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Abstract

We present some observations on a restricted variant of unitary Cayley graphs
modulo n, and implications for a decomposition of elements of symplectic operators
over the integers modulo n. We define quadratic unitary Cayley graphs Gn, whose
vertex set is the ring Zn, and where residues a, b modulo n are adjacent if and only
if their difference is a quadratic residue. By bounding the diameter of such graphs,
we show an upper bound on the number of elementary operations (symplectic scalar
multiplications, symplectic row swaps, and row additions or subtractions) required
to decompose a symplectic matrix over Zn. We also characterize the conditions on
n for Gn to be a perfect graph.

1 Introduction

For an integer n > 1, we denote the ring of integers modulo n by Zn, and the group of
multiplicative units modulo n by Z

×

n . A well-studied family of graphs are the unitary
Cayley graphs on Zn, which are defined by Xn = Cay(Zn, Z×

n ). These form the basis of
the subject of graph representations [1], and are also studied as objects of independent
interest: see for example [2–5].

We consider a subgraph Gn 6 Xn of the unitary Cayley graphs, defined as follows.
Let Qn =

{

u2
∣

∣u ∈ Z
×

n

}

be the group of quadratic units modulo n (quadratic residues
which are also multiplicative units), and Tn = ±Qn. We then define Gn = Cay(Zn, Tn),
in which two vertices given by a, b ∈ Zn are adjacent if and only if their difference is a
quadratic unit in Zn, i.e. if a − b ∈

{

±u2
∣

∣ u ∈ Z
×

n

}

. In the case where n ≡ 1 (mod 4)
and is prime, Gn coincides with the Paley graph on n vertices: thus the graphs Gn are a
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circulant generalization of these graphs for arbitrary n. We refer to Gn as the (undirected)
quadratic unitary Cayley graph on Zn.

We present some structural properties of quadratic unitary Cayley graphs Gn. In
particular, we characterize its decompositions into tensor products over relatively prime
factors of n, and categorize the graphs Gn in terms of their diameters. From these results,
we obtain a corollary regarding the decomposition of symplectic matrices S ∈ Sp2m(Zn)
in terms of symplectic row-operations, consisting of symplectic scalar multiplications,
symplectic row-swaps, and symplectic row-additions/subtractions. We also characterize
the conditions under which quadratic unitary graphs are perfect, by examining special
cases of quadratic unitary graphs which are self-complementary.

Notation. Throughout the following, n = pm1

1 pm2

2 · · ·pmt

t is a decomposition of n into
powers of distinct primes, and σ : Zn → Zp1

m1 ⊕ · · · ⊕ Zpt
mt is the isomorphism of rings

which is induced by the Chinese Remainder theorem. (We refer to similar isomorphisms
ρ : Zn −→ ZM ⊕ ZN for coprime M and N as natural isomorphisms.) We sometimes
describe the properties of Gn in terms of the directed Cayley graph Γn = Cay(Zn, Qn),
whose arcs a → b correspond to addition (but not subtraction) of a quadratic unit to a
modulus a ∈ Zn; we may refer to this as the directed quadratic unitary Cayley graph.

2 Tensor product structure

By the isomorphism Z
×

n
∼= Z

×

p1
m1 ⊕ · · · ⊕ Z

×

pt
mt induced by σ, unitary Cayley graphs Xn

may be decomposed as tensor products Xn
∼= Xp1

m1 ⊗· · ·⊗Xpt
mt of smaller unitary Cayley

graphs (also called direct products [5] or Kronecker products [6], among other terms):

Definition I. The tensor product A⊗B of two (di-)graphs A and B is the (di-)graph with
vertex-set V (A)×V (B), where ((u, u′), (v, v′)) ∈ E(A⊗B) if and only if ((u, v), (u′, v′)) ∈
E(A) × E(B).1

Corollary 3.3 of [5] gives an explicit proof that Xn
∼= Xp1

m1 ⊗ · · · ⊗ Xpt
mt ; a similar

approach may be used to decompose any (di-)graph Cay(R, M) for rings R = R1⊕· · ·⊕Rt

and multiplicative monoids M1 = M1 ⊕ · · · ⊕ Mt where Mj ⊆ Rj. For instance, as
Qn

∼= Qp1
m1 ⊕ · · · ⊕ Qpt

mt , it follows that Γn
∼= Γp1

m1 ⊗ · · · ⊗ Γpt
mt as well.

It is reasonable to suppose that the graphs Gn will also exhibit tensor product struc-
ture; however, they do not always decompose over the prime power factors of n as do
Xn and Γn. This is because Tn may fail to decompose as a direct product of groups over
the prime-power factors p

mj

j . By definition, for each j, we either have Tpj
mj = Qpj

mj or
Tpj

mj
∼= Qpj

mj ⊕ 〈−1〉; when Qpj
mj < Tpj

mj for multiple pj, one cannot decompose Tn over
the prime-power factors of n. We may generalize this observation as follows:

Theorem 1. For coprime integers M, N > 1, we have GM ⊗ GN
∼= GMN if and only if

either −1 ∈ QM or −1 ∈ QN .

1We write A1 ⊗ (A2 ⊗ A3) = (A1 ⊗ A2) ⊗ A3 = A1 ⊗ A2 ⊗ A3, and so on for higher-order tensor
products, similarly to the convention for Cartesian products of sets.
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Proof. We have GM ⊗ GN
∼= GMN if and only if TM ⊕ TN

∼= TMN . Let ρ : ZMN −→
ZM⊕ZN be the natural isomorphism: this induces an isomorphism QMN

∼= QM ⊕QN , and
will also induce an isomorphism TMN

∼= TM ⊕TN if the two groups are indeed isomorphic.
Clearly, σ(TMN) 6 TM ⊕ TN ; we consider the opposite inclusion.

If −1 /∈ QM and −1 /∈ QN , we have (−1, 1), (1,−1) /∈ QM ⊕ QN ; as both tuples are
elements of TM ⊕ TN , but neither of them are elements of ±(QM ⊕ QN) = σ(±QMN) =
σ(TMN), it follows that TMN and TM ⊕ TN are not isomorphic in this case. Conversely,
consider u ∈ Z

×

n arbitrary, and let (uM , uN) = ρ(u). If −1 ∈ QM , let i ∈ ZM such that
i2 = −1: for any sM , sN ∈ {0, 1}, we then have

(

(−1)sM u2
M , (−1)sN u2

N

)

= (−1)sN

(

(−1)sM−sN u2
M , u2

N

)

= (−1)sN

(

[

i(sM−sN )uM

]2
, u2

N

)

. (1)

Thus TM ⊕ TN 6 σ(TMN ); and similarly if −1 ∈ QN .

