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Abstract

One of the simplest ways to decide whether a given finite sequence of positive
integers can arise as the degree sequence of a simple graph is the greedy algorithm
of Havel and Hakimi. This note extends their approach to directed graphs. It also
studies cases of some simple forbidden edge-sets. Finally, it proves a result which
is useful to design an MCMC algorithm to find random realizations of prescribed
directed degree sequences.
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1 Introduction

The systematic study of graphs (or more precisely the linear graphs, as it was called in
that time) began sometimes in the late forties, through seminal works by P. Erdős, P.
Turán, W.T. Tutte, and others. One problem which received considerable attention was
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the existence of certain subgraphs of a given graph. For example such a subgraph could
be a perfect matching in a (not necessarily bipartite) graph, or a Hamiltonian cycle, etc.
Generally these substructures are called factors. The first couple of important results
of this kind are due to W.T. Tutte who gave necessary and sufficient conditions for the
existence of 1-factors and f -factors.

In the case of complete graphs, the existence problem of such factors is considerably
easier. In particular, the existence problem of (sometimes simple) undirected graphs with
given degree sequences even admits simple greedy algorithms for its solution.

Subsequently, the theory was extended for factor problems of directed graphs as well,
but the greedy type algorithm mentioned above, to the best knowledge of the authors, is
missing even today.

In this paper we fill this gap: after giving a short and comprehensive (but definitely
not exhausting) history of the f -factor problem (Section 2), we describe a greedy algo-
rithm to decide the existence of a directed simple graph possessing the prescribed degree
sequence (Section 3). In Section 4 we prove a consequence of the previous existence the-
orem, which is a necessary ingredient for the construction of edge-swap based Markov
Chain Monte Carlo (MCMC) methods to sample directed graphs with prescribed degree
sequence. Finally in Section 5 we discuss a slightly harder existence problem of directed
graphs with prescribed degree sequences where some vertex-pairs are excluded from the
constructions. This result can help to efficiently generate all possible directed graphs with
a given degree sequence.

2 A brief history (of f-factors)

For a given function f : V (G) → N ∪ {0}, an f -factor of a given simple graph G(V, E) is
a subgraph H such that dH(v) = f(v) for all v ∈ V. One of the very first key results of
modern graph theory is due to W.T. Tutte: in 1947 he gave a complete characterization
of simple graphs with an f -factor in case of f ≡ 1 (Tutte’s 1-factor theorem, [14]). Tutte
later solved the problem of the existence of f -factors for general f ’s (Tutte’s f -factor
theorem, [15]). In 1954 he also found a beautiful graph transformation to handle f -
factor problems via perfect matchings in bipartite graphs [16]. This also gave a clearly
polynomial time algorithm for finding f -factors.

In cases where G is a complete graph, the f -factor problem becomes easier: then we
are simply interested in the existence of a graph with a given degree sequence (the exact
definitions will come in Section 3). In 1955 P. Havel developed a simple greedy algorithm
to solve the degree sequence problem for simple undirected graphs ([8]). In 1960 P. Erdős
and T. Gallai studied the f -factor problem for the case of a complete graph G, and proved
a simpler Tutte-type result for the degree sequence problem (see [3]). As they already
pointed out, the result can be derived directly form the original f -factor theorem, taking
into consideration the special properties of the complete graph G, but their proof was
independent of Tutte’s proof and they referred to Havel’s theorem.

In 1962 S.L. Hakimi studied the degree sequence problem in undirected graphs with
multiple edges ([6]). He developed an Erdős-Gallai type result for this much simpler case,
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and for the case of simple graphs he rediscovered the greedy algorithm of Havel. Since
then this algorithm is referred to as the Havel–Hakimi algorithm.

