 or n > 7.

Proof. The four statements are proved one by one.

1. Obviously, Det(T ) > 0 by definition. Furthermore, T contains at most n − 1 leaves
which implies, by Lemma 1, that the cardinality of a determining set of T is at most
n − 2. The tightness of the bounds will be proved in the next item.

2. Consider n, k ∈ N with 1 6 k 6 n − 4. Figure 1 shows a u − v path Pn−k−1 with a
group of leaves {v1, . . . , vk+1} hanging from v. Since d(u, v) > 1, the set {v1, . . . , vk}
is a minimum determining set of that tree. Hence its determining number is k.

The star K1,n−1 serves as example for k = n − 2 (Figure 2(b)).

3. (a) P4 is an example of tree with order n and having determining number n − 3.
Suppose now on the contrary that there exists a tree T with n 6= 4 vertices so
that Det(T ) = n − 3. Thus, there is a minimum determining set of size n − 3.
Moreover, Lemma 1 implies that this minimum set is formed by leaves. Hence
T has at least n − 2 leaves, which leads to the trees illustrated in Figure 2.
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. . .

vk+1

︷ ︸︸ ︷
Pn−k−1

v

v1

v2

Figure 1: A tree with determining number k formed by adding a group of leaves hanging
one endpoint of a path Pn−k−1.

The contradiction follows from the determining numbers of those graphs. Fig-
ure 2(a) shows a tree with determining number n − 4, and the star (Figure
2(b)) has determining number n − 2.

(b) For the case k = 0, it is clear that the automorphism group of the trivial
graph is also trivial, thus its determining number is zero. On the other hand,
an inspection of the trees with order between 2 and 6 will prove that all of
them have some kind of symmetry and thus their automorphism group is not
trivial. Finally, when n > 7 we prove that there always exists a tree T with
Det(T ) = 0. That tree T is obtained by identifying one leaf from at least three
paths of different lengths. Assume that f ∈ Aut(T ). Since T contains a unique
vertex with degree at least three, it must be fixed by f . Moreover, f should
map a path onto itself due to the different lengths. Finally, because f is an
isometry, it does not change the order of the vertices in a path, thus f = id

and Det(T ) = 0.

Thus the theorem follows.

u

u1

u2

un1

v

v1

v2

vn−n1−2

(a) (b)

u1

u2

un−1

u3

u4

Figure 2: The two possible n-vertex trees with at least n − 2 leaves.

3.1 Algorithmic study

The center of a graph is the subgraph induced by the vertices of minimum eccentricity.
The center of a tree is either one vertex v0 or one edge v1v2 (see [18, 26]). In the first
case, v0 is the best candidate for being the root of T in order to compute the determining

the electronic journal of combinatorics 17 (2010), #R63 6



number. Indeed, T can be viewed as a rooted tree, i.e., a tree in which one vertex, called
the root, is distinguished. In order to study a rooted tree it is natural to arrange the
vertices in levels. Thus, the root is at level 0 and its neighbors at level 1. For each k > 1,
level k contains those vertices adjacent to vertices at level k − 1, except for those which
have already been assigned to level k − 2. The parent of a vertex at level i for i > 0, is
the vertex adjacent to it at level i − 1. A child of a vertex v is a vertex of which v is the
parent. An ancestor of a vertex v is any vertex that lies on the path from the root to v.
A descendant of a vertex v is any vertex that lies on the path from v to a leaf.

We design the following algorithm which computes a minimum determining set of a
tree T rooted at its center, and Det(T ).

Procedure: Minimum-Determining-Set-Tree
Input: T = (V (T ), E(T )).
Output: A minimum determining set S for T .

