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Abstract

We show that the set R(w0) of reduced expressions for the longest element in the
hyperoctahedral group exhibits the cyclic sieving phenomenon. More specifically,
R(w0) possesses a natural cyclic action given by moving the first letter of a word
to the end, and we show that the orbit structure of this action is encoded by the
generating function for the major index on R(w0).

1 Introduction and main result

Suppose we are given a finite set X, a finite cyclic group C = 〈ω〉 acting on X, and a
polynomial X(q) ∈ Z[q] with integer coefficients. Following Reiner, Stanton, and White
[RSW], we say that the triple (X, C, X(q)) exhibits the cyclic sieving phenomenon (CSP)
if for every integer d > 0, we have that |Xωd

| = X(ζd) where ζ ∈ C is a root of unity of
multiplicitive order |C| and Xωd

is the fixed point set of the action of the power ωd. In
particular, since the identity element fixes everything in any group action, we have that
|X| = X(1) whenever (X, C, X(q)) exhibits the CSP.

If the triple (X, C, X(q)) exhibits the CSP and ζ is a primitive |C|th root of unity, we

can determine the cardinalities of the fixed point sets X1 = X, Xω, Xω2

, . . . , Xω|C|−1

via
the polynomial evaluations X(1), X(ζ), X(ζ2), . . . , X(ζ |C|−1). These fixed point set sizes
determine the cycle structure of the canonical image of ω in the group of permutations of
X, SX . Therefore, to find the cycle structure of the image of any bijection ω : X → X,
it is enough to determine the order of the action of ω on X and find a polynomial X(q)
such that (X, 〈ω〉, X(q)) exhibits the CSP.

The cyclic sieving phenomenon has been demonstrated in a variety of contexts. The
paper of Reiner, Stanton, and White [RSW] itself includes examples involving noncross-
ing partitions, triangulations of polygons, and cosets of parabolic subgroups of Coxeter
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groups. An example of the CSP with standard Young tableaux is due to Rhoades [Rh]
and will be discussed further in Section 4. Now we turn to the CSP of interest to this
note.

Let w0 = w
(Bn)
0 denote the longest element in the type Bn Coxeter group. Given

generating set S = {s1, . . . , sn} for Bn, (s1 being the “special” reflection), we will write a

reduced expression for w0 as a word in the subscripts. For example, w
(B3)
0 can be written

as
s1s2s1s3s2s3s1s2s3;

we will abbreviate this product by 121323123. It turns out that if we cyclically permute
these letters, we always get another reduced expression for w0. Said another way, siw0si =
w0 for i = 1, . . . , n. The reason for this is that in the standard reflection representation of
the type Bn Coxeter group, the longest element w0 is the scalar transformation −1, and
thus commutes with all simple reflections si. The same is not true for longest elements of
other classical types. In type A, we have siw

(An)
0 sn+1−i = w

(An)
0 , and for type D,

w
(Dn)
0 =

{
siw

(Dn)
0 si if n even or i > 2,

siw
(Dn)
0 s3−i if n odd and i = 1, 2.

Let R(w0) denote the set of reduced expressions for w0 in type Bn and let c : R(w0)→
R(w0) denote the action of placing the first letter of a word at the end. Then the orbit
in w0(B3) of the word above is:

{121323123→ 213231231→ 132312312→ 323123121→ 231231213

→ 312312132→ 123121323→ 231213231→ 312132312}.

As the length of w0 is n2, we clearly have cn2

= 1, and the size of any orbit divides n2.
For an example of a smaller orbit, notice that the word 213213213 has cyclic order 3.

For any word w = w1 . . . wl, (e.g., a reduced expression for w0), a descent of w is
defined to be a position i in which wi > wi+1.The major index of w, maj(w), is defined
as the sum of the descent positions. For example, the word w = 121323123 has descents
in positions 2, 4, and 6, so its major index is maj(w) = 2 + 4 + 6 = 12. Let fn(q) denote
the generating function for this statistic on words in R(w0):

fn(q) =
∑

w∈R(w0)

qmaj(w).

The following is our main result.

