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tAn animal is an edge 
onne
ted set of �nitely many 
ells of a regular tiling of theplane. The site-perimeter of an animal is the number of empty 
ells 
onne
ted tothe animal by an edge. The minimum site-perimeter with a given 
ell size is foundfor animals on the triangular and hexagonal grid. The formulas are used to showthe e�e
tiveness of a simple random strategy in full set animal a
hievement games.1 Introdu
tionA plane polyform is a �gure 
onstru
ted by joining �nitely many 
ongruent basi
 polygonsalong their edges. If the basi
 polygons are 
ells of a regular tiling of the plane bysquares, equilateral triangles or regular hexagons, then the polyform is 
alled a polyomino,polyiamond or polyhex respe
tively. An animal is a polyomino, polyiamond or polyhex.We only 
onsider animals up to 
ongruen
e and we allow holes in our animals. Thenumber of 
ells s(A) of an animal A is 
alled the size of A. The standard referen
e forpolyominoes is [5℄.Two 
ells of a regular tiling are adja
ent if they share a 
ommon edge. The exteriorboundary E(A) of the animal A is the set of 
ells outside of A but adja
ent to a 
ell of A.The site-perimeter of A is the number of 
ells p(A) := |E(A)| in the exterior boundary. Inthis paper we �nd formulas for the minimum site-perimeter of polyiamonds and polyhexeswith given size. The formula for polyominoes was found in [9℄.The motivation partly 
omes from the importan
e of the site-perimeter in per
olationtheory. Similar questions were answered in [7, 8, 10, 11℄. The site-perimeter is also used in[3℄ as �xed parameter when 
ounting the number of animals. The motivation also 
omesfrom 
ombinatorial game theory.
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Figure 2.1: The hexagonal animal T 5
3,2,1 
ut from an equilateral triangle with edge size 5.In a weak animal set (a, b)-a
hievement game two players alternately mark a and bpreviously unmarked 
ells using their own 
olors. The �rst player (the maker) tries tomark any animal in a given set of target animals. The se
ond player (the breaker) tries toprevent the maker from a
hieving his goal. A
hievement games are studied for examplein [1, 2, 4, 6℄.If the set of target animals is the set Fs of all animals with size s, then the gameis 
alled full set a
hievement game. In this game the maker 
an follow the strategy ofmarking random 
ells adja
ent to his earlier marks. We investigate when this strategy
an be e�e
tive. The answer depends on how small the site-perimeter of animals in Fs
an be.Finding the minimum site-perimeter of an animal with given size is di�
ult dire
tly.It is easier to �nd the maximum size of an animal with given site-perimeter be
ause theseanimals are saturated. A 
ell x ∈ E(A) is admissible to A if p(A∪ x) 6 p(A). An animalis saturated if it has no admissible 
ells.We 
hara
terize the saturated polyiamonds in Se
tion 2. This allows us to �nd themaximum size of polyiamonds with given site-perimeter in Se
tion 3. We �nd the min-imum site-perimeter of polyiamonds with given size in Se
tion 4. The duality betweenthe triangular and hexagonal tilings allows us to qui
kly translate all these results topolyhexes in Se
tion 5. Finally, we study the random neighbor strategy in Se
tion 6.2 Hexagonal polyiamondsIn this se
tion we 
hara
terize the saturated polyiamonds.De�nition 2.1. The polyiamond T d
a,b,c gotten from the equilateral triangle polyiamondwith edge size d by 
utting the 
orners with edge sizes a, b and c respe
tively as seen inFigure 2.1 is 
alled a hexagonal polyiamond. We require that a, b and c are nonnegativeintegers and d is a positive integer. We also require that a + b, a + c, b + c 6 d.A hexagonal polyiamond may have sides with zero length. Sin
e 
ongruent animals are
onsidered to be the same, the parametrization is not unique. For example T 1

0,0,0 = T 2
1,1,1.The site-perimeter of a hexagonal polyiamond is equal to its perimeter.It is easy to see that adding a 
ell to a hexagonal polyiamond in
reases the site-perimeter of the animal and so hexagonal polyiamonds are saturated. Our goal is to showthat these are the only saturated polyiamonds.
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a. b.Figure 2.2: The empty 
ell is admissible to any animal 
ontaining the full 
ells.
xi