For directed graphs the analogous question of recognizability of a bi-graphical-sequence

comes naturally. In this case we are given two n-element vectors d+,d− of non-negative
integers. The problem is the existence of a directed graph on n vertices, such that the
first vector represents the out-degrees and the second one the in-degrees of the vertices
in this graph. In 1957 D. Gale and H. J. Ryser independently solved this problem for
simple directed graphs (there are no parallel edges, but loops are allowed), see [5, 13].
In 1958 C. Berge generalized these results for p-graphs where at most p parallel edges
are allowed ([1]). (Berge calls the out-degree and in-degree together the demi-degrees.)
Finally in 1973, the revised version of his book Graphs ([2]) gives a solution for the p-
graph problem, loops excluded. To show some of the afterlife of these results: D. West
in his renowned recent textbook ([17]), discusses the case of simple directed graphs with
loops allowed.

The analog of f -factor problems for directed graphs has a sparser history. Øystein
Ore started the systematic study of that question in 1956 (see [11, 12]). His method is
rather algebraic, and the finite and infinite cases - more or less - are discussed together.
The first part developed the tools and proved the directly analogous result of Tutte’s
f -factor problem for finite directed graphs (with loops), while the second part dealt with
the infinite case.

In 1962 L.R. Ford and D.R. Fulkerson studied, generalized and solved the “original”
f -factor problem for a directed graph ~G ([4]). Here lower and upper bounds were given for
both demi-degrees of the desired subgraph (no parallel edges, no loops) with the original
question naturally corresponding to equal lower and upper bounds. The solutions (as well
as in Berge’s cases) are based on network flow theory.

Finally, in a later paper Hakimi also proves results for bi-graphical sequences, however,
without presenting a directed version of his original greedy algorithm (see [7]).

3 Greedy algorithm to realize bi-graphical sequences

A sequence d = {d1, d2, . . . , dn} of nonnegative integers is called a graphical sequence if a
simple graph G(V, E) exists on n nodes, V = {v1, v2, . . . , vn}, whose degree sequence is d.
In this case we say that G realizes the sequence d. For simplicity of the notation we will
consider only sequences of strictly positive integers (dn > 0) to avoid isolated points. The
following, well-known result, was proved independently by V. Havel and S.L. Hakimi.

Theorem 1 (Havel [8], Hakimi [6]) There exists a simple graph with degree sequence

d1 > 0, d2 > · · · > dn > 0 (n > 3) if and only if there exists one with degree sequence

d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn. (Note that there is no prescribed ordering relation

between d1 and the other degrees.)

This can be proved using a recursive procedure, which transforms any realization of the
degree sequence into the form described in the Theorem 1, by a sequence of two-edge
swaps.
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A bi-degree-sequence (or BDS for short) (d+,d−) = ({d+
1 , d+

2 , . . . , d+
n }, {d

−
1 , d−

2 , . . . , d−
n })

of nonnegative integers is called a bi-graphical sequence if there exists a simple (no parallel

edges, no loops) directed graph ~G(V, ~E) on n nodes, V = {v1, v2, . . . , vn}, such that the
out-degree and in-degree sequences together form (d+,d−). (That is the out-degree of

vertex vj is d+
j and its in-degree is d−

j .) In this case we say that ~G realizes our BDS. For
simplicity, we will consider only sequences of strictly positive integer BDS’s, that is each
degree is > 0 and d+

j + d−
j > 0, to avoid isolated points.

Our goal is to prove a Havel–Hakimi type algorithm to realize bi-graphical sequences.
To that end we introduce the notion of normal order: we say that the BDS is in normal

order if the entries satisfy the following properties: for each i = 1, . . . , n−2 we either have
d−

i > d−
i+1 or d−

i = d−
i+1 and d+

i > d+
i+1. Clearly, all BDS-s can be arranged into normal

order. Note that we made no ordering assumption about node vn (the pair d+
n , d−

n ).

Theorem 2 Assume that the BDS (d+,d−) (with d+
j + d−

j > 0, j ∈ [1, n]) is in normal

order and d+
n > 0 (that is the out-degree of the last vertex is positive). Then (d+,d−) is

bi-graphical if and only if the BDS

∆+
k =

{

d+
k if k 6= n

0 if k = n ,
(1)

∆−
k =

{

d−
k − 1 if k 6 d+

n

d−
k if k > d+

n ,
(2)

with zero elements removed (those j for which ∆+
j = ∆−

j = 0) is bi-graphical.