Remark. The above result is similar to [8, Theorem 8], which uses a “partial transpose”
criterion to indicate when a graph may be regarded as a symmetric difference of tensor
products of graphs on M and N vertices; the presence of −1 in either QM or QN is equiv-
alent to GMN being invariant under partial transposes (w.r.t. to the tensor decomposition
induced by ρ).

Corollary 1-1. For n > 1, let n = pm1

1 · · · pmτ
τ N be a factorization of n such that pj ≡ 1

(mod 4) for each 1 6 j 6 τ , and N has no such prime factors. Then Gn
∼= Gp1

m1 ⊗ · · · ⊗
Gpτ

mτ ⊗ GN .

Proof. For pj odd, Z
×

pj
mj is a cyclic group [7] of order (pj − 1)p

mj−1
j in which −1 is the

unique element of order two: then −1 is a quadratic residue modulo p
mj

j if and only if
pj ≡ 1 (mod 4). As this holds for all 1 6 j 6 τ , repeated application of Theorem 1 yields
the decomposition above.

Corollary 1-2. For n > 1, we have Gn
∼= Gp1

m1 ⊗ · · · ⊗ Gpt
mt if and only if either n has

at most one prime factor pj 6≡ 1 (mod 4), or n has two such factors and n ≡ 2 (mod 4).

Proof. Suppose that Gn decomposes as above. Let N be the largest factor of n which
does not have prime factors p ≡ 1 (mod 4): we continue from the proof of Corollary 1-
1. By Theorem 1, GN itself decomposes as a tensor factor over its prime power factors
p

mτ+1

τ+1 , . . . , pmt

t if and only if there is at most one such prime pj such that −1 /∈ Qpj
mj .

However, by construction, all odd prime factors pj of N satisfy pj ≡ 3 (mod 4), in which
case −1 /∈ Qpj

mj for any of them. Furthermore, for m > 2, we have r ∈ Q2m only if
r ≡ 1 (mod 4); then −1 ∈ Q2m if and only if 2m = 2. Thus, if Gn

∼= Gp1
m1 ⊗ · · · ⊗

Gpt
mt , it follows either that N = pm for some prime p ≡ 3 (mod 4), in which case

the decomposition of Corollary 1-1 is the desired decomposition, or N = 2pm for some
prime p ≡ 3 (mod 4), in which case n ≡ 2 (mod 4). The converse follows easily from
Corollary 1-1 and Theorem 1.
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We finish our discussion of tensor products with an observation for prime powers. Let
K̊M denote the complete pseudograph on M vertices (i.e. an M-clique with loops):

Lemma 2. For m > 3, we have G2m
∼= G8 ⊗ K̊2m−3 and Γ2m

∼= Γ8 ⊗ K̊2m−3 ; for p an odd
prime and m > 1, we have Gpm

∼= Gp ⊗ K̊pm−1 and Γpm
∼= Γp ⊗ K̊pm−1.

Proof. We prove the results for Γpm ; the results for Gpm are similar.

• Let n = 2m for m > 3. We have q ∈ Qn if and only if q ≡ 1 (mod 8). Let
τ : Z2m → Z8 × Z2m−3 (not a ring homomorphism) be defined by τ(r) = (r′, k′)
such that r = 8k′ + r′ for r′ ∈ {0, . . . , 7}. Then, we have a − b ∈ Qn if and only if
τ(a − b) ∈ {1} × Z2m−3 , so that τ induces a homomorphism Γn

∼= Γ8 ⊗ K̊2m−3 .

• Similarly, for n = pm for p an odd prime and m > 1, we have q = pk′ + q′ ∈ Qn

(for q′ ∈ {0, . . . , p − 1}, which we we identify with Zp) if and only if q′ ∈ Qp. If
τ : Z2m → Zp×Zpm−1 is defined by τ(q) = (q′, k′), we then have a−b ∈ Qn if and only

if τ(a − b) ∈ Qp × Zpm−1 . Thus, τ induces a homomorphism Γn
∼= Γp ⊗ K̊pm−1 .

Together with Corollary 1-1, and the fact that K̊pm itself may be decomposed for any

prime p as an m-fold tensor product K̊p ⊗ · · · ⊗ K̊p, the graph Gn may be decomposed
very finely whenever n is dominated by prime-power factors pm for p ≡ 1 (mod 4).

3 Induced paths and cycles of Gn

Even when the graph Gn does not itself decompose as a tensor product, we may fruitfully
describe such properties as walks in the graphs Gn in terms of correlated transitions in
tensor-factor “subsystems”. This intuition will guide the analysis of this section in our
characterization both of the diameters of the graphs Gn, and of the factors of n for Gn a
perfect graph.

As Tn is a multiplicative subgroup of Z
×

n , we may easily show that the graphs Gn

are arc-transitive. For any pair of edges vw, v′w′ ∈ E(Gn), the affine function f(x) =
(w′ − v′)(w− v)−1(x− v) + v′ is an automorphism of Gn which maps v 7→ v′ and w 7→ w′.
Consequently Gn is vertex-transitive as well, so that we may bound the diameter by
bounding the distance of vertices v ∈ V (G) from 0 ∈ V (G), and also restrict our attention
to odd induced cycles (or odd holes) which include 0 in our analysis of perfect graphs.

Let An, Bn be the adjacency graphs of the graph Gn and the digraph Γn respectively.
We then have An = Bn = B⊤

n if and only if −1 is a quadratic residue modulo n, and
An = Bn + B⊤

n otherwise; in either case, we have An ∝ Bn + B⊤

n . As Bn may be
decomposed as a Kronecker product (corresponding to the tensor decomposition of Γn),
this suggests an analysis of walks in Gn in terms of “synchronized walks” in the rings
Zpj

mj by adding or subtracting quadratic units, where one must add a quadratic unit in
all rings simultaneously or subtract a quadratic unit in all rings simultaneously. This will
inform the analysis of properties such as the diameters and perfectness of the graphs Gn.
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3.1 Characterizing paths of length two for n odd

To facilitate the analysis of this section, we will be interested in enumerating paths of
length two in Gn between distinct vertices. Because An ∝ Bn + B⊤

n for all n, we have

A2
n ∝ B2

n + 2BnB
⊤

n +
(

B⊤

n

)2

∼=
[

t
⊗

j=1

B2
pj

mj

]

+ 2

[

t
⊗

j=1

Bpj
mj B⊤

pj
mj

]

+

[

t
⊗

j=1

(

B⊤

pj
mj

)2

]

, (2)

where congruence is up to a permutation of the standard basis. Thus, we may characterize
the paths of length two in Gn between distinct vertices r, s ∈ Zn in terms of the number
of ways that we may represent s− r in the form α2 + β2, α2 − β2, and −α2 − β2 for some
units α, β ∈ Z

×

n ; and these we may characterize in terms of products over the number of
representations in the special case where n is a prime power.