Figure 2.3: An example of the saturation pro
ess after adding 
ell xi to Ai−1 = T 6
4,1,2. Theempty 
ells must be in
luded in any saturated animal 
ontaining Ai−1 and xi. Addingthese 
ells to Ai−1 results in Ai = T 6

3,1,2.Lemma 2.2. If a polyiamond 
ontains the two full 
ells but not the empty 
ell of one ofthe 
on�gurations depi
ted in Figure 2.2, then the empty 
ell is admissible.Proof. In ea
h 
ase, adding the empty 
ell to the animal de
reases the site perimeter by1 and may in
rease it by at most 1.Roughly speaking, an empty 
ell at a 
on
ave 
orner of a polyiamond is admissible.Proposition 2.3. All saturated polyiamonds are hexagonal.Proof. Let A be a saturated polyiamond. We de�ne an in
reasing family A1 ⊆ A2 ⊆ · · · ⊆
Ak of hexagonal subsets of A su
h that Ak = A. Let x1 be an arbitrary 
ell of A and de�ne
A1 := {x1}. If Ai−1 = A then we are done. Otherwise there is a 
ell xi ∈ A ∩ E(Ai−1)sin
e Ai−1 ⊂ A. By symmetry, we 
an assume that with the parametrization Ai−1 = T d

a,b,cthe 
ell xi is 
onne
ted to the top edge of Ai−1 as shown in Figure 2.3. By Lemma 2.2,the set Xi of empty 
ells adja
ent to the top edge of Ai−1 must be a subset of A. So thehexagonal polyiamond Ai := Ai−1 ∪ Xi = T d
a−1,b,c is a subset of A. The pro
ess ends in�nitely many steps sin
e A is �nite and s(Ai−1) < s(Ai).3 Polyiamonds with �xed site-perimeter and maximumsizeIn this se
tion all animals are polyiamonds. Our purpose is to �nd a formula for σT (p) :=

max{s(A) | p(A) = p}.Lemma 3.1. For ea
h polyiamond A there is a polyiamond Ã su
h that A ⊆ Ã and
p(Ã) = p(A) + 1.
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x
ℓ

y

z x
ℓa. ℓ 
ontains a 
ell edge b. ℓ 
ontains no 
ell edgesFigure 3.1: The site-perimeter of a polyiamond A 
an be in
remented by adding either
ell x or the 
ells in {x, y} to A. The site-perimeter of A does not in
rease if the full 
ellis removed from A.Proof. Let ℓ be the horizontal line that tou
hes A but has no 
ells of A above it. Su
h ℓexists sin
e A is �nite. If ℓ 
ontains the edge of a 
ell of A as shown in Figure 3.1.a, thenadding 
ell x to A in
reases the site-perimeter of A by 1.If ℓ 
ontains none of the 
ell edges of A as shown in Figure 3.1.b, then 
ell x does notbelong to A. If z 6∈ E(A) then p(A ∪ {x}) = p(A) + 1. If z ∈ E(A) then p(A ∪ {x, y}) =

p(A) + 1.Proposition 3.2. If p(A) = p and s(A) = σT (p), then A is saturated.Proof. Suppose that A is not saturated. Let Ã := A ∪ {x} where x is a 
ell admissibleto A. Then p(Ã) 6 p. If p(Ã) < p then by Lemma 3.1, we 
an add 
ells to Ã untilits site-perimeter rea
hes p. This is a 
ontradi
tion sin
e then A 
annot have maximumsize.The following 
onvenient formula is the 
onsequen
e of the 
hoi
e of the parametersin De�nition 2.1.Lemma 3.3. For ea
h hexagonal polyiamond T d
a,b,c we have

p(T d
a,b,c)