Before starting the proof, we emphasize the similarity between this result and the original
HH-algorithm. As in the undirected case, using Theorem 2, we can find in a greedy way
a proper realization of graphical bi-degree sequences.

Indeed: choose any vertex vn with non-zero out-degree from the sequence, arrange
the rest in normal order, then make d−

n connections from vn to nodes with largest in-
degrees, thus constructing the out-neighborhood of vn in the (final) realization. Next,
remove the vertices (if any) from the remaining sequence that have lost both their in- and
out- degrees in the process, pick a node with non-zero out-degree, then arrange the rest
in normal order. Applying Theorem 2 again, we find the final out-neighborhood of our
second chosen vertex. Step by step we find this way the out-neighborhood of all vertices,
while their in-neighborhoods get defined eventually (being exhausted by incoming edges).
Note, that every vertex in this process is picked at most once, namely, when its out-
neighborhood is determined by the Theorem, and never again after that.

Our forthcoming proof is not the simplest, however, we use a more general setup to shorten
the proofs of later results.

First, we define the partial order � among k-element vectors of increasing positive
integers: we say a � b iff for each j = 1, . . . , k we have aj 6 bj .

A possible out-neighborhood (or PON for short) of vertex vn is a d+
n -element subset

of V \ {vn} which is a candidate for an out-neighborhood of vn in some graphical rep-
resentation. (In essence, a PON can be any d+

n -element subset of V \ {vn} but later on
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we may consider some restrictions on it.) Let A be a PON of vn. Then denote by i(A)
the vector of the increasingly ordered subscripts of the elements of A. (For example, if
A = {v2, v4, v9}, then i(A) = (2, 4, 9).) Let A and B be two PONs of vn. We write:

B � A ⇔ iB � iA . (3)

In this case we also say that B is to the left of A. (For example, B = {v1, v2, v6, v7} is to
the left of A = {v2, v4, v6, v9}.)

Definition 3 Consider a bi-graphical BDS sequence (d+,d−) and let A be a PON of vn.

The A-reduced BDS
(

d+
∣

∣

A
,d−

∣

∣

A

)

is defined as:

d+
k

∣

∣

A
=

{

d+
k if k 6= n

0 if k = n ,
(4)

d−
k

∣

∣

A
=

{

d−
k − 1 if k ∈ i(A)

d−
k if k 6∈ i(A).

(5)

In other words, if A is a PON in a BDS, then the reduced degree sequence
(

d+
∣

∣

A
,d−

∣

∣

A

)

is obtained by removing the out-edges of node vn (according to the set A). As usual, if
for a particular subscript k in the A-reduced BDS we have d+

k

∣

∣

A
= d−

k

∣

∣

A
= 0 then the

vertex with this index is to be removed from the bi-degree sequence.

Lemma 4 Let (d+,d−) be a BDS, and let A be a possible out-neighborhood of vn. Fur-

thermore let B be another PON with B = A \ {vk} ∪ {vi} where d−
i > d−

k and in case

of d−
i = d−

k we have d+
i > d+

k . Then if (D+,D−) :=
(

d+
∣

∣

A
,d−

∣

∣

A

)

is bi-graphical, so is
(

d+
∣

∣

B
,d−

∣

∣

B

)

.

Proof. Since our A-reduced BDS (D+,D−) is bi-graphical, there exists a directed graph
~G which realizes the bi-degree sequence (D+,D−). We are going to show that in this case

there exists a directed graph ~G′ which realizes the BDS
(

d+
∣

∣

B
,d−

∣

∣

B

)

. In the following,
vavb will always mean a directed edge from node va to node vb. Let us now construct
the directed graph ~G1 by adding vnv directed edges for each v ∈ A. (Since, according
to (4), in (D+,D−) the out-degree of vn is equal to zero, no parallel edges are created.)

The bi-degree-sequence of ~G1 is (d+,d−). Our goal is to construct another realization ~G′
1

of (d+,d−) such that the deletion of the out-edges of vn in the latter produces the BDS
(

d+
∣

∣

B
,d−

∣

∣

B

)

.