1. Preprocess. Apply a linear time algorithm [7] to compute the center of T ;
If the center of T is the edge v1v2 then add a vertex v0 adjacent to both v1 and v2

and delete the edge v1v2;
Rename the resulting tree as T ;

2. Let T be rooted at v0, let n be the radius of T and S := ∅;
Let all the leaves be labeled with “0”;

3. For i := n − 1 to 0 do

(a) For each non-leaf vertex u at distance i from v0 do

i. If l children of u have the same label, then add (l − 1) of them to S and
distinguish their labels with subindices;

ii. Label u by concatenating in lexicographic order the labels of its children;

(b) Order lexicographically the labels of the vertices at distance i from v0 and
relabel them with its position in the order beginning with “1”;

The Step 3 of the algorithm is a variation of the linear time algorithm by Hopcroft and
Tarjan [16] to check whether two trees are isomorphic. Here, we add the instruction 3(a)i.
To clarify how it works, let us take a look at the example in Figure 3.

The tree in Figure 3 has a single-vertex center and radius six. We start by assigning
“0” to all the leaves. In the next level (level one), the vertices are labeled as in the
original algorithm by Hopcroft and Tarjan. In level two, however, there is a vertex with
three children with the same label. In this situation, two of them are added to S (which
is represented in the figure as a square surrounding the vertex) and its corresponding
labels are distinguished with subindices. The situation is repeated in level three where
two vertices have the label (11). In that case, we choose one child in each subtree and
mark its labels appropriately. We note that no two ancestors of the vertices labeled (111)
and (112) in level 3 receive the same label.
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0

0 0

0 0 0 0

0 0 0

0

0

0 0 0

0

0 0

0

1 (0)
1 (0)

3 (1)
1 (0)

2 (00102)
3 (1) 1 (0)

1 (0)
1 (0)

1 (0)

1 (0)

1 (0)
1 (0)

1 (0)

1 (0)

2 (01)3 (03)

2 (01)3 (03)

4 (111)

5 (112)6 (2)

1 (1)
1 (1)

1 (1)

1 (1)
2 (23)

2 (23) 3 (4) 4 (5)5 (6)

1 (1)
1 (1) 2 (13)

3 (14)

4 (2)4 (2)

5 (5)

1 (111234415)

Figure 3: Example of a tree with a single-vertex center and radius six.

Observe that appropriately modified, the algorithm also computes a set S consisting of
leaves. Now, we focus our attention to prove that S is effectively a minimum determining
set of T . In order to do that, we introduce some definitions.

Suppose that T is a tree with a single-vertex centre v0. A vertex x of T is the root of
a subtree Tx of T that consists of all vertices y such that x lies on the v0 − y path in T .
The set T consists of all subtrees Tx of T for which there exists a tree Tx′ isomorphic to
Tx where x 6= x′ and such that x and x′ have the same parent. Let T0 denote the set Tx

of elements of T for which T does not contain a proper subtree of Tx. So if T1 ∈ T , then
either T1 ∈ T0 or it contains an element in T0.

Lemma 2. Given two isomorphic subtrees in T0 with the same parent, at least one of
them has a vertex in S.

Proof. Let T1 and T2 be such subtrees and let u be their common parent. During
the algorithm’s running, at the moment in which the vertex u is explored, its children
belonging to T1 and T2 have the same label since neither T1 nor T2 contains a subtree in
T0 and hence, their labels have not been changed. Therefore, one vertex from at least one
of these subtrees is added to S, and the result holds true.

Lemma 3. The set S obtained by the algorithm is a determining set of T .

Proof. Suppose f, g ∈Aut(T ) are such that f(s) = g(s) for all s ∈ S. So g−1f(s) = s

for all s ∈ S. We need to show that g−1f(v) = v for all v ∈ V (T ). Since g−1f is an
automorphism it follows if Tx ∈ T . Then there is a Ty ∈ T (possibly x = y) such that
g−1f(Tx) = Ty where x and y have the same parent. If g−1f is not the identity, there exist
distinct subtrees Tx and Ty in T that have a common parent such that g−1f(Tx) = Ty.
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But, by Lemma 2, either Tx or Ty contains a vertex of S since they either both belong to
T0 or they both contain subtrees that belong to T0. This implies that not all the vertices
of S are fixed by g−1f , a contradiction.

Lemma 4. The set S constructed by the algorithm is a minimum determining set.

Proof. On the contrary, let S ′ be a determining set of T such that |S ′| < |S|. Then, by
the pigeonhole principle, at least two isomorphic subtrees T1, T2 ∈ T0, with the same root,
do not contain a vertex in S ′, and hence there exists an automorphism f different from
the identity such that f(T1) = T2. Therefore S ′ is not a determining set.