2 − 6s(T d
a,b,c) = 3(d − a − b − c)2 + 2((a − b)2 + (a − c)2 + (b − c)2).Proof. It is easy to see that p(T d

a,b,c) = 3d − a − b − c and s(T d
a,b,c) = d2 − a2 − b2 − c2.The result follows from these fa
ts after a short 
al
ulation.Proposition 3.4. Let p = 6k + r where 0 6 r < 6. Then

σT (p) =























s(T
⌊ p

2
⌋

k,k,k), r ∈ {0, 3}
s(T

⌊ p

2
⌋

k−1,k,k), r = 1

s(T
⌊ p

2
⌋

k,k,k+1
), r ∈ {2, 5}

s(T
⌊ p

2
⌋

k,k+1,k+1
), r = 4

.Proof. We know that σT (p) = s(T d
a,b,c) for some saturated animal T d

a,b,c with p(T d
a,b,c) = p.Then d = (p + a + b + c)/3. We see from Lemma 3.3 that the maximum of s(T d

a,b,c) isrea
hed when
M := p2 − 6s(T d

a,b,c) = 3(d − a − b − c)2 + 2((a − b)2 + (a − c)2 + (b − c)2)
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is as small as possible. Note that M ≡6 p2 and M is nonnegative sin
e it is the sum ofsquares. We need to 
onsider several 
ases.If r = 0 then let a = b = c = k. Then d = 3k and so M = 0. This is 
learly theminimum.If r = 1 then let a = k − 1 and b = c = k. Then d = 3k and so M = 7. Sin
e M ≡6 1,the only possibly smaller value for M is 1. The equation 1 = 3p + 2q has no nonnegativeinteger solution so the minimum of M is 7.If r = 2 then let a = b = k and c = k + 1. Then d = 3k + 1 and so M = 4. Sin
e
M ≡6 4, the minimum of M is 4.If r = 3 then let a = b = c = k. Then d = 3k + 1 and so M = 3. Sin
e M ≡6 3, theminimum of M is 3.If r = 4 then let a = k and b = c = k + 1. Then d = 3k + 2 and so M = 4. Sin
e
M ≡6 4, the minimum of M is 4.If r = 5 then let a = b = k and c = k + 1. Then d = 3k + 2 and so M = 7. Sin
e
M ≡6 1, the only possibly smaller value for M is 1. The equation 1 = 3p + 2q has nononnegative integer solution so the minimum of M is 7.Figure 3.2 shows the polyiamond families 
hosen in the previous theorem.Proposition 3.5. For p > 3 we have σT (p) = 2⌊p2/12 − p/2⌋ + p.Proof. Let p = 6k + r > 3 where 0 6 r < 6. Then Proposition 3.4 and the formula
s(T d

a,b,c) = d2 − a2 − b2 − c2 imply that σT (p) = 6k2 + 2rk + |r − 1| − 1. Substituting
p = 6k + r into this formula gives

σT (p) − (2⌊p2/12 − p/2⌋ + p) = |r − 1| − r − 1 − 2⌊r2/12 − r/2⌋.It is easy to 
he
k that this expression is 0 for all r ∈ {0, . . . , 5}.Proposition 3.6. The fun
tion σT is stri
tly in
reasing on its domain {3, 4, . . .}.Proof. First, suppose that p = 6k + r where 0 6 r < 5. Then σT (p + 1) − σT (p) =
2k + |r| − |r − 1|. If k = 0 then r > 3 and so 2k + |r| − |r − 1| = 1. If k > 1 then
2k + (|r| − |r − 1|) > 2k − 1 > 1.Now suppose that p = 6k +5. Then σT (p+1)−σT (p) = 6(k +1)2 − (6k2 +10k +3) =
2k + 3 > 1.4 Polyiamonds with �xed size and minimum site-perimeterIn this se
tion all animals are polyiamonds. Our purpose is to �nd a formula for πT (s) :=
min{p(A) | s(A) = s}.Lemma 4.1. For all s > 1 we have σT (πT (s)) > s.
the electronic journal of combinatorics 17 (2010), #R65 5