Definition II. For n > 0 and r ∈ Zn, we let Sn(r) denote the number of solutions
(x, y) ∈ Qn × Qn to the equation r = x + y; similarly, Dn(r) denotes the number of
solutions (x, y) ∈ Qn × Qn to the equation r = x − y.

Thus, when −1 ∈ Qn and An = Bn = 1
2
(Bn + B⊤

n ), the number of paths of length
two from 0 to r 6= 0 is Sn(r); otherwise, if −1 /∈ Qn, the number of such paths is
Sn(r) + 2Dn(r) + Sn(−r). Thus, the number of paths of length two from 0 to r reduces
to avaluation of the functions Sn and Dn. We may evaluate these functions for n a
prime power, through a straightforward generalization of standard results on patterns of
quadratic residues and non-residues to prime power moduli:

Lemma 3. For p a prime and m > 1, let C++
pm (respectively C−−

pm ) denote the number
of consecutive pairs of quadratic units (resp. consecutive pairs of non-quadratic units)
modulo pm, and C+−

pm (respectively C−+
pm ) denote the number of sequences of a quadratic

unit followed by a non-quadratic unit (resp. a non-quadratic unit followed by a quadratic
unit) modulo pm. For primes p ≡ 1 (mod 4), we have

C++
pm =

(p − 5)pm−1

4
, C+−

p = C−+
p = C−−

p =
(p − 1)pm−1

4
; (3a)

otherwise, if p ≡ 3 (mod 4), we have

C+−

p =
(p + 1)pm−1

4
, C++

p = C−+
p = C−−

p =
(p − 3)pm−1

4
. (3b)

Proof. As r ∈ Z is a quadratic residue, quadratic non-residue, and/or unit modulo pm

if and only the same properties hold modulo p, the distribution of quadratic and non-
quadratic units modulo pm is simply that of the integers modulo p, repeated pm−1 times.
It then suffices to multiply the formulae given for C++

p , C+−

p , C−+
p , C−−

p (obtained by
Aladov [9]) by pm−1.

the electronic journal of combinatorics 17 (2010), #R69 5



Lemma 4. Let p be an odd prime, m > 0, and r ∈ Zpm. If p ≡ 1 (mod 4), we have

Spm(r) = Dpm(r) =











1
4
(p − 5)pm−1 , for r a quadratic unit,

1
4
(p − 1)pm−1 , for r a non-quadratic unit,

1
2
(p − 1)pm−1 , for r a zero divisor;

(4a)

for p ≡ 3 (mod 4), we instead have

Spm(r) =











1
4
(p − 3)pm−1 , for r a quadratic unit,

1
4
(p + 1)pm−1 , for r a non-quadratic unit,

0 , for r a zero divisor;

(4b)

Dpm(r) =

{

1
4
(p − 3)pm−1 , for r a unit,

1
2
(p − 1)pm−1 , for r a zero divisor.

(4c)

Proof. We proceed by cases, according to whether r is a quadratic unit, non-quadratic
unit, or zero modulo p:

• Suppose r ∈ Qn. Each consecutive pair q, q + 1 ∈ Qpm yields a solution (x, y) =
(r(q + 1), rq) ∈ Qpm × Qpm to x − y = r; then we have Dpm(r) = C++

pm . Similarly,
each such pair yields a solution (x, y) = (rq(q + 1)−1, r(q + 1)−1) ∈ Qpm × Qpm to
x + y = r; then Spm(r) = C++

pm as well.

• Suppose r ∈ Z
×

pm r Qpm . Each consecutive pair s, s + 1 ∈ Z
×

pm r Qpm represents
a solution in non-quadratic units to x − y = 1; these may then be used to obtain
solutions (rx, ry) ∈ Qpm × Qpm to rx − ry = r, so that Dpm(r) = C−−

pm . In the case
that p ≡ 1 (mod 4), the negation of a quadratic unit is also a quadratic unit; in this
case, we have the same number of solutions (rx,−ry) ∈ Qpm×Qpm to rx+(−ry) = r,
so that Spm(r) = C−−

p as well.

If instead p ≡ 3 (mod 4), we instead consider quadratic units s ∈ Qpm such that s+1
is a non-quadratic unit. Each such pair yields a solution (x, y) = (r(s + 1),−rs) ∈
Qpm ×Qpm to x + y = r; then we have a solution for each such pair s, s + 1, so that
Spm(r) = C+−

pm .

• Finally, suppose r is a multiple of p. The congruence x+y ≡ 0 (mod p) is satisfiable
for (x, y) ∈ Qpm × Qpm only if −x is a quadratic unit modulo p for some x ∈ Qpm ,
i.e. if p ≡ 1 (mod 4). If this is the case, then every x ∈ Qpm contributes a solution
(x, y) = (x, r − x) ∈ Qpm ×Qpm to x + y = r; otherwise, in the case p ≡ 3 (mod 4),
there are no solutions. Similarly, regardless of the value of p, each quadratic unit
x ∈ Qpm contributes a solution (x, y) = (x, x − r) ∈ Qpm × Qpm to x − y = r. Thus
Dpm(r) = 1

2
(p − 1) for all p; Spm(r) = 1

2
(p − 1) for p ≡ 1 (mod 4); and Spm(r) = 0

for p ≡ 3 (mod 4).
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Corollary 4-1. diam(Gpm) 6 2 for p an odd prime and m > 0; this inequality is strict if
and only if p ≡ 3 (mod 4) and m = 1.

Proof. Clearly for p ≡ 1 (mod 4) we have diam(Gpm) = 2; suppose then that p ≡ 3
(mod 4). We may form any zero divisor s = pk as a difference of quadratic units x ∈ Qpm

and x − pk ∈ Qpm , so that diam(Gpm) 6 2. We have diam(Gpm) = 1 only if 0 is the only
zero divisor of Zpm ; this implies that m = 1, in which case Tpm = Z

×

p , so that the converse
also holds.

In Lemma 4, n = 3m and n = 5m are cases for which there do not exist paths of length
two from zero to any quadratic unit. This does not affect the diameters of the graphs G3m

or G5m for m > 0; however, using the following Lemma, we shall see that this deficiency
affects the diameters of Gn for any other n a multiple of either 3 or 5.