Theorem 1. The triple (R(w0), 〈c〉, X(q)) exhibits the cyclic sieving phenomenon, where

X(q) = q−n(n

2
)fn(q).
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For example, let us consider the case n = 3. We have

X(q) = q−9
∑

w∈w0(B3)

qmaj(w)

= 1 + q2 + 2q3 + 2q4 + 2q5 + 4q6 + 3q7 + 4q8 + 4q9

+ 4q10 + 3q11 + 4q12 + 2q13 + 2q14 + 2q15 + q16 + q18.

Let ζ = e
2πi

9 . Then we compute:

X(1) = 42 X(ζ3) = 6 X(ζ6) = 6
X(ζ) = 0 X(ζ4) = 0 X(ζ7) = 0
X(ζ2) = 0 X(ζ5) = 0 X(ζ8) = 0

Thus, the 42 reduced expressions for w
(B3)
0 split into two orbits of size three (the orbits of

123123123 and 132132132) and four orbits of size nine.
To prove Theorem 1 we rely on a pair of remarkable bijections due to Haiman [H1, H2],

and a recent (and deep) result of Rhoades [Rh, Thm 3.9]. The composition of Haiman’s
bijections relates R(w0) with the set SY T (nn) of standard Young tableaux of square
shape. Rhoades’ result is that there is a CSP for SY T (nn) with respect to the action of
promotion (defined in Section 2). In this note our main goal is to show that Haiman’s
bijections carry the orbit structure of promotion on SY T (nn) to the orbit structure of c
on R(w0).

We conclude this section by remarking that this result was first stated by Rhoades
[Rh, Thm 8.1]. While our proof follows the same structure as his, we feel that this article
fills in some nontrivial gaps in his argument. Moreover, the fact that the polynomial
X(q) can be expressed as the generating function for the major index on R(w0) is new.
We thank Brendon Rhoades for encouraging us to write this note. Thanks also to Kevin
Dilks, John Stembridge, and Alex Yong for fruitful discussions on this and related topics,
and to Sergey Fomin for comments on the manuscript.

2 Promotion on standard Young tableaux

For λ a partition, let SY T (λ) denote the set of standard Young tableaux of shape λ.
If λ is a strict partition, i.e., with no equal parts, then let SY T ′(λ) denote the set of
standard Young tableaux of shifted shape λ. We now describe the action of jeu de taquin
promotion, first defined by Schützenberger [Sch].

We will consider promotion as a permutation of tableaux of a fixed shape (resp. shifted
shape), p : SY T (λ) → SY T (λ) (resp. p : SY T ′(λ) → SY T ′(λ)). Given a λ-tableau T
with λ ⊢ n, we form p(T ) with the following algorithm. (We denote the entry in row a,
column b of a tableau T , by Ta,b.)

1. Remove the entry 1 in the upper left corner and decrease every other entry by 1.
The empty box is initialized in position (a, b) = (1, 1).
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2. Perform jeu de taquin:

(a) If there is no box to the right of the empty box and no box below the empty
box, then go to 3).

(b) If there is a box to the right or below the empty box, then swap the empty box
with the box containing the smaller entry, i.e., p(T )a,b := min{Ta,b+1, Ta+1,b}.
Set (a, b) := (a′, b′), where (a′, b′) are the coordinates of box swapped, and go
to 2a).

3. Fill the empty box with n.

Here is an example:

T =
1 2 4 8
3 6 7
5

7→
1 3 6 7
2 5 8
4

= p(T ).

As a permutation, promotion naturally splits SY T (λ) into disjoint orbits. For a
general shape λ there seems to be no obvious pattern to the sizes of the orbits. However,
for certain shapes, notably Haiman’s “generalized staircases” more can be said [H2] (see
also Edelman and Greene [EG, Cor. 7.23]). In particular, rectangles fall into this category,
with the following result.

Theorem 2 ([H2], Theorem 4.4). If λ ⊢ N = bn is a rectangle, then pN(T ) = T for all
T ∈ SY T (λ).

Thus for n× n square shapes λ, pn2

= 1 and the size of every orbit divides n2. With
n = 3, here is an orbit of size 3:

1 2 5
3 6 8
4 7 9

→
1 4 7
2 5 8
3 6 9

→
1 3 6
2 4 7
5 8 9

→ · · · . (1)

There are 42 standard Young tableaux of shape (3, 3, 3), and there are 42 reduced
expressions in the set w0(B3). Stanley first conjectured that R(w0) and SY T (nn) are
equinumerous, and Proctor suggested that rather than SY T (nn), a more direct corre-
spondence might be given with SY T ′(2n−1, 2n−3, . . . , 1), that is, with shifted standard
tableaux of “doubled staircase” shape. (That the squares and doubled staircases are
equinumerous follows easily from hook length formulas.)