Remark 1. Once we have obtained the set S, it is straightforward how to compute in linear
time the corresponding minimum determining set for T only formed by leaves according
to Lemma 1. Indeed, if v ∈ S and if v is not a leaf of T , then we replace v by a leaf in
the subtree rooted at v. Notice that the algorithm above works also for asymmetric trees,
i.e., for trees T with Det(T ) = 0.

As a consequence of the discussion above we have the following result.

Theorem 2. The problem of computing a minimum determining set S of a tree T can be
solved in linear time as well as computing a minimum determining set formed by leaves.

Now we turn to the problem of computing the metric dimension of a tree. In Khuller et
al. [19], the authors introduce a linear time algorithm for computing the metric dimension
of a tree T formed only by leaves. This leads to the natural question: is it always possible
to enlarge a a minimum determining set of a tree T formed by leaves in order to obtain
a metric basis of T ? Unfortunately, the answer is negative as it is shown in the example
of Figure 4.

a

x1 y1
x2 y2

z1
z2

Figure 4: {a} is a minimum determining set that cannot be completed to obtain a metric
basis.

For the tree in the Figure 4, {a} is a minimum determining set. Assume that this
set can be enlarged with leaves to obtain a metric basis. Since d(a, x1) = d(a, y1) and
d(a, x2) = d(a, y2), this can only be done by choosing either y1 or z1 and analogously with
y2 and z2. Suppose that we choose y1 and y2. Then {a, y1, y2} is not a minimum resolving
set since {y1, y2} does, and this always occurs for whatever pair of vertices we add.
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3.2 Lower bounds on β(T ) − Det(T )

There exist some examples of trees T for which both parameters β(T ) and Det(T ) are
equal: β(Pn) = Det(Pn) = 1, β(K1,n−1) = Det(K1,n−1) = n − 2. The following result
shows a construction in which β(T )−Det(T ) is Ω(

√
n). Nevertheless, this bound is a first

approximation to the possible value n − 2.

Proposition 3. There exists a tree T of order n such that β(T ) − Det(T ) is Ω(
√

n).

Proof. Consider the tree T formed by connecting a single vertex u to k paths denoted by
Pm, Pm+1, . . . , Pm+k−1 with lengths m, m + 1, . . . , m + k − 1, respectively (see Figure 5).
Thus Pi

⋂
Pj = {u} for all i 6= j.

u

Pm

Pm+1

Pm+2

Pm+k-1

v1

v2

vk-1

q

t

Figure 5: Tree T formed by connecting a single vertex u to k paths of different lengths.

Since all the paths have different length then Det(T ) = 0. In fact, Aut(T ) = {id},
i.e., T is an asymmetric tree. On the other hand, it was shown in [8, 14, 19, 25] that a
minimum resolving set for T can be obtained by choosing all but one of the leaves of this
tree. Hence, β(T ) = k − 1. For m = 1, |V (T )| = n = k2+k+2

2
. Therefore β(T )−Det(T ) is

Ω(
√

n).

4 Cartesian products of graphs

This section arises as a natural consequence of the connection between determining num-
ber and metric dimension, and the studies developed by Boutin [5] and Cáceres et al. [6].
Our first purpose is to compute the determining number of some well-known Cartesian
products of graphs, for which the metric dimension is known.

The Cartesian product of graphs G and H (see [17]), denoted by G�H , is the graph
with vertex set V (G)× V (H) where (u1, v1) is adjacent to (u2, v2) whenever u1 = u2 and
v1v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G). The Cartesian product of automorphisms
f ∈ Aut(G) and g ∈ Aut(H) is the automorphism of G�H defined as follows: (f ×
g)(u, v) = (f(u), g(v)) for every (u, v) ∈ V (G�H).