Lemma 5. For n > 0 odd and r ∈ Zn, we have Sn(r) = 0 if and only if at least one of
the following conditions hold:

(i) n is a multiple of 3, and r 6≡ 2 (mod 3);

(ii) n is a multiple of 5, and r ≡ ±1 (mod 5); or

(iii) n has a prime factor pj ≡ 3 (mod 4) such that r ∈ pjZn.

Similarly, we have Dn(r) = 0 if and only if at least one of the following conditions hold:

(i) n is a multiple of 3, and r 6≡ 0 (mod 3); or

(ii) n is a multiple of 5, and r ≡ ±1 (mod 5).

Proof. For r ∈ Zn arbitrary, let (r1, r2, . . . , rt) = σ(r). By the decompositions B2
n

∼=
B2

p1
m1 ⊗ · · · ⊗ B2

pt
mt and BnB⊤

n
∼= Bp1

m1 B⊤

p1
m1 ⊗ · · · ⊗ Bpt

mt B⊤

pt
mt , we may express Sn(r)

and Dn(r) as products over the prime-power factors of n,

Sn(r) =

t
∏

j=1

Spj
mj (rj) , Dn(r) =

t
∏

j=1

Dpj
mj (rj) . (5)

These are zero if and only if there exist 1 6 j 6 t such that Spj
mj (rj) = 0 or Dpj

mj (rj) = 0,
respectively. By Lemma 4, Spj

mj (rj) = 0 if and only if either rj is a zero divisor of Zpj
mj

for a prime factor pj ≡ 3 (mod 4), or if pj ∈ {3, 5} and rj is a quadratic unit modulo
Zpj

mj ; similarly, Dpj
mj (rj) = 0 if and only if pj = 3 and rj is a unit modulo 3, or pj = 5

and rj is a quadratic unit modulo 5.

3.2 Diameter of Gn for odd n

For odd integers n, characterizing the diameters of Gn involves accounting for “problem-
atic” prime factors of n (those described in Lemma 5), which present obstacles to the
construction of short paths between distinct vertices:
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Theorem 6. Let n > 1 odd. Let γ3(n) = 1 if n is a multiple of 3, and γ3(n) = 0
otherwise; δ3(n) = 1 if n has prime factors pj ≡ 3 (mod 4) for pj > 3, and δ3(n) = 0
otherwise; and γ5(n) = 1 if n is a multiple of 5, and γ5(n) = 0 otherwise. Then, we have

diam(Gn) =



















1, if n is prime and n ≡ 3 (mod 4);

2, if n is prime and n ≡ 1 (mod 4);

2, if ω(n) = 1 and n is composite;

2 + γ3(n)δ3(n) + γ5(n), if ω(n) > 1.

In particular, diam(Gn) 6 4.

Proof. The diameters for ω(n) = 1 are characterized by Corollary 4-1: we thus restrict
ourselves to the case ω(n) > 1.

We have diam(Gn) 6 2 if and only if either Sn(r), Sn(−r), or Dn(r) is positive for all
r ∈ Zn r Tn. By Lemma 5, Dn(r) > 0 for all r ∈ Zn if n is relatively prime to 15; then
diam(Gn) = 2, and r = u − u′ for some u, u′ ∈ Qn for any r ∈ Zn if γ3 = γ5 = 0. If n
is a multiple of 5, however, we have Sn(r) = Sn(−r) = Dn(r) = 0 for any non-quadratic
unit r ≡ ±1 (mod 5), of which there is at least one (as n is not a power of 5): thus
diam(Gn) > 3 if γ5(n) = 1.

Suppose that n is relatively prime to 5, and is a multiple of 3. Again by Lemma 5,
there are walks of length two from 0 to r if r ≡ 0 (mod 3), as we have Dn(r) > 0 in
this case. However, if n has prime factors pj > 3 such that pj ≡ 3 (mod 4), there exist
r ∈ pjZn such that r 6≡ 0 (mod 3), in which case we have Sn(r) = Sn(−r) = Dn(r) = 0.
Thus, if γ3(n) = δ3(n) = 1, we have diam(Gn) > 3. Otherwise, if δ3(n) = 0, we have
either Sn(r) > 0 in the case that r ≡ 2 (mod 3), or Sn(−r) > 0 in the case that r ≡ 1
(mod 3). In this case, every vertex r 6= 0 is reachable by a path of length two, so that
diam(Gn) = 2 if γ3(n) = 1 and δ3(n) = γ5(n) = 0.

Finally, suppose that either γ5(n) = 1 or γ3(n) = δ3(n) = 1: from the analysis above,
we have diam(Gn) > 3. For r ∈ Zn, let (r1, . . . , rn) = σ(r), where we arbitrarily label
p3 = 3 if n is a multiple of 3, and p5 = 5 if n is a multiple of 5. We may then classify the
distance of r ∈ V (Gn) away from zero, as follows.

• Suppose that n is a multiple of 3 and some other pj ≡ 3 (mod 4), and that either
n is relatively prime to 5 or r 6≡ ±1 (mod 5). By Lemma 5, we have Dn(r) > 0
if r ≡ 0 (mod 3), in which case it is at a distance of two from 0. Otherwise, for
r ≡ ±1 (mod 3), let s = r ∓ u for u ∈ Qn: then s ≡ 0 (mod 3). Then Dn(s) > 0,
in which case r = u′′ − u′ ± u for some choice of units u′, u′′ ∈ Qn, so that r can be
reached from 0 by a walk of length three.

• Suppose that n is a multiple of 5 and that r 6≡ 0 (mod 5). We may select coefficients
uj ∈ Qpj

mj such that r5 − u5 ∈ {2, 3}, and such that uj 6= rj for any pj > 7. Let
u = σ−1(u1, . . . , ut): by construction, we then have r−u ≡ ±2 (mod 5) and r−u 6≡ 0
(mod pj) for pj > 7. Then either Sn(r − u) > 0, Sn(u − r) > 0, or Dn(r − u) > 0
(according to whether or not n is a multiple of 3, and which residue r has modulo
3 if so): r can then be reached from 0 by a path of length three.
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• Suppose that n is a multiple of 5, and that r ≡ 0 (mod 5). If n is not a multiple of
3, or if r ≡ 0 (mod 3), then Dn(r) > 0; r can then be reached from 0 by a walk of
length two. We may then suppose that n is a multiple of 3 and r ≡ ±1 (mod 3).
If we also have r 6≡ 0 (mod pj) for any pj ≡ 3 (mod 4), one of Sn(r) or Sn(−r) is
non-zero; again, r is at a distance of two from 0. Otherwise, we have r ≡ 0 (mod pj)
for any pj ≡ 3 (mod 4), so that Sn(r) = Sn(−r) = Dn(r) = 0; then r has a distance
at least three from 0. As well, any neighbor s = r±u (for u ∈ Qn arbitrary) satsifies
s ≡ ±1 (mod 5). Then each neighbor of r is then at distance three from 0 in Gn,
from which it follows that r is at a distance of four from 0.