Haiman answers Proctor’s conjecture in such a way that the structure of promotion
on doubled staircases corresponds precisely to cyclic permutation of words in R(w0) [H2,
Theorem 5.12]. Moreover, in [H1, Proposition 8.11], he gives a bijection between standard
Young tableaux of square shape and those of doubled staircase shape that (as we will show)
commutes with promotion.

As an example, his bijection carries the orbit in (1) to this shifted orbit:

1 2 4 5 8
3 6 9

7
→

1 2 3 4 7
5 6 8

9
→

1 2 3 6 9
4 5 7

8
→ · · · .

Both of these orbits of tableaux correspond to the orbit of the reduced word 132132132.
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3 Haiman’s bijections

We first describe the bijection between reduced expressions and shifted standard tableaux
of doubled staircase shape. This bijection is described in Section 5 of [H2].

Let T be in SY T ′(2n − 1, 2n − 3, . . . , 1). Notice the largest entry in T , (i.e., n2),
occupies one of the outer corners. Let r(T ) denote the row containing this largest entry,
numbering the rows from the bottom up. The promotion sequence of T is defined to be
Φ(T ) = r1 · · · rn2 , where ri = r(pi(T )). Using the example above of

T =
1 2 4 5 8

3 6 9
7

,

we see r(T ) = 2, r(p(T )) = 1, r(p2(T )) = 3, and since p3(T ) = T , we have

Φ(T ) = 132132132.

Haiman’s result is the following.

Theorem 3 ([H2], Theorem 5.12). The map T 7→ Φ(T ) is a bijection SY T ′(2n− 1, 2n−
3, . . . , 1)→ R(w0).

By construction, then, we have

Φ(p(T )) = c(Φ(T )),

i.e., Φ is an orbit-preserving bijection

(SY T ′(2n− 1, 2n− 3, . . . , 1), p)←→ (R(w0), c).

Next, we will describe the bijection

H : SY T (nn)→ SY T ′(2n− 1, 2n− 3, . . . , 1)

between squares and doubled staircases. Though not obvious from the definition below,
we will demonstrate that H commutes with promotion.

We assume the reader is familiar with the Robinson-Schensted-Knuth insertion algo-
rithm (RSK). (See [Sta, Section 7.11], for example.) This is a map between words w and
pairs of tableaux (P, Q) = (P (w), Q(w)). We say P is the insertion tableau and Q is the
recording tableau.

There is a similar correspondence between words w and pairs of shifted tableaux
(P ′, Q′) = (P ′(w), Q′(w)) called shifted mixed insertion due to Haiman [H1]. (See also
Sagan [Sa] and Worley [W].) Serrano defined a semistandard generalization of shifted
mixed insertion in [Ser]. Throughout this paper we refer to semistandard shifted mixed
insertion simply as mixed insertion. Details can be found in [Ser, Section 1.1].

Theorem 4 ([Ser] Theorem 2.26). Let w be a word. If we view Q(w) as a skew shifted
standard Young tableau and apply jeu de taquin to obtain a standard shifted Young tableau,
the result is Q′(w) (independent of any choices in applying jeu de taquin).
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For example, if w = 332132121, then

(P, Q) =




1 1 1
2 2 2
3 3 3

,
1 2 5
3 6 8
4 7 9



 ,

(P ′, Q′) =




1 1 1 2′ 3′

2 2 3′

3
,

1 2 4 5 8
3 6 9

7



 .

Performing jeu de taquin we see:

1 2 5
3 6 8
4 7 9

→
1 2 5

3 4 6 8
7 9

→
1 2 5 8
3 4 6

7 9
→

1 2 4 5 8
3 6 9

7
.

Haiman’s bijection is precisely H(Q) = Q′. That is, given a standard square tableau
Q, we embed it in a shifted shape and apply jeu de taquin to create a standard shifted
tableau. That this is indeed a bijection follows from Theorem 4, but is originally found
in [H1, Proposition 8.11].