k 0 1 2 · · ·

r = 0 T 3k
k,k,k · · ·

r = 1 T 3k
k−1,k,k · · ·

r = 2 T 3k+1

k,k,k+1
· · ·

r = 3 T 3k+1

k,k,k · · ·

r = 4 T 3k+2

k,k+1,k+1
· · ·

r = 5 T 3k+2

k,k,k+1
· · ·Figure 3.2: Maximum size animals with �xed site-perimeter p = 6k+r. Note that addingan extra layer of 
ells around an animal 
reates the next animal in the row.
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Proof. Let p := πT (s). Then there is a polyiamond A with s(A) = s and p(A) = p. Hen
e
σT (p) > s.Lemma 4.2. For all p > 3 we have πT (σT (p)) = p.Proof. Let s := σT (p). Then there is a polyiamond A with p(A) = p and s(A) = s. Hen
e
πT (s) 6 p. If q < p then σT (q) < σT (p) = s by Proposition 3.6, and so no polyiamondwith site-perimeter q 
an have size s. Thus πT (s) > p.Lemma 4.3. For all polyiamond A with s(A) > 2 there is a subset Â ⊂ A su
h that
s(Â) = s(A) − 1 and p(Â) 6 p(A).Proof. We show that if s(A) > 2 then we 
an remove a 
ell from A without in
reasing itssite-perimeter. Let ℓ be the horizontal line that tou
hes A but has no 
ells of A above it,as in the proof of Lemma 3.1. Let w be the leftmost 
ell of A that tou
hes ℓ. The full
ell in Figure 3.1 represents the two possible positions of w with respe
t to ℓ. It is easyto see that, in both 
ases, 
ell x is adja
ent to w but it is not adja
ent to any other 
ellof A. So removing w from A de
reases the site-perimeter by at least 1 sin
e x falls outof the exterior boundary. Sin
e A is 
onne
ted, A must have a 
ell adja
ent to w. So theremoval also in
reases the site-perimeter by exa
tly 1 sin
e w be
omes a member of thesite perimeter. So Â = A \ {w} satis�es the requirements.Proposition 4.4. The fun
tion πT is in
reasing.Proof. For all s > 2 there is a polyiamond A with s(A) = s and p(A) = πT (s). Let
Â be the subset of A guaranteed by the previous Lemma. Then s(Â) = s − 1 and so
πT (s − 1) 6 p(Â) 6 p(A) = πT (s).Proposition 4.5. For all s > 1 we have πT (s) = min{p | σT (p) > s}.Proof. Sin
e s 6 σT (πT (s)), q := min{p | σT (p) > s} exists. If q = 3 then 
learly s = 1and the statement is true, so we 
an assume that q > 3. Then σT (q− 1) < s 6 σT (q) andso by Lemma 4.2 and Proposition 4.4 we have

q − 1 = πT (σT (q − 1)) 6 πT (s) 6 πT (σT (q)) = q.Equality on the �rst inequality is impossible sin
e q − 1 = πT (s) and Lemma 4.1 implythe 
ontradi
tion s > σT (q − 1) = σT (πT (s)) > s. So we must have πT (s) = q.If p is a statement, then we de�ne [

p
] to be 1 if p is true and 0 if p is false. Forexample, [

i = j
] is the Krone
ker delta δi,j. The next result is one of our main theorems.Theorem 4.6. For all s > 1 we have

πT (s) = ⌈
√

6s ⌉ +
[

⌈
√

6s ⌉ ≡6 ±1
]

·
[

⌈
√

6s ⌉ 6=
⌈√

6s + 6
⌉ ]

.
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B B♯ B♭
(

B♯
)♭ (

B♭
)♯Figure 5.1: A polyhex and its various duals.Proof. We know that σT (p) = 2⌊p2/12 − p/2⌋ + p. It is easy to see that σT (p) = ⌊p2/6 −

p− 1⌋+ p if the remainder of p is 1 or 5 modulo 6, and σT (p) = ⌊p2/6− p⌋+ p otherwise.Let X := {n ∈ N | n ≡6 ±1} and Y := N \ X. Then
πT (s) = min{p | σT (p) > s}