Let S be a subset of V (G�H). The projection of S onto G is the set of vertices
u ∈ V (G) for which there exists a vertex (u, v) ∈ S. The projection of S onto H is
defined analogously. A column of G�H is the set of vertices {(u, v)|v ∈ V (H)} for some
vertex u ∈ V (G). A row of G�H is the set of vertices {(u, v)|u ∈ V (G)} for some
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vertex v ∈ V (H). Thus, each column and each row of G�H induces a copy of H and G,
respectively.

Lemma 5. Let G1, . . . , Gp be connected finite graphs and G = G1� · · ·�Gp. For every
determining set S of G, the projections of S onto G1, . . . , Gp are determining sets of
G1, . . . , Gp, respectively. In particular,

Det(G1� · · ·�Gp) > max{Det(G1), . . . , Det(Gp)}.

Proof. Let S ⊆ V (G) be a determining set of G. By Proposition 1, we have that
Stab(S) = {id}. Consider the projections of S onto Gi, written as SGi

, with 1 6 i 6 p.
To prove that SGi

is a determining set of Gi it suffices to show that,

Stab(SG1
) × · · · × Stab(SGp

) ⊆ Stab(S) = {id}.

Given fi ∈ Aut(Gi), the Cartesian product f1 × · · · × fp ∈ Aut(G). Assume that
fi(u) = u for all u ∈ SGi

. Then (f1 × · · · × fp)(s) = s for all s ∈ SG1
× · · · × SGp

= S.
Hence f1 × · · · × fp = id, and we conclude that Stab(SGi

) = {id} for every i = 1, . . . , p.
A straightforward consequence of the above-proved result is that,

Det(G1� · · ·�Gp) > max{Det(G1), . . . , Det(Gp)}

since the determining sets of the projections of G have at most the same order than a
minimum determining set of G.

We now recall some definitions from Boutin [5] and Sabidusi [23]. The unit graph,
denoted by U , is the trivial graph given by V (U) = {u} and E(U) = ∅. A graph G is
prime with respect to the Cartesian product if it cannot be written as a Cartesian product
of two smaller graphs, that is, G is not isomorphic to the unit graph, and if G ∼= Z�Z ′

implies Z ∼= U or Z ′ ∼= U . Two graphs G and G′ are said to be relatively prime with
respect to the Cartesian product if and only if G ∼= H�Z and G′ ∼= H ′�Z imply Z ∼= U ,
that is, their prime factor decomposition share no common factor. Denote by Gm the
Cartesian product of m copies of G.

The following theorem provides the determining number of the Cartesian product of
pairwise relatively prime graphs.

Theorem 3. Let G1, . . . , Gp be connected graphs, and m1, . . . , mp ∈ N. If Gm1

1 , . . . , G
mp

p

are pairwise relatively prime with respect to the Cartesian product, then

Det(Gm1

1 � · · ·�Gmp

p ) = max{Det(Gm1

1 ), . . . , Det(Gmp

p )}.

Proof. By Lemma 5, the inequality that remains to prove is that Det(Gm1

1 � · · ·�G
mp

p ) 6

max{Det(Gm1

1 ), . . . , Det(G
mp

p )}. To this end, let S1, . . . , Sp be minimum determining sets
of Gm1

1 , . . . , G
mp

p , respectively. Consider a minimum subset of V (Gm1

1 � · · ·�G
mp

p ), de-
noted by S, verifying that each set Si is the projection of S onto Gmi

i . Obviously,
|S| = max{|S1|, . . . , |Sp|} and so it suffices to prove that S is a determining set of
Gm1

1 � · · ·�G
mp

p .
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Let f, g ∈ Aut(Gm1

1 � · · ·�G
mp

p ). Since Gm1

1 , . . . , G
mp

p are pairwise relatively prime
graphs, there exist fi, gi ∈ Aut(Gmi

i ) for 1 6 i 6 p such that f = f1 × · · · × fp and
g = g1 × · · · × gp (see [23] for more details).

Assume that f(s) = g(s) for all s ∈ S. Notice that s = (s1, . . . , sp) with si ∈ Si.
Hence,

f(s) = g(s) ⇐⇒ (f1(s1), . . . , fp(sp)) = (g1(s1), . . . , gp(sp)) ⇐⇒ fi(si) = gi(si).