Remark 5. Haiman’s bijection applies more generally between rectangles and “shifted
trapezoids”, i.e., for m 6 n, we have H : SY T (nm)→ SY T ′(n+m−1, n+m−3, . . . , n−
m + 1). All the results presented here extend to this generality, with similar proofs. We
restict to squares and doubled staircases for clarity of exposition.

We will now fix the tableaux P and P ′ to ensure that the insertion word w has
particularly nice properties. We will use the following lemma.

Lemma 6 ([Ser], Proposition 1.8). Fix a word w. Let P = P (w) be the RSK insertion
tableau and let P ′ = P ′(w) be the mixed insertion tableau. Then the set of words that
mixed insert into P ′ is contained in the set of words that RSK insert into P .

Now we apply Lemma 6 to the word

w = n · · ·n︸ ︷︷ ︸
n

· · ·2 · · · 2︸ ︷︷ ︸
n

1 · · ·1︸ ︷︷ ︸
n

.

If we use RSK insertion, we find P is an n× n square tableau with all 1s in row first
row, all 2s in the second row, and so on. With such a choice of P it is not difficult to show
that any other word u inserting to P has the property that for all indices j and all initial
subwords u1 · · ·ui, there are at least as many letters (j + 1) as letters j. Such words are
sometimes called (reverse) lattice words or (reverse) Yamanouchi words. Notice also that
any such u has n copies of each letter i, i = 1, . . . , n. We call the words inserting to this
choice of P square words.
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On the other hand, if we use mixed insertion on w, we find P ′ as follows (with n = 4):

1 1 1 1 2′ 3′ 4′

2 2 2 3′ 4′

3 3 4′

4

.

In general, on the “shifted half” of the tableau we see all 1s in the first row, all 2s in the
second row, and so on. In the “straight half” we see only prime numbers, with 2′ on the
first diagonal, 3′ on the second diagonal, and so on. Lemma 6 tells us that every u that
mixed inserts to P ′ is a square word. But since the sets of recording tableaux for P and
for P ′ are equinumerous, we see that the set of words mixed inserting to P ′ is precisely
the set of all square words.

Remark 7. Yamanouchi words give a bijection with standard Young tableaux that circum-
vents insertion completely. In reading the word from left to right, if wi = j, we put letter
i in the leftmost unoccupied position of row n + 1− j. (See [Sta, Proposition 7.10.3(d)].)

We will now characterize promotion in terms of operators on insertion words. First,
some lemmas.

For a tableau T (shifted or not) let ∆T denote the result of all but step (3) of pro-
motion. That is, we delete the smallest entry and perform jeu de taquin, but we do not
fill in the empty box. The following lemma says that, in both the shifted and unshifted
cases, this can be expressed very simply in terms of our insertion word. The first part of
the lemma is a direct application of the theory of jeu de taquin (see, e.g., [Sta, A1.2]);
the second part is [Ser, Lemma 3.9].

Lemma 8. For a word w = w1w2 · · ·wl, let ŵ = w2 · · ·wl. Then we have

Q(ŵ) = ∆Q(w),

and
Q′(ŵ) = ∆Q′(w).

The operator ej acting on words w = w1 · · ·wl is defined in the following way. Consider
the subword of w formed only by the letters j and j+1. Consider every j+1 as an opening
bracket and every j as a closing bracket, and pair them up accordingly. The remaining
word is of the form jr(j + 1)s. The operator ej leaves all of w invariant, except for this
subword, which it changes to jr−1(j + 1)s+1. (This operator is widely used in the theory
of crystal graphs.)

As an example, we calculate e2(w) for the word w = 3121221332. The subword formed
from the letters 3 and 2 is

3 · 2 · 22 · 332,

which corresponds to the bracket sequence ()))((). Removing paired brackets, one obtains
))(, corresponding to the subword

· · · · 22 · 3 · ·.
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We change the last 2 to a 3 and keep the rest of the word unchanged, obtaining e2(w) =
3121231332.

The following lemma shows that this operator leaves the recording tableau unchanged.
The unshifted case is found in work of Lascoux, Leclerc, and Thibon [LLT]; the shifted
case follows from the unshifted case, and the fact that the mixed recording tableau of a
word is uniquely determined by its RSK recording tableau ([Ser, Theorem 2.26]).