By definition we have vnvk ∈ ~E1, (the edge set of ~G1) but vnvi 6∈ ~E1. At first assume

that there exists a vertex vℓ (ℓ 6= i, k, n), such that vℓvi ∈ ~E1 but vℓvk 6∈ ~E1. (When

d−
i > d−

k then this happens automatically, however if d−
i = d−

k and vkvi ∈ ~E1 then
it is possible that the in-neighborhood of vi and vk are the same - except of course
vk, vi themselves and vn.) This means that now we can swap the edges vnvk and vℓvi

into vnvi and vℓvk. (Formally we create the new graph ~G′
1 = (V, ~E ′

1) such that ~E ′
1 =

~E1 \ {vnvk, vℓvi} ∪ {vnvi, vℓvk}.) This achieves our wanted realization.
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Our second case is when d−
i = d−

k , vkvi ∈ ~E1, and furthermore

for each ℓ 6= i, k, n we have vℓvi ∈ ~E1 ⇔ vℓvk ∈ ~E1. (6)

It is important to observe that in this case vivk 6∈ ~E1 : otherwise some vℓ would not satisfy
(6) (in order to keep d−

i = d−
k ).

Now, if there exists a subscript m (different from k, i, n) such that vivm ∈ ~E1 but

vkvm 6∈ ~E1, then we create the required new graph ~G′
1 by applying the following triple swap

(or three-edge swap): we exchange the directed edges vnvk, vkvi and vivm into vnvi, vivk

and vkvm.
By our assumption we have d+

i > d+
k . On one hand side if d+

i > d+
k holds then due

to the properties vkvi ∈ ~E and vivk 6∈ ~E, there exist at least two subscripts m1, m2 6= i, k
such that vivmj

∈ ~E but vkvmj
6∈ ~E and at least one of them differs from n. Thus, when

d+
i > d+

k , we do find such an m for which the triple swap above can be performed.
The final case is when d−

i = d−
k and d+

i = d+
k . If vertex vm does not exist, then we

must have vivn ∈ ~E1 (to keep d+
i = d+

k ), and in this case clearly, vkvn /∈ ~E1. Therefore, in

this (final) case the graphical realization ~G1 has the properties vnvk, vkvi, vivn ∈ ~E1 and

vnvi, vivk, vkvn 6∈ ~E1. Then the triple swap

~E ′
1 := ~E1 \ {vnvk, vkvi, vivn} ∪ {vnvi, vivk, vkvn} (7)

will produce the required new graphical realization ~G′
1. �

Observation 5 For later reference it is important to recognize that in all cases above, the

transformations from one realization to the next one happened with the use of two-edge or

three-edge swaps.

Lemma 6 Let (d+,d−) be a BDS and let A and C be two possible out-neighborhoods

of vn. Furthermore assume that C � A, that is C is to the left of A. Finally assume

that vertices in A ∪ C are in normal order. Then if
(

d+
∣

∣

A
,d−

∣

∣

A

)

is bi-graphical, so is
(

d+
∣

∣

C
,d−

∣

∣

C

)

.

Proof. Since C is to the left of A therefore, there is a (unique) bijection φ : C \ A →
A \ C such that ∀c ∈ C \ A : i({c}) < i({φ(c)}) (the subscript of vertex c is smaller
than the subscript of vertex φ(c)). (For example, if A = {v4, v5, v6, v7, v8, v9} and C =
{v1, v2, v3, v5, v7, v8}, then C \ A = {v1, v2, v3}, A \ C = {v4, v6, v9}, and φ is the map
{v1 ↔ v4, v2 ↔ v6, v3 ↔ v9}).