Thus, there exist vertices at distance four from 0 if γ3(n)δ3(n)+γ5(n) = 2; and apart from
these vertices, or in the case that γ3(n)δ3(n)+γ5(n) = 1, each vertex is at a distance of at
most three from 0. Then diam(Gn) = 2 + γ3(n)δ3(n) + γ5(n) if ω(n) > 1, as required.

3.3 Restricted reachability results for n coprime to 6

We may prove some stronger results on the reachability of vertices from 0 in Gn for n
odd: this will facilitate the analysis of perfectness results and the diameters for n even.

Definition III. For a (di-)graph G, the uniform diameter udiam(G) is the minimum
integer d such that, for any two vertices v, w ∈ V (G), there exists a (directed) walk of
length d from v to w in G.

Our interest in “uniform” diameters is due to the fact that if every vertex v ∈ V (Γn) can
be reached from 0 by a path of exactly d in Γn, then v can also be reached from 0 by a
path of any length ℓ > d as well, which will prove useful for describing walks in Γn to
arbitrary vertices in terms of simultaneous walks in the digraphs Γpj

mj .
We may easily show that Γn has no uniform diameter when n is a multiple of 3. For

any adjacent vertices v and w such that w − v ∈ Qn, we have w− v ≡ 1 (mod 3) by that
very fact. Then, there is a walk of length ℓ from v to w only if ℓ ≡ 1 (mod 3); similarly,
there is a walk of length ℓ from w to v only if ℓ ≡ 2 (mod 3). For similar reasons, Γn has
no uniform diameter for n even. However, for n relatively prime to 6, Γn has a uniform
diameter which may be easily characterized:

Theorem 7. Let n = pm1

1 · · · pmt

t be relatively prime to 6. Then

udiam(Γn) =











2 , if n is coprime to 5 and ∀j : pj ≡ 1 (mod 4);

3 , if n is coprime to 5 and ∃j : pj ≡ 3 (mod 4);

4 , if n is a multiple of 5.

Proof. We begin by characterizing udiam(Γn), where n = pm for p > 5 prime, using
Lemma 4 throughout to characterize Sn(r) for r ∈ Zn.

• If p ≡ 1 (mod 4) and p > 5, we have Spm(r) > 0 for all r ∈ Zn; then udiam(Γn) = 2.
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• If p ≡ 3 (mod 4) and p > 5, we have Spm(r) = 0 if and only if r ∈ Zn is a zero
divisor. In particular, udiam(Γn) > 3. Conversely, as

∣

∣Z
×

pm

∣

∣ > pm−1, there exists
z ∈ Q×

pm such that r − z is a unit; then there are quadratic units x, y ∈ Qpm such
that r − z = x + y, so that udiam(Γn) = 3.

• If p = 5, we have u ∈ Q5m if and only if u ≡ ±1 (mod 5); then r can be expressed as
a sum of k quadratic units r = u1 + · · ·+uk if and only if r can be expressed modulo
5 as a sum or difference of k ones; that is, if r ∈ {−k,−k + 2, . . . , k − 2, k} + 5Z5m

(which exhausts Z5m for k > 4).

For n not a prime power, we decompose Γn
∼= Γp1

m1 ⊗ · · · ⊗ Γpt
mt ; then a vertex r =

σ−1(r1, . . . , rt) is reachable by a walk of length ℓ in Γn if and only if each rj ∈ V (Γpj
mj )

are reachable by such a walk in their respective digraphs. Thus, the uniform diameter of
the tensor product is the maximum of the uniform diameters of each factor.

The uniform diameter Γn happens also to provide an upper bound on distances between
vertices in Gn, under the constraint that we may only traverse walks w0 w1 . . . wℓ where
the “type” of each transition wj → wj+1 is fixed to be either a quadratic unit or the
negation of a quadratic unit, independently for each j. More precisely:

Lemma 8. Let n = pm1

1 · · · pmt

t be relatively prime to 6, and ℓ > udiam(Γn). For any
sequence s1, . . . , sℓ ∈ {0, 1}, these exists a sequence of quadratic units u1, . . . , uℓ ∈ Qn

such that r = (−1)s1u1 + (−1)s2u2 + · · ·+ (−1)sℓuℓ.

Proof. We first show that there are solutions to r = u1 − u2 ± u3 ± · · · ± uℓ, where all
but the first two signs may be arbitrary. We prove the result for ℓ = udiam(Γn); one may
extend to ℓ > udiam(Γn) by induction.

• Suppose n is coprime to 5: then for any r ∈ Zn, we have Dn(r) > 0, so that there
exist u, u′ ∈ Qn such that r = u−u′. In the case that n also has prime factors pj ≡ 3
(mod 4), consider s = r ∓ u for any u ∈ Qn: as there are solutions to s = u− u′ for
u, u′ ∈ Qn, there are also solutions to r = u − u′ ± u′′.

• Suppose n = 5m1pm2

2 · · ·pmt

t .

– If r 6≡ ±1 (mod 5). Let s ∈ Zn be such that s ≡ 0 (mod 5), and s 6≡ 0
(mod pj) for any pj > 7. Then r − s 6≡ ±1 (mod 5), so that Dn(r) > 0; by
Lemma 5, there are then quadratic units u1, u2 ∈ Qn such that r−s = u1−u2.
We also have Sn(s), Sn(−s), Dn(s) > 0 by construction, which can be used to
obtain decompositions s = ±u3 ± u4 for u3, u4 ∈ Qn depending on the choices
of signs; we then have r = u1 − u2 ± u3 ± u4.

– If r ≡ ±1 (mod 5), consider (r1, . . . , rt) = σ(r). We select coefficients uj, u
′

j ∈
Qpj

mj as follows. We set u′

1 = −u1 = r1, so that

(r1 − 2u1) ≡ (r2 + 2u′

2) ≡ (r1 − u1 + u′

1) = ±3 (mod 5). (6a)
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For each pj > 7, we require uj 6= 2−1rj and u′

j /∈ {−2−1rj , uj − rj}, but may
otherwise leave uj unconstrained; we then have

(rj − 2uj), (rj + 2u′

j), (rj − uj + u′

j) 6= 0 for pj > 7. (6b)

Let u = σ−1(u1, . . . , ut) and u′ = σ−1(u′

1, . . . , u
′

t). By construction, we then
have Dn(r − 2u), Dn(r + 2u′), Dn(r − u + u′) > 0 by Lemma 5. There then
exist u′′, u′′′ ∈ Qn such that

r =u′′′ − u′′ + u + u , or (7a)

r =u′′′ − u′′ + u − u′ = u′′′ − u′′ − u′ + u , or (7b)

r =u′′′ − u′′ − u′ − u′ , (7c)

selecting u′′, u′′′ according to the desired signs for the latter two terms.