Lemma 9 ([LLT] Theorem 5.5.1). Recording tableaux are invariant under the operators
ei. That is,

Q(ei(w)) = Q(w),

and
Q′(ei(w)) = Q′(w).

Let e = e1 · · · en−1 denote the composite operator given by applying first en−1, then
en−2 and so on. It is clear that if w = w1 · · ·wn2 is a square word, then e(ŵ)1 is again a
square word.

Theorem 10. Let w = w1 · · ·wn2 be a square word. Then,

p(Q(w)) = Q(e(ŵ)1),

and
p(Q′(w)) = Q′(e(ŵ)1).

In other words, Haiman’s bijection commutes with promotion:

p(H(Q)) = H(p(Q)).

Proof. By Lemma 8, we see that Q(ŵ) is only one box away from p(Q(w)). Further,
repeated application of Lemma 9 shows that

Q(ŵ) = Q(en−1(ŵ)) = Q(en−2(en−1(ŵ))) = · · · = Q(e(ŵ)).

The same lemmas apply show Q′(e(ŵ)) is one box away from p(Q′(w)).
All that remains is to check that the box added by inserting 1 into P (e(ŵ)) (resp.

P ′(e(ŵ))) is in the correct position. But this follows from the observation that e(ŵ)1 is
a square word, and square words insert (resp. mixed insert) to squares (resp. doubled
staircases).

4 Rhoades’ result

Rhoades [Rh] proved an instance of the CSP related to the action of promotion on rect-
angular tableaux. His result is quite deep, employing Kahzdan-Lusztig cellular represen-
tation theory in its proof.
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Recall that for any partition λ ⊢ n, we have that the standard tableaux of shape λ
are enumerated by the Frame-Robinson-Thrall hook length formula:

fλ = |SY T (λ)| =
n!∏

(i,j)∈λ hij

,

where the product is over the boxes (i, j) in λ and hij is the hook length at the box (i, j),
i.e., the number of boxes directly east or south of the box (i, j) in λ, counting itself exactly
once. To obtain the polynomial used for cyclic sieving, we replace the hook length formula
with a natural q-analogue. First, recall that for any n ∈ N, [n]q := 1 + q + · · ·+ qn−1 and
[n]q! := [n]q[n− 1]q · · · [1]q.

Theorem 11 ([Rh], Theorem 3.9). Let λ ⊢ N be a rectangular shape and let X = SY T (λ).
Let C := Z/NZ act on X via promotion. Then, the triple (X, C, X(q)) exhibits the cyclic
sieving phenomenon, where

X(q) =
[N ]q!

Π(i,j)∈λ[hij ]q

is the q-analogue of the hook length formula.

Now thanks to Theorem 10 we know that H preserves orbits of promotion, and as a
consequence we see the CSP for doubled staircases.

Corollary 12. Let X = SY T ′(2n − 1, 2n− 3, . . . , 1), and let C := Z/n2Z act on X via
promotion. Then the triple (X, C, X(q)) exhibits the cyclic sieving phenomenon, where

X(q) =
[n2]q!

[n]nq
∏n−1

i=1 ([i]q · [2n− i]q)i

is the q-analogue of the hook length formula for an n× n square Young diagram.

Because of Theorem 3 the set R(w0) also exhibits the CSP.

Corollary 13 ([Rh], Theorem 8.1). Let X = R(w0) and let X(q) as in Corollary 12. Let
C := Z/n2Z act on X by cyclic rotation of words. Then the triple (X, C, X(q)) exhibits
the cyclic sieving phenomenon.

Corollary 13 is the CSP for R(w0) as stated by Rhoades. This is nearly our main
result (Theorem 1), but for the definition of X(q).

In spirit, for a CSP (X, C, X(q)), the polynomial X(q) should be some q-enumerator
for the set X. That is, it should be expressible as

X(q) =
∑

x∈X

qs(x),

where s is an intrinsically defined statistic for the elements of X. Indeed, nearly all known
instances of the cyclic sieving phenomenon have this property. For example, it is known
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([Sta, Cor 7.21.5]) that the q-analogue of the hook-length formula can be expressed as
follows:

fλ(q) = q−κ(λ)
∑

T∈SY T (λ)

qmaj(T ), (2)

where κ(λ1, . . . , λl) =
∑

16i6l(i−1)λi and for a tableau T , maj(T ) is the sum of all i such
that i appears in a row above i + 1. Thus X(q) in Theorem 11 can be described in terms
a statistic on Young tableaux.