Since the set Si is a minimum determining set of Gmi

i , it follows that fi(vi) = gi(vi) for
all vi ∈ V (Gmi

i ). We conclude that f(v) = g(v) for all v ∈ V (Gm1

1 � · · ·�G
mp

p ).

It was shown in [23] that every connected finite graph H has an unique prime factor
decomposition with respect to the Cartesian product, i.e., H can be written uniquely,
up to order, as H = Hm1

1 � · · ·�H
mp

p where the graphs Hi are connected, prime, and
distinct. Since Hm1

1 � · · ·�H
mp

p is a maximal decomposition of H into relatively prime
factors, Det(H) = max{Det(Hm1

1 ), . . . , Det(H
mp

p )}. Thus Theorem 1 of [5], for Cartesian
product of prime graphs, can be deduced from Theorem 3, for Cartesian product of
pairwise relatively prime graphs. Although both results are similar, the arguments of
the proofs are different. To prove Theorem 3, we consider the automorphism group of
Cartesian products and their properties as determined by Sabidusi [23]. On the other
hand, the study developed by Boutin [5] is based on characteristic matrices. We refer the
reader to the work done by Boutin [5] for results on the determining number of Cartesian
powers of prime connected graphs.

Proposition 4. [11] Let Pt, Pm be two paths of order t and m, respectively where t, m > 2.
It holds that,

Det(Pt�Pm) =

{
2 if m = t = 2 or 3,
1 otherwise.

The following result provides the metric dimension of Pt�Pm.

Proposition 5. Let Pt, Pm be two paths with t, m > 2. Then β(Pt�Pm) = 2.

Proof. To prove that β(Pt�Pm) = 2 use the fact that β(G) 6 β(G�Pm) 6 β(G) + 1
(see [6]), β(Pm) = 1, and so 1 6 β(G�Pm) 6 2. Obviously, two vertices are necessary
and sufficient to obtain a metric basis of these graphs (see Figure 6).

P2

P3

P4

P5

P3

P2

Figure 6: Metric basis of Pt�Pm.

The connection between the determining number and the metric dimension, and The-
orem 3 enable us to compute the determining number of the following Cartesian products.
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Proposition 6. Let Kt, Ct, and Pt be the complete, cycle, and path graphs of order t,
respectively.

(1) For every graph H and integer t > 2β(H) + 1 it holds that Det(Kt�H) = t − 1.
(2) Det(Pt�Cm) = 2 whenever t > 2 and m > 3.
(3) For every t > 2 and m > 2 the following holds:

Det(Kt�Pm) =







2 if t = m = 2,
1 if t = 2 and m 6= 2,
t − 1 if t > 3.

(4) For every t > 2 and m > 3 the following holds:

Det(Kt�Cm) =







2 if t 6 3 and m 6= 3,
3 if t = m = 3,
t − 1 if t > 4.

(5) For every t, m > 3 we have

Det(Ct�Cm) =

{
3 if t = m = 3 or t = m = 4,
2 otherwise.

Proof. We proceed by cases:
(1) By Lemma 5 and taking into account that β(Kt�H) = t− 1 if t > 2β(H)+ 1 (see

Theorem 5.3 in [6]) we have,

t − 1 6 max{Det(Kt), Det(H)} 6 Det(Kt�H) 6 β(Kt�H) = t − 1

therefore Det(Kt�H) = t − 1.
(2) It is a straightforward consequence of Theorem 3, using the fact that Det(Pt) = 1

and Det(Cm) = 2.
(3) Except for the case t = m = 2, this comes directly from Theorem 3. Case

t = m = 2 comes from Proposition 4.
(4) It is a consequence of Theorem 3, using the fact that Det(Kt) = t − 1 and

Det(Cm) = 2. It only remains to prove the case Det(K3�C3) which is shown in the
next item 5 as Det(C3�C3).

(5) Theorem 3 lets us conclude that Det(Ct�Cm) = 2 if t 6= m. It remains to prove
that Det(Cm�Cm) = 2 whenever m > 5, and Det(Cm�Cm) = 3 if m = 3 or m = 4. Note
that Lemma 5 gives Det(Cm�Cm) > 2. We denote the vertex set of Cm, as {0, 1, . . .m−1},
so vertices in Cm�Cm are pairs (i, j) with 0 6 i, j 6 m − 1.