Thus, there are solutions to r = u1−u2±u3±· · ·±uℓ for uj ∈ Qn and ℓ = udiam(Γn), for
arbitrary choices of signs and r ∈ Zn. It follows that we may decompose r = ±u1±· · ·±uℓ

for arbitrary choices of sign, provided not all signs are the same. By considering walks
in Γn of length udiam(Γn) from 0 to either r or −r, we also have decompositions r =
u1 + · · ·+ uℓ and r = −u1 − · · · − uℓ for suitable choices of u1, . . . , uℓ ∈ Qn.

The principal motivation for Lemma 8 is to bound the diameters of graphs Gn over tensor
decompositions of the ring Zn:

Lemma 9. Let M, N > 1 be relatively prime integers, and let n = MN . Then we have
diam(Gn) > max {diam(GN), diam(GM)}. Furthermore, if M is coprime to 6, we have
diam(Gn) 6 max {diam(GN), udiam(ΓM) + 1} as well.

Proof. Let ρ : Zn −→ ZN ⊕ ZM be the natural isomorphism. Let r ∈ Zn be arbitrary,
and (r′, r′′) = ρ(r). If r = (−1)s1u1 + · · · + (−1)sℓuℓ for some ℓ > 0 and u1, . . . , uℓ ∈ Qn,
we also have

r′ = (−1)s1 u′

1 + · · · + (−1)sℓ u′

ℓ , (8a)

r′′ = (−1)s1 u′′

1 + · · · + (−1)sℓ u′′

ℓ , (8b)

where (u′

j, u
′′

j ) = ρ(uj). For ℓ = diam(Gn), it follows that ℓ > diam(GM) and ℓ >

diam(GN).
Suppose further that M is relatively prime to 6: then udiam(ΓM) is well-defined by

Lemma 8. For any a ∈ ZN , let ℓ > 0 be the length of a walk in GN from 0 to ℓ: there are
then u1, . . . , uℓ ∈ QN and s1, . . . , sℓ ∈ {0, 1} such that a = (−1)s1u′

1 + · · · + (−1)sℓu′

ℓ. If
ℓ > udiam(ΓM), then for any b ∈ ZM , there also exist quadratic units u′′

1, . . . , u
′′

ℓ ∈ QM

such that b = (−1)s1u′′′

1 +· · ·+ (−1)sℓu′′′

ℓ . We may always obtain such a walk of length ℓ >

udiam(ΓM) in GN by taking the shortest walk from 0 to a in GN , and repeatedly adding
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closed walks of length two to the end until we obtain a walk of length ℓ > udiam(ΓM).
For such a walk, we then have

r = ρ−1(a, b) = ρ−1

(

ℓ
∑

j=1

(−1)sju′

j ,

ℓ
∑

j=1

(−1)sju′′

j

)

=

ℓ
∑

j=1

(−1)sjρ−1(u′

j, u
′′

j ) =

ℓ
∑

j=1

(−1)sjuj , (9)

for some choice of quadratic units uj = ρ−1(u′

j, u
′′

j ) ∈ Qn and sj ∈ {0, 1}. If diam(GN) >
udiam(ΓM), this construction yields path-lengths udiam(ΓM) 6 ℓ 6 diam(GN); if instead
udiam(ΓM) > diam(GN), we obtain paths of length at most udiam(ΓM)+1, which is satu-
rated if there exist vertices a ∈ V (GN) whose distance da from 0 is such that udiam(ΓM)−
da is odd. In either case, we have diam(Gn) 6 max {diam(GN), udiam(ΓM) + 1}.

3.4 Diameter of Gn for n even

The notable differences between the cases of n odd and n even are due to the sparsity of
the quadratic units in Z2m compared to that of powers of other primes, and also that the
sum or difference of two units (quadratic or otherwise) is necessarily a zero divisor if n
is even. This results in a significant increase of the maximum diameter in the case of n
even, compared to n odd:

Theorem 10. Let n > 0 even. Let δ3(n) = 1 if n has prime factors pj ≡ 3 (mod 4) for
pj > 3, and δ3(n) = 0 otherwise. Then we have

diam(Gn) =



































































12, if n is a multiple of 24;

6, if n is an odd multiple of 12;

5, if n is a multiple of 10, but not of 12;

4, if n = 8K for K > 0 coprime to 15;

3 + δ3(n), if n = 6K for K > 0 coprime to 10;

3 + δ3(n), if n = 4K for K > 1 coprime to 30;

3, if n = 2K for K > 1 coprime to 30;

2, if n = 4;

1, if n = 2.

(10)

In particular, with Theorem 6, we have diam(Gn) 6 12 for all n, and diam(Gpm) 6 4 for
any prime p and m > 0.

Proof. We use Lemma 9 to reduce the task of characterizing diam(Gn) for n even to
a small collection of representative cases, by factoring n = NM for suitable choices of
coprime factors N and M .
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• Suppose n is a multiple of 12. We may let M be the largest factor of n which is
coprime to 12, and N = n/M .

– If N = 2m3m′

for m > 3, we then have u ∈ QN if and only if u ≡ 1 (mod 8)
and u ≡ 1 (mod 3), or equivalently if u ≡ 1 (mod 24). Then TN consists of
those q ∈ ZN such that r ≡ ±1 (mod 24). The distance of a vertex in GN

from 0 is then characterized by its residue modulo 24, in which case we may
show that diam(GN) = 12.

– Otherwise, N = 4 ·3m′

, in which case u ∈ QN if and only if u ≡ 1 (mod 4) and
u ≡ 1 (mod 3), or equivalently if u ≡ 1 (mod 12). Then TN consists of those
q ∈ ZN such that r ≡ ±1 (mod 12); similarly as in the case above, we then
have diam(GN) = 6.

Because diam(GM), udiam(ΓM) 6 4, we then have diam(Gn) = diam(GN) by
Lemma 9. Thus diam(Gn) = 12 if N is a multiple of 24; otherwise we have
diam(Gn) = 6.