With this point of view, Corollaries 12 and 13 are aesthetically unsatisfying. Section
5 is given to showing that X(q) can be defined as the generating function for the major
index on words in R(w0). It would be interesting to find a combinatorial description for
X(q) in terms of a statistic on SY T ′(2n − 1, 2n − 3, . . . , 1) as well, though we have no
such description at present.

5 Combinatorial description of X(q)

As stated in the introduction, we will show that

X(q) = q−n(n

2
)

∑

w∈R(w0)

qmaj(w).

If we specialize (2) to square shapes, we see that κ(nn) = n
(

n

2

)
and

X(q) = q−n(n

2
)

∑

T∈SY T (nn)

qmaj(T ).

Thus it suffices to exhibit a bijection between square tableaux and words in R(w0) that
preserves major index. In fact, the composition Ψ := ΦH has a stronger feature.

Define the cyclic descent set of a word w = w1 · · ·wl to be the set

D(w) = {i : wi > wi+1} (mod l)

That is, we have descents in the usual way, but also a descent in position 0 if wl > w1.
Then maj(w) =

∑
i∈D(w) i. For example with w = 132132132, D(w) = {0, 2, 3, 5, 6, 8} and

maj(w) = 0 + 2 + 3 + 5 + 6 + 8 = 24.
Similarly, we follow [Rh] in defining the cyclic descent set of a square (in general,

rectangular) Young tableau. For T in SY T (nn), define D(T ) to be the set of all i such
that i appears in a row above i + 1, along with 0 if n2 − 1 is above n2 in p(T ). Major
index is maj(T ) =

∑
i∈D(T ) i. We will see that Ψ preserves cyclic descent sets, and hence,

major index. Using our earlier example of w = 132132132, one can check that

T = Ψ−1(w) =
1 2 5
3 6 8
4 7 9

has D(T ) = D(w), and so maj(T ) = maj(w).
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Lemma 14. Let T ∈ SY T (nn), and let w = Ψ(T ) in R(w0). Then D(T ) = D(w).

Proof. First, we observe that both types of descent sets shift cyclically under their re-
spective actions:

D(p(T )) = {i− 1 (mod n2) : i ∈ D(T )},

and
D(c(w)) = {i− 1 (mod n2) : i ∈ D(w)}.

For words under cyclic rotation, this is obvious. For tableaux under promotion, this is a
lemma of Rhoades [Rh, Lemma 3.3].

Because of this cyclic shifting, we see that i ∈ D(T ) if and only if 0 ∈ D(pi(T )).
Thus, it suffices to show that 0 ∈ D(T ) if and only if 0 ∈ D(w). (Actually, it is easier to
determine if n2 − 1 is a descent.)

Let S = Φ−1(w) be the shifted doubled staircase tableau corresponding to w. We have
n2 − 1 ∈ D(w) if and only if n2 is in a higher row in p−1(S) than in S. But since n2

occupies the same place in p−1(S) as n2 − 1 occupies in S, this is to say n2 − 1 is above
n2 in S. On the other hand, n2 − 1 ∈ D(T ) if and only if n2 − 1 is above n2 in T . It is
straightforward to check that since S is obtained from T by jeu de taquin into the upper
corner, the relative heights of n2 and n2−1 (i.e., whether n2 is below or not) are the same
in S as in T . This completes the proof.

This lemma yields the desired result for X(q).

Theorem 15. The q-analogue of the hook length formula for an n × n square Young
diagram is, up to a shift, the major index generating function for reduced expressions of
the longest element in Bn:

∑

w∈R(w0)

qmaj(w) = qn(n

2
) ·

[n2]q!

[n]nq
∏n−1

i=1 ([i]q · [2n− i]q)i
.

Theorem 15, along with Corollary 13, complete the proof of our main result, Theorem
1. Because this result can be stated purely in terms of the set R(w0) and a natural statistic
on this set, it would be interesting to obtain a self-contained proof, i.e., one that does not
appeal to Haiman’s or Rhoades’ work. Why must a result about cyclic rotation of words
rely on promotion of Young tableaux?
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