Claim 1. If a vertex (i, j) in Cm�Cm, m > 5, and two of its neighbors not both in
the same row or column, are fixed by f ∈ Aut(Cm�Cm), then all neighbors of (i, j) are
fixed by f . Suppose, without loss of generality, that (i, j), (i, j − 1), (i + 1, j) are fixed
by f and that the other two neighbors of (i, j) are not fixed, then f(i, j + 1) = (i − 1, j)
and f(i − 1, j) = (i, j + 1) (see Figure 7). But (i, j − 1) and (i − 1, j) have two common
neighbors, however f(i, j − 1) and f(i − 1, j) have just one common neighbor (note that
m > 5). Hence f must fix all neighbors of (i, j).
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(i, j)

(i, j − 1)

(i + 1, j)

(i, j + 1)

(i− 1, j)

. . .. . .

...

...

Figure 7: A graphical justification of Claim 1.

Similar arguments provides the following.

Claim 2. If a vertex (i, j) in Cm�Cm, m > 5, and all its neighbors are fixed by
f ∈ Aut(Cm�Cm), them f = id.

Both claims let us conclude that a non identity automorphism can not fix simultane-
ously a vertex and two of its neighbors which are not located in the same row or column.

(0, 0)

(k + 1, 1)

4

3

2

2

(0, 0)

(k + 1, 1)

5

3

5 3

(k, 2)

6

5

(a) (b)

Figure 8: Any automorphism on Cm�Cm with m > 5 that fixes (0, 0) and (k + 1, 1) must
be the identity.

We show that Det(Cm�Cm) = 2 whenever m > 5. We shall show that {(0, 0), (k +
1, 1)}, with k = ⌊m

2
⌋, is a determining set of Cm�Cm. Suppose that f ∈ Aut(Cm�Cm)

fixes both (0, 0) and (k + 1, 1). If m = 2k + 1, k > 2, it is straightforward to prove that
distances between (0, 0) and the neighbors of (k + 1, 1) are the following: d((0, 0)(k +
1, 0)) = d((0, 0), (k + 2, 1)) = k, d((0, 0), (k, 1)) = k + 1 and d((0, 0), (k + 1, 2)) = k + 2
(see Figure 8(a) where the labels of vertices are the distances to the point (0, 0)). So f

must fix both (k, 1) and (k + 1, 2), and thus f is the identity.
If m = 2k, k > 2, distances are d((0, 0)(k + 1, 0)) = d((0, 0), (k + 2, 1)) = k − 1,
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d((0, 0), (k, 1)) = d((0, 0), (k + 1, 2)) = k + 1. Suppose that f is not the identity auto-
morphism, then f(k, 1) = (k + 1, 2) and f(k + 1, 2) = (k, 1). Consider now the vertex
(k, 2), which is the second common neighbor of both (k, 1) and (k + 1, 2), the other one
is (k + 1, 1), fixed by f , so (k, 2) is also fixed by f . Distances between (0, 0) and neigh-
bors of (k, 2) are d((0, 0), (k − 1, 2)) = d((0, 0), (k, 1)) = d((0, 0), (k + 1, 2)) = k + 1 and
d((0, 0), (k, 3)) = k + 3 (see Figure 8(b)), so f must fix both (k − 1, 2) and (k, 3), which
is not possible since f is not the identity. This concludes the case m = t > 5.

It is easy to prove that, for every u, v ∈ V (C4�C4) there always exists a nontriv-
ial automorphism f ∈ Aut(C4�C4) so that f(u) = u, and f(v) = v. Analogously
Det(C3�C3) > 2.

On the other hand, the set of vertices S = {(0, 0), (1, 0), (0, 1)} is a determining set of
both C3�C3 and C4�C4, since every column and every row of the Cartesian product is
fixed by the action of any automorphism on S. Thus, we conclude that Det(Cm�Cm) = 3
whenever m = 3 or m = 4.