• Suppose n is a multiple of 10, but not of 12: specifically, n is not a multiple of 60.
Let M be the largest factor of n which is coprime to 30, and N = n/M . We may
show that TN contains only residues which are equivalent to ±1 modulo 10:

– If n is an odd multiple of 30, we have N = 2 · 3m · 5m′

. Then u ∈ QN if and
only if u is odd, u ≡ 1 (mod 3), and u ≡ ±1 (mod 5); equivalently, if u ≡ 1
(mod 30) or u ≡ 19 ≡ −11 (mod 30).

– If n is a multiple of 10 but not of 30, then without loss of generality N = 2m15m2 .
We may show that r ∈ QN if and only if both r ≡ ±1 (mod 5), and

r ≡











1 (mod 2) if m1 = 1;

1 (mod 4) if m1 = 2;

1 (mod 8) if m1 > 3.

In each case, we have u ∈ QN if and only if u ∈ {1, 9} (mod N̄) for N̄ = 10,
N̄ = 20, or N̄ = 40 respectively.

As N is a multiple of 10 in either case, vertices r ∈ ZN such that r ≡ 5 (mod 10) can
only be reached by a path from 0 with length at least five, so that diam(GN) > 5.
We may show that this bound is tight by showing that every even residue can be
formed as a sum of four elements of Tn. Let x ≡m y denote equivalence of two
integers (or sets of integers) modulo m. Then, we may easily verify that

{±1 ± 1 ± 1 ± 1} ≡30 {26, 28, 0, 2, 4} ,

{±1 ± 1 ± 1 ± 11} ≡30 {8, 10, 12, 14, 16, 18, 20, 22} ,

−11 − 11 − 1 − 1 ≡30 6,

11 + 11 + 1 + 1 ≡30 24,

(11a)
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which proves the claim for n an odd multiple of 30. For n not a multiple of 30,
TN is the set of elements q ∈ ZN such that q = 5 ± 4 (mod N̄) or q = −5 ± 4
(mod N̄). It then suffices to show that all residues modulo 40 are exhausted by
sums or differences of four such residues: we have

{ (5 ± 4) + (5 ± 4) + (5 ± 4) + (5 ± 4) } ≡40 {4, 12, 20, 28, 36} ,

{ (5 ± 4) + (5 ± 4) + (5 ± 4) − (5 ± 4) } ≡40 {34, 2, 10, 18, 26} ,

{ (5 ± 4) + (5 ± 4) − (5 ± 4) − (5 ± 4) } ≡40 {24, 32, 0, 8, 16} ,

{ (5 ± 4) − (5 ± 4) − (5 ± 4) − (5 ± 4) } ≡40 {14, 22, 30, 38, 6} .

(11b)

As every odd residue modulo N is adjacent to an even residue, it follows that every
vertex in GN can be reached by a path of length at most five; then diam(GN) = 5.
As M is coprime to both 3 and 5, we have diam(GM) = 2 and udiam(ΓM) 6 3; thus
diam(Gn) = 5 by Lemma 9.

• Suppose that n = 8K for K coprime to 15. Let M be the largest odd factor of
N , and N = n/M = 2k for k > 3. By construction, M is coprime to 6, so that
udiam(ΓM) 6 3. We have u ∈ QN if and only if u ≡ 1 (mod 8): as every odd
residue modulo 8 can be expressed as a sum of three terms ±1, and every even
residue modulo 8 can be expressed as a sum of four terms ±1 (with 4 requiring
at least this many), it follows that diam(GN) = 4. By Lemma 9, it follows that
diam(Gn) = 4 as well.

• In the remaining cases, we either have n = 2K for K coprime to 15 and not a
multiple of 4, or n = 6K for K coprime to 10. We trivially have diam(Gn) = n

2
for

n ∈ {2, 4}; otherwise, n has odd zero divisors. As all walks of length one from 0 in
Gn end at quadratic units, and all walks of length two from 0 end at even elements
of Zn, we require walks of length at least three from 0 to reach odd zero divisors in
Zn. Thus, diam(Gn) > 3.

Let M be the largest factor of n which is coprime to 30. By construction, M is
coprime to 6, so that udiam(ΓM) = 2 + δ3(M) = 2 + δ3(n).

– If n = 2K for K coprime to 15 and not a multiple of 4, M is simply the largest
odd factor of n, in which case n = 2k for k ∈ {1, 2}. We then have N ∈ {2, 4},
so that diam(GN) = 1

2
N 6 2.

– If n = 6K for K coprime to 10, we have N = 2 · 3k for some k > 1. Then
u ∈ QN if and only if u ≡ 1 (mod 3) and is odd; that is, if u ≡ 1 (mod 6).
In particular, TN contains only elements which are equivalent to ±1 (mod 6);
from this we may easily show diam(GN) = 3.

In either case, it follows by Lemma 9 that

3 6 diam(Gn) 6 udiam(ΓM) + 1 = 3 + δ3(n). (12)
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If δ3(n) = 0, we then have diam(Gn) = 3; we may then restrict our attention to the
case δ3(n) = 1.

Let ρ : Zn −→ ZM ⊕ ZN be the natural isomorphism. As M is coprime to 15, we
have DM(a) > 0 for every a ∈ ZM by Lemma 5: then we may express any a ∈ ZM

as a difference a = u′

1 − u′

2 for u′

1, u
′

2 ∈ QM .

– If N = 2, any even residue r may be expressed as r = ρ−1(a, 0) = ρ−1(u′

1, 1)−
ρ−1(u′

2, 1), which is a difference of the two quadratic units uj = ρ−1(u′

j, 1).
Thus every even residue can be reached in Gn by a path of length two from 0.
As every odd residue is adjacent to an even residue, we may reach any vertex
by a path of length at most three; then diam(Gn) = 3.

– If N = 4 or N is a multiple of 6, we have u ∈ QN if and only if u ≡ 1
(mod N̄), where N̄ = 4 if N = 4, and N̄ = 6 otherwise. We may easily show
that the only residues r ∈ Zn which may be expressed as a difference of two
quadratic units are those such that r ≡ 0 (mod N̄); and for any residue a ≡ 0
(mod pj), we have SM(a) = SM(−a) = 0 by Lemma 5. Therefore, no residue
r = ρ−1(a,±2) ∈ Zn can be reached by a path of length two from 0 in Gn. As
any sum of the form ±u1±u2±u3 will be odd for u1, u2, u3 ∈ Qn, such residues
r are in fact at a distance at least four from zero. As diam(Gn) 6 3+δ3(n) = 4,
it follows that diam(Gn) = 4 = 3 + δ3(n) in this case.

In each case, the diameters agree with the formula in (10).