To prove Lemma 6 we apply Lemma 4 recursively for each c ∈ C \ A (in arbitrary
order) to exchange φ(c) ∈ A with c ∈ C, preserving the graphical character at every step.
After the last step we find that the sequence reduced by C is graphical. �

Proof of Theorem 2: We can easily achieve now the required graphical realization of
(d+,d−) if we use Lemma 6 with the current A, and C = {v1, . . . , vd+

n
}. We can do that

since (d+,d−) is in normal order, therefore the assumptions of Lemma 6 always hold. �
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4 A simple prerequisite for MCMC algorithms to

sample directed graphs with given BDS

In practice it is often useful to choose uniformly a random element from a set of objects.
A frequently used tool for that task is a well-chosen Markov-Chain Monte-Carlo method
(MCMC for short). To that end, a graph is established on the objects and random walks
are generated on it. The edges represent operations which can transfer one object to the
other. If the Markov chain can step from an object x to object y with non-zero probability,
then it must be able to jump to x from y with non-zero probability (reversibility). If the
graph is connected, then applying the well-known Metropolis-Hastings algorithm, it will
yield a random walk converging to the uniform distribution starting from an arbitrary
(even fixed) object.

To be able to apply this technique we have to define our graph (the Markov chain)
G(d+,d−) = (V, E). The vertices are the different possible realizations of the bi-graphical
sequence (d+,d−). An edge represents an operation consisting of a two or three-edge swap
which transforms the first realization into the second one. (For simplicity, sometimes we
just say swap for any of them.) We will show:

Theorem 7 Let ~G1, ~G2 be two realizations of the same bi-graphical sequence (d+,d−).

Then there exists a sequence of swaps which transforms ~G1 into ~G2 through different

realizations of the same bi-graphical sequence.

Remark: In the case of undirected graphs the (original) analogous observation (need-
ing only two-edges swaps) was proved by H.J. Ryser ([13]).

Proof. We prove the following stronger statement:

(z) there exists a sequence of at most 2e swaps which transform ~G1 into ~G2, where e is

the total number of out-edges in (d+,d−)

by induction on e. Assume that (z) holds for e′ < e. We can assume that our bi-graphical
sequence is in normal order on the first n− 1 vertices and d+

n > 0. By Theorem 2 there is

a sequence T1 (T2) of d = d+
n many swaps which transforms ~G1 ( ~G2) into a ~G′

1 ( ~G′
2) such

that Γ+
~G′

1

(vn) = {v1, . . . , vd} (Γ+
~G′

2

(vn) = {v1, . . . , vd}).

We consider now the directed graphs ~G′′
1 ( ~G′′

2) derived from directed graph ~G′
1 (directed

graph ~G′
2) by deleting all out-neighbors of vn. Then both directed graphs realize the bi-

graphical sequence (∆+, ∆−) which, in turn, satisfies relations (1) and (2). Therefore
the total number of out-degrees is e − d in both directed graphs, and by the inductive
assumption there is a sequence T of 2(e − d) many swaps which transforms ~G′′

1 into ~G′′
2.

Now observe that if a swap transforms ~H into ~H ′, then the “inverse swap” (choosing the

same edges and non-edges and swap them) transforms ~H ′ into ~H . So the swap sequence T2

has an inverse T ′
2 which transforms ~G′

2 into ~G2. Hence the sequence T1TT ′
2 is the required

swap sequence: it transforms ~G1 into ~G2 and its length is at most d + 2(e − d) + d = 2e.
�
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5 Is a BDS bi-graphical when one of its vertex’s out-

neighborhood is constrained?

In network modeling of complex systems (for a rather general reference see [10]) one
usually defines a (di)graph with components of the system being represented by the nodes,
and the interactions (usually directed) amongst the components being represented as the
edges of this directed graph. Typical cases include biological networks, such as metabolic
networks, signal transduction networks, gene transcription networks, etc. The graph is
usually inferred from empirical observations of the system and it is uniquely determined if
one can specify all the connections in the graph. Frequently, however, the data available
from the system is incomplete, and one cannot uniquely determine this graph. In this
case there will be a set D of (di)graphs satisfying the existing data, and one can be faced
with:

(i) finding a typical element of the class D,

(ii) or generating all elements of the class D.

(A more complete analysis of this phenomenon can be found in [9].) In Section 4 we
already touched upon problem (i) when D is the class of all directed graphs of a given
BDS. The analogous Problem (ii) for undirected graphs was recently addressed in [9]
which provides an economical way of constructing all elements from D. In this Section we
give a prescription based on the method from [9], to solve (ii) for the case of all directed
graphs with prescribed BDS. This is particularly useful from the point of view of studying
the abundance of motifs in real-world networks: one needs to know first all the (small)
subgraphs, or motifs, before we study their statistics from the data.