= min({p ∈ X | ⌊p2/6 − p − 1⌋ + p > s} ∪ {p ∈ Y | ⌊p2/6 − p⌋ + p > s})
= min({p ∈ X | p2/6 − 1 > s} ∪ {p ∈ Y | p2/6 > s})
= min({p ∈ X | p >

√
6s + 6} ∪ {p ∈ Y | p >

√
6s})

= min({p ∈ X | p >

⌈√
6s + 6

⌉

} ∪ {p ∈ Y | p > ⌈
√

6s ⌉}).So if ⌈√
6s

⌉

∈ Y or ⌈√
6s + 6

⌉

=
⌈√

6s
⌉ then πT (s) =

⌈√
6s

⌉. Otherwise πT (s) =
⌈√

6s + 6
⌉

=
⌈√

6s
⌉

+ 1 sin
e it is easy to see that ⌈√
6s + 6

⌉

−
⌈√

6s
⌉

6 1 for all
s > 1.5 PolyhexesThe dual of a regular tiling is 
onstru
ted by drawing line segments 
onne
ting the 
enterpoints of all pairs of adja
ent 
ells. The dual of a tiling by regular hexagons is a tiling byequilateral triangles.De�nition 5.1. Let B be an animal. The outer dual of B is the animal B♯ built fromthose 
ells of the dual tiling that interse
t B. The inner dual of B is the animal B♭ builtfrom those 
ells of the dual tiling that are inside B.It is easy to see that the duals of an animal are 
onne
ted through edges so they arein fa
t animals. The duals of a polyhex are polyiamond and the duals of a polyiamondare polyhexes. Figure 5.1 shows a polyhex and its duals. Note that (

B♯
)♭ and (

B♭
)♯ arenot B in general.We 
an �nd the answer to our question about polyhexes from our results about polyia-monds using this dual 
onne
tion. The following is an easy 
onsequen
e of the de�nitions.De�nition 5.2. A polyhex B is 
alled hexagonal if B♯ is a hexagonal polyiamond. If

B♯ = T d
a,b,c then B is denoted by Hd

a,b,c.
the electronic journal of combinatorics 17 (2010), #R65 8



Figure 5.2: The empty 
ell is admissible to any animal 
ontaining the full 
ells.
xi xi xi

Bi = H8
3,2,3 Bi = H9

4,3,3 Bi = H9
4,2,4Figure 5.3: The three possible saturation pro
esses after adding 
ell xi to Bi−1 = H8

4,2,3.The empty 
ells must be in
luded in any saturated animal 
ontaining Bi−1 and xi. Addingthese 
ells to Bi−1 results in Bi.The reader 
an easily verify the following result.Lemma 5.3. If B is a hexagonal polyhex, then p(B) = p(B♯).It is easy to see that adding a 
ell to a hexagonal animal in
reases the site-perimeterof the animal and so hexagonal animals are saturated.Lemma 5.4. If a polyhex 
ontains the two full 
ells but not the empty 
ell of the 
on�g-uration depi
ted in Figure 5.2, then the empty 
ell is admissible.Proof. Adding the empty 
ell to the animal de
reases the site perimeter by 1 and mayin
rease it by at most 1.Proposition 5.5. All saturated polyhexes are hexagonal.Proof. The argument uses Lemma 5.4 and is similar to the proof of Proposition 2.3.Figure 5.3 shows the saturation pro
ess after adding 
ell xi to the hexagonal polyhex
Bi−1.Lemma 5.6. For ea
h polyhex B with size at least 2 there is a polyhex B̃ su
h that B ⊆ B̃and p(B̃) = p(B) + 1.Proof. Let U be the horizontal row of 
ells that 
ontains the highest 
ells of B. We needto 
onsider several 
ases shown in Figure 5.4. If there are two adja
ent 
ells x, y ∈ B∪U ,then B̃ = B ∪ {u} as shown in 
ase 1.If there are no su
h 
ells, then let x be an arbitrary 
ell in U . Sin
e B has at least 2
ells, B must have a 
ell w adja
ent to x. Let y ∈ U be the 
ell adja
ent to both x and
w. So we are in the situation shown on the left pi
ture of Figure 5.4. Now we have three
the electronic journal of combinatorics 17 (2010), #R65 9