Notice that Theorem 1 in [5] implies that Det(Cm�Cn) = 2 whenever m 6= n. The
above result includes the case m = n.

We next compute the determining number of Kt�Km. Observe that two vertices of
this graph are adjacent if and only if they are located in a common row or column. Let
S ⊆ V (Kt�Km). A row or column is said to be empty if it contains no vertex in S.
A vertex v ∈ S is lonely (see [6]) if it is the only vertex of S in its row and column.
Figure 9(a) shows instances of lonely and non-lonely vertices in K7�K7.

Figure 9: (a) The squared vertices form a set S ⊆ V (K7�K7) in which there are two
non-lonely vertices and one lonely vertex (the darkened one), (b) a minimum determining
set of K7�K7.
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Lemma 6. For t > 2, a set S ⊆ V (Kt�Kt) is a determining set of Kt�Kt if and only if

(a) There is at most one empty row and at most one empty column, and

(b) There are at most |S| − 2 lonely vertices.

Proof. (=⇒) Assume that S ⊆ V (Kt�Kt) is a determining set of Kt�Kt. By Lemma 5,
the projection of S onto Kt is a determining set of Kt. Since Det(Kt) = t − 1 then
condition (a) holds.

Suppose now on the contrary that all the vertices of S are lonely vertices, we can
rename vertices in such a way that S ⊆ {(x, x) | 0 6 x 6 t − 1} (note that both factors
are complete graphs). Thus, there exists a non identity automorphism f ∈ Aut(Kt�Kt)
so that f(i, j) = (j, i). Therefore, S is not a determining set of Kt�Kt which leads to the
desired contradiction.

(⇐=) Assume now that S ⊆ V (Kt�Kt) is a set satisfying (a) and (b). Consider an
automorphism f ∈ Aut(Kt�Kt) such that f(u) = u for all u ∈ S. Suppose on the
contrary that f is not the identity. Since there is at least one vertex of S in every row
except possibly one and in every column except possibly one, f neither interchanges two
rows nor two columns of Kt�Kt. Thus, f maps rows into columns and therefore it can fix
at most one point in each row and in each column. However, condition (b) implies that
there exists one row (or column, or both) in which we have two vertices of S fixed by f .
The contradiction follows.

Proposition 7. For every t, m > 2 the following holds:

Det(Kt�Km) =

{
max{t − 1, m − 1} if t 6= m,
t if t = m.

Proof. The case t 6= m is a straightforward consequence of Theorem 3, since Kt and Km

are relative prime graphs. Assume then that t = m > 4 (the case K3�K3 was shown in
item 5 of Proposition 6 as C3�C3). To prove that Det(Kt�Kt) = t, it suffices to show that
t is the minimum number of vertices needed to satisfy conditions (a) and (b) of Lemma 6.
Clearly, if we consider t − 1 vertices of Kt�Kt and at least two of them are non-lonely
vertices then there are either two empty rows or two empty columns, what contradicts
condition (a). Moreover, the set S = {(x, x) | 0 6 x 6 t − 2} ∪ {(1, 0)} satisfies items (a)
and (b) of Lemma 6 (see Figure 9(b)). Thus, Det(Kt�Kt) = t.

Table 1 summarizes the results obtained in this section on the determining number,
and the corresponding known-results on the metric dimension of Cartesian products (taken
from [6, 21]). Notice that the case Det(C3�C3) = Det(K3�K3) = Det(K2

3) = 3 matches
the formula Det(Kk

3 ) = ⌈log3(2k + 1)⌉ + 1 obtained by Boutin [5] for k = 2.

Remark 2. The graph Kt�Km is the first instance of Cartesian product of graphs in which
the difference between the metric dimension and the determining number is arbitrarily
large whenever m 6 t 6 2m − 1. Indeed, β(Kt�Km) − Det(Kt�Km) is Ω

(
2m−t

3

)
where

|V (Kt�Km)| = n = t ·m. In particular, for m = t, β(Kt�Kt)−Det(Kt�Kt) is Ω
(√

n

3

)

.
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Table 1: Summary of results.