Before we give the details, it is perhaps worthy making the following remark: Clearly,
one way to solve problem (i) would be to first solve problem (ii), then choose uniformly
from D. However, in (those very small) cases when reasonable answers can be expected
for problem (ii), problem (i) is rather uninteresting. In general, however, (i) cannot be
solved efficiently by the use of (ii).

We start the discussion of problem (ii) by pointing out that our new, directed Havel–
Hakimi type algorithm is unable to generate all realization of a prescribed DBS (see
Figure 1).

(0,3)

(2,1)

(2,1)

(2,1) (2,1)

(2,1)

(2,1)

(0,3)

Figure 1: This graph cannot be obtained by the directed Havel–Hakimi procedure. The

integers indicate node degrees.

The situation is very similar to the non-directed case, see [9]. The directed HH-algorithm
must start with a vertex with degree-pair (2, 1), therefore the two vertices of degree-pair
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(0, 3) must be out-neighbors of the same vertex - not as it is shown in the graph in the
Figure.

One possible way to overcome this shortfall is to discover systematically all possible out-
connections from a given vertex v in all realizations of the prescribed graphical BDS.

We do not know a greedy algorithm to achieve this. The next best thing we can do
is to develop a greedy algorithm to decide whether a given (sub)set of prescribed out-
neighbors of v would prevent to find a realization of the BDS containing those prescribed
out-neighbors. In the following, we describe such a greedy algorithm. (It is perhaps
interesting to note that this latter problem can be considered as a very special directed
f -factor problem.)

To start, we consider a (d+,d−) bi-degree sequence together with a forbidden vertex
set F whose elements are not allowed to be out-neighbors of vertex vn. (Or, just oppositely,
we can imagine that we already have decided that those vertices will become out-neighbors
of vn and the BDS is already updated accordingly. The forbidden vertex set governs only
the out-neighbors, since in the process the in-neighbors are born “automatically”.) It is
clear that |F | + 1 + d−

n 6 n must hold for the existence of a graphical realization of this
F -restricted BDS.

Assume that the vertices are enumerated in such a way that subset F consists of
vertices vn−|F |, . . . , vn−1 and vertices V ′ = {v1, . . . , vn−|F |−1} are in normal order. (We can
also say that we apply a permutation on the subscripts accordingly.) Then we say that
the BDS is in F -normal order.

Definition 8 Consider a bi-graphical BDS sequence (d+,d−) in F -normal order, and let

A be a PON. The A-reduced BDS
(

d+
∣

∣

A
,d−

∣

∣

A

)

is defined as in (4) and (5), while keeping

in mind the existence of an F set to the right of A.

In other words, if A is a PON in an F -restricted BDS, then the reduced degree sequence
(

d+
∣

∣

A
,d−

∣

∣

A

)

is still obtained by removing the out-edges of node vn (according to the
possible out-neighborhood A).

Finally, one more notation: let (d+,d−) be a BDS, F a forbidden vertex subset of V
and denote by F [k] the set of the first k vertices in the F -normal order.

Theorem 9 Let A be any PON in the F -restricted (d+,d−) BDS, which is in F -normal

order. Then if the A-reduced BDS
(

d+
∣

∣

A
,d−

∣

∣

A

)

is graphical, then the F [d+
n ]-reduced BDS

(

d+
∣

∣

F [d+
n ]

,d−
∣

∣

F [d+
n ]

)

is graphical as well.

Proof. It is immediate: Lemma 6 applies. �

This statement gives us indeed a greedy way to check whether there exists a graphical
realization of the F -restricted bi-degree sequence (d+,d−): all we have to do is to check

only whether the F [d+
n ]-reduced BDS

(

d+
∣

∣

F [d+
n ]

,d−
∣

∣

F [d+
n ]

)

is graphical.

Finally, we want to remark that, similarly to the undirected case, Theorem 9 is suitable
to speed up the generation of all possible graphical realizations of a BDS. The details can
be found in [9] which is a joint work of these authors with Hyunju Kim and László A.
Székely.
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