B

u y

u u v

y

y z

u v

w

B̃

x, y, z ∈ U

ase 1.
y ∈ B


ase 2.a
y 6∈ B

z ∈ E(B)


ase 2.b
y 6∈ B
z ∈ B


ase 2.

y 6∈ B

z 6∈ E(B) ∪ BFigure 5.4: In
rementing the site-perimeter of the polyhex B. The pi
ture on the leftshows the 
ell x and the notation for its neighbors. The pi
tures on the right show B and
B̃. The known exterior boundary 
ells are shown as empty 
ells. The 
ells on the top rowwith letters in them are in B̃ \ B. They be
ome the smaller full 
ells on the bottom row.
ases depending on 
ell z. If z ∈ E(B) then B̃ = B∪{u, y} as shown in 
ase 2.a. If z ∈ Bthen B̃ = B ∪ {u, v} as shown in 
ase 2.b. Finally, if z 6∈ E(B) ∪B then B̃ = B ∪ {y} asshown in 
ase 2.
.Proposition 5.7. If p(B) = p and s(B) = σT (p), then B is saturated.Proof. The proof uses Lemma 5.6. It is essentially the same as that of Proposition 3.2.Proposition 5.8. If B is a hexagonal polyhex, then s(B♯) = 2s(B) + p(B) − 2.Proof. We use Euler's formula for the planar graph built from the verti
es and edgesof the 
ells of B♯. The number of verti
es is v(B♯) = s(B) + p(B). The number offa
es is f(B♯) = s(B♯) + 1. The number of edges e(B♯) satisfy the equation e(B♯) =
3s(B♯)− (e(B♯)−p(B♯)) whi
h gives 2e(B♯) = 3s(B♯)+p(B♯). From here Euler's formula
v(B♯) + f(B♯) = e(B♯) + 2 gives

2s(B) + 2p(B) + 2s(B♯) + 2 = 3s(B♯) + p(B♯) + 4whi
h simpli�es to the desired equality.Proposition 5.9. For p ∈ N \ {1, 2, 3, 4, 5, 7} we have σT (p) = 2σH(p) + p − 2.Proof. Let B be a hexagonal polyhex su
h that p(B) = p and s(B) = σH(p). Sin
e B ishexagonal, B♯ is also hexagonal and so p(B♯) = p. Then
σT (p) > s(B♯) = 2s(B) + p(B) − 2 = 2σH(p) + p − 2.
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k 1 2 3 · · ·

r = 0 H3k
k,k,k · · ·

r = 1 H3k
k−1,k,k · · ·

r = 2 H3k+1

k,k,k+1
· · ·

r = 3 H3k+1

k,k,k · · ·

r = 4 H3k+2

k,k+1,k+1
· · ·

r = 5 H3k+2

k,k,k+1
· · ·Figure 5.5: Maximum size polyhexes with �xed site-perimeter p = 6k + r. Note thatadding an extra layer of 
ells around an animal 
reates the next animal in the row.
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For the other dire
tion let A be the hexagonal polyiamond 
hosen in Proposition 3.4su
h that p(A) = p and s(A) = σT (p). It is easy to see that be
ause of the 
hoi
e of p thedual B := A♭ satis�es B♯ = A. Hen
e p(B) = p and so
σH(p) > s(B) = (s(A) − p(B) + 2)/2 = (σT (p) − p + 2)/2.Figure 5.5 shows the polyhex families that realize the σH values.Proposition 5.10. For p ∈ N \ {1, 2, 3, 4, 5, 7} we have σH(p) = ⌊p2/12 − p/2⌋ + 1.Proof. The proof follows from the 
al
ulation

σH(p) = (σT (p) − p + 2)/2 = (2⌊p2/12 − p/2⌋ + p − p + 2)/2 = ⌊p2/12 − p/2⌋ + 1.The proof of the following proposition is essentially the same as that of Proposition 4.5.Proposition 5.11. For all s > 1 we have πH(s) = min{p | σH(p) > s}.The following is one of our main theorems. The proof is an easier version of the theproof of Theorem 4.6.Theorem 5.12. For all s > 1 we have πH(s) =
⌈√

12s − 3
⌉

+ 3.Proof. The result follows form the 
al
ulation
πH(s) = min{p | σH(p) > s} = min{p | ⌊p2/12 − p/2⌋ + 1 > s}

= min{p | p2/12 − p/2 + 1 > s} = min{p | (p − 3)2
> 12s − 3}

= min{p | p >
√

12s − 3 + 3} =
⌈√

12s − 3
⌉

+ 3.