G Det(G) β(G)

Pt�Pm
2 if t = m = 2, 3
1 otherwise

2

Pt�Cm 2
2 if m is odd
3 if m is even

Ct�Cm
3 if t = m = 3, 4
2 otherwise

3 if t or m are odd
4 if t and m are even

Kt�Pm t − 1 t − 1

Kt�Cm

2 if t = 3 and m 6= 3
3 if t = m = 3
t − 1 if t ≥ 4

3 if t = 4 and m is even
4 if t = 4 and m is odd
t − 1 t ≥ 5

Kt�H

t ≥ 2β(H) + 1
t − 1 t − 1

Kt�Km
max{t − 1, m − 1} if t 6= m

t if t = m

⌊2
3
(t + m − 1)⌋ if m ≤ t ≤ 2m − 1

t − 1 if t ≥ 2m − 1

Table 1 shows that in the rest of cases both parameters are equal or the difference is at
most 2.

To conclude this section, consider the hypercube Qn which is the graph whose vertices
are the n-dimensional binary vectors, where two vertices are adjacent if they differ in
exactly one coordinate. It is well-known that,

Qn = K2�K2� · · ·�K2
︸ ︷︷ ︸

n

.

The determining number of the hypercube is given by Det(Qn) = ⌈log2 n⌉ + 1 (see [5]).
On the other hand, the works done by Erdős and Rényi [10], and Lindström [20] lead to

lim
n→∞

β(Qn) · log n

n
= 2.

Therefore, β(Qn) − Det(Qn) is asymptotically Ω
(

2n−log2 n

log n

)

.

5 Lower bounds on β(G) − Det(G)

The studies developed in the two previous sections let us answer the question asked by
Boutin [4]: Can the difference between the determining number and the metric dimension
of a graph of order n be arbitrarily large? In Sections 3 and 4 we have shown that

β(T ) − Det(T ) = Ω(
√

n) for some trees, and β(Kt�Kt) − Det(Kt�Kt) = Ω
(√

n

3

)

. The

following result improves these lower bounds.
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Proposition 8. There exists a 2-connected graph G of order n such that

β(G) − Det(G) = Ω

(
2n

5

)

.

Proof. For n > 5, let G = W1,n−1 be the wheel formed by joining a single vertex v to
all vertices of an (n − 1)-cycle, denoted by Cn−1. Every automorphism of W1,n−1 has
to fix v, since its degree is at least 4 and the rest of the vertices have degree 3. Thus,
it suffices to consider the action of f ∈ Aut(W1,n−1) on a minimum determining set of
Cn−1 to determine the action of f on W1,n−1. Hence, a set of two non-antipodal vertices
of Cn−1 is a minimum determining set of W1,n−1. Thus, the determining number of the
wheel graphs is always 2 independently of the number of vertices.

On the other hand, Shanmukha and Sooryanarayana [24] show that β(W1,n−1) in-
creases with the number of vertices:

∀k ∈ N, β(W1,x+5k) =

{
3 + 2k if x = 7 or 8,
4 + 2k if x = 9, 10 or 11.

Therefore the difference between the two parameters is:

β(W1,x+5k) − Det(W1,x+5k) =

{

2k + 1 = Ω
(

2n
5

)
if x = 7 or 8,

2k + 2 = Ω
(

2n
5

)
if x = 9, 10 or 11.

where n = |V (W1,x+5k)| = x + 5k + 1.

We want to stress that we have also computed the metric dimension and the deter-
mining number of graphs formed by joining wheels in different ways using the explosion
technique, that is, by joining the central vertex of a wheel W1,m to any vertex of G as
in [24]. As the graph G, it has been used Pn, Cn and Kn. We have also considered the case
of adding edges to the wheel graph W1,n−1 in different ways trying to increase the metric
dimension, and maintaining the determining number to be a constant. Nevertheless, all
these families of graphs give rise to at most the same Ω

(
2n
5

)
lower bound. We have not

been able to improve this lower bound. Thus, there is a gap between 2n
5

and n − 2.
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[10] P. Erdős and A. Rényi. On two problems of information theory. Magyar Tud. Akad.
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