6 The random neighbor strategyNow we return to a
hievement games des
ribed in the Introdu
tion. In a full set (a, b)-a
hievement game , the maker 
an follow the very simple strategy of randomly marking
ells adja
ent to any of his earlier marks. We 
all this the random neighbor strategy. Ifthe maker is able to follow this strategy for s turns, then he 
an mark an animal of size
sa and win the Fsa-a
hievement game.Of 
ourse it is possible that this strategy fails after r < s turns be
ause the wholeexterior boundary E(Pra) of the animal Pra ∈ Fra built from the maker's ra marks isalready marked by the breaker. This will not happen though if the total number rb ofmarks by the breaker is smaller than the smallest possible site-perimeter of Pra.In this se
tion we use π to denote either πT or πH .
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ST (a, b) b = 1 b = 2 b = 3 b = 4
a = 1 6 2 1 1
a = 2 12 3 2 1
a = 3 18 5 2 2
a = 4 24 6 3 2 SH(a, b) b = 1 b = 2 b = 3 b = 4

a = 1 18 6 3 2
a = 2 30 9 5 3
a = 3 42 12 6 4
a = 4 54 15 8 5a. polyiamonds b. polyhexesTable 1: The maximum number of turns for whi
h the random neighbor strategy issu

essful in the (a, b)-a
hievement game. The values are 
al
ulated using the formula ofProposition 6.2 and Table 2.Proposition 6.1. The random neighbor strategy is su

essful in the (a, b)-a
hievementgame for s turns if rb < π(ra) for all r < s.Proof. Let At ∈ Ft be the animal marked by the maker after t of his marks. The strategy
learly works in the �rst turn. Suppose that the strategy works for r < s terms. Afterthe r-th turn the breaker marked rb 
ells. During the next turn, the exterior perimeterof At satis�es the inequality p(At) > π(t) > π(ra). Sin
e the exterior perimeter is largerthan the total number of 
ells marked by the breaker, the maker 
an always �nd a 
ell inthe exterior boundary of At for his next mark.Note that this result also holds for polyominoes. Let SH(a, b) := max{s | (∀r < s) rb <

πH(ra)}.Proposition 6.2. Let a and b be positive integers. If a < b(1/
√

3−1/2) then SH(a, b) = 1otherwise SH(a, b) = ⌈(6a + 3b +
√

36a2 + 36ab − 3b2)/b2⌉.Proof. For a, b, r ∈ N we have
rb < πH(ra) ⇔ rb < ⌈

√
12ra − 3 ⌉ + 3

⇔ rb <
√

12ra − 3 + 3

⇔ rb < 3 or b2r2 − (6b + 12a)r + 12 < 0.The roots of b2r2 − (6b+12a)r +12 = 0 for r are (6a+3b±
√

36a2 + 36ab − 3b2)/b2. It iseasy to see that for a > b(1/
√

3 − 1/2) these roots are real, the smaller root is less than
1, and the larger root is greater than 3/b.It is possible to develop a formula for the similarly de�ned ST (a, b) in the polyiamond
ase. Sin
e the formula for πT is fairly 
ompli
ated, the result is not worth the e�ort.Table 1 lists some values for ST and SH .
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s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
πT (s) 3 4 5 6 6 6 7 8 8 8 9 9 9 10 10 10 11 11
πH(s) 6 8 9 10 11 12 12 13 14 14 15 15 16 16 17 17 18 18Table 2: Some values for πT and πH . The itali
 numbers 
orrespond to the hexagonalanimals in Figure 3.2 and Figure 5.5.Referen
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