3.5 Perfectness

A graph G is perfect [10] if, for every induced subgraph H ⊆ G, the size ω(H) of the
maximum clique in H is equal to the chromatic number χ(H). This implies, in particular,
that G contains no odd holes (induced cycles of length 2k + 1 for k > 1). Chudnovsky,
Robertson, Seymour, and Thomas [11] characterized perfect graphs in terms of odd holes,
proving a conjecture of Berge [12]:

Strong Perfect Graph Theorem. A graph G is perfect if and only if neither G nor its
complement Ḡ contain odd holes.

Lemma 11. For n even or n = pm for p ≡ 3 (mod 4) prime, Gn is perfect.

Proof. If n is even, Gn is bipartite, in which case ω(Gn) = χ(Gn) = 2. Otherwise, suppose
that n = pm for a prime p ≡ 3 (mod 4). Consider any path x y z of length two in Gn such
that z is non-adjacent to x. As every unit is either a quadratic residue or the negation of
a quadratic residue modulo pm, it follows that x− z is not a unit. As x ≡ z (mod p), we
then have x− t ≡ z − t (mod p) for any t ∈ Zpm . The neighborhoods of x and z are then
the same, so that for any t adjacent to z, we obtain a cycle x y z t x in Gn; thus Gn does
not contain induced cycles of length greater than four. As Ḡn consists of p copies of the
pm−1-clique (with each clique consisting of some residue class modulo p), it also contains
no odd holes; then Gn is perfect.
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For any vertex colouring, the vertices of a given colour form an independent set by
definition; if α(G) is the size of the largest independent set in G, we then have χ(G) >

|V (G)| /α(G). Thus, any self-complementary graph G on n vertices is perfect only if
ω(G) >

√
n. Maistrelli and Penman [13] use this to show that the Payley graphs of prime

order are not perfect.2 Noting that odd-order Paley graphs are also quadratic unitary
Cayley graphs, we may extend this result as follows:

Theorem 12. Gn is perfect if and only if n is even, or n = pm for p ≡ 3 (mod 4) prime.

Proof. Using Lemma 11, it suffices to show that Gn is not perfect if n is odd and is not
a power of a prime p ≡ 3 (mod 4). We consider the cases of n divisible by an odd prime
p ≡ 1 (mod 4), and the case where n is divisible by p1p2 for distinct primes p1, p2 ≡ 3
(mod 4). In either case, we may obtain a simpler graph Gν , for ν a factor of n, which has
an odd hole:

• Suppose that n has a prime factor which is equivalent to 1 (mod 4): if n =
pm1

1 pm2

2 · · · pmt

t , we may suppose p1 ≡ 1 (mod 4) without loss of generality. We
then take ν = p1. The graph Gν is then self-complementary, as multiplication of
any pair of adjacent vertices by a non-quadratic unit r yields a non-adjacent pair,
and vice-versa. However, we have ω(Gν) <

√
ν by [13], so that Gν is not perfect.

• Suppose instead that n = pm1

1 pm2

2 · · · pmt

t , for p1, p2 ≡ 3 (mod 4): we then take
ν = p1p2. For r ∈ Z

×

ν such that r is a quadratic unit modulo p1 but the negation of
a quadratic residue modulo p2, multiplication by r maps adjacent pairs of vertices
(whose difference is either a quadratic residue modulo both p1 and p2 or the negation
of one modulo both residues) to non-adjacent pairs (where the status of the difference
as a quadratic residue differ modulo p1 and p2). Therefore, Gν is self-complementary.

As two vertices v, w ∈ V (Gν) are adjacent only if v−w 6≡ 0 (mod p1) and v−w 6≡ 0
(mod p2), the residues of two vertices in any clique modulo either p1 and p2 must
differ. It then follows that ω(Gν) 6 min{p1, p2} <

√
ν, so that Gν is not perfect.

In both cases, Gν contains an induced cycle x′

1 x′

2 · · · x′

ℓ x′

1 for some odd ℓ > 5 (again, as
Gν is self-complementary in both cases above). Let

µ =

{

pm1

1 , if ν = p1,

pm1

1 pm2

2 , if ν = p1p2 :
(13)

we may then obtain a similar odd hole in Gµ by identifying each x′

j with a corresponding
xj ∈ {0, . . . , ν − 1} ⊆ Zµ. Then xj − xk ∈ Qµ if and only if x′

j − x′

k ∈ Qν for any
1 6 j, k 6 ℓ, which implies that x1 x2 · · · xℓ x1 is a cycle without chords in Gµ.

Let N be the largest factor of n which is coprime to µ (i.e. N = n/µ), and let
ρ : Zn −→ Zµ ⊕ ZN be the natural isomorphism.

2This is in fact the simplest case of a more comprehensive theorem, which shows that the only perfect
Paley graph is that on nine vertices.
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• Suppose ν = p1 ≡ 1 (mod 4). If n is a multiple of 5, we may suppose that p1 = 5
without loss of generality; then N is coprime to 5. By Lemma 5, we then have
SN(r) > 0 for any −r ∈ QN : then GN contains a closed walk 0 u r 0 for some
u ∈ QN . We may then construct a closed walk y1 y2 · · · yℓ y1 in GN by setting
y1 = 0, y2 = u, y3 = r, y4 = 0, and concatenating this initial walk with 1

2
(ℓ − 3)

copies of the walk 0 u 0. We may then construct a walk

C = (x1, y1) (x2, y2) · · · (xℓ, yℓ) (x1, y1) (14)

in Gµ ⊗ GN : because x1 x2 · · · xℓ x1 is an induced cycle, so is C.

• Otherwise, suppose µ = pm1

1 pm2

2 . If n is a multiple of 3, we may suppose that p1 = 3
without loss of generality; then N is coprime to 3. By Theorem 7, we then have ℓ >
udiam(ΓN ), in which case by Lemma 8 we may construct a closed walk y1 y2 · · · yℓ y1

in GN by setting y1 = 0, and letting yj+1 − yj ∈ QN (or yj+1 − yj ∈ −QN ) whenever
xj+1 − xj ∈ Qµ (respectively yj+1 − yj ∈ −Qµ), and similarly for y1 − yℓ. Define the
walk C in Zµ⊕ZN as given in (14): we then have (xj+1, yj+1)−(xj, yj) ∈ ±(Qµ⊕Qν)
for each j, and similarly (x1, y1) − (xℓ, yℓ) ∈ ±(Qµ ⊕ QN ).

In either case, if we define vertices vj = ρ−1(xj , yj) ∈ V (Gn), the walk v1 v2 · · · vℓ v1 is an
induced cycle of odd length in Gn. Thus Gn is not perfect, unless n is even or a power of
a prime p ≡ 3 (mod 4).

4 Decomposing symplectic operators mod n

Our final result is a bound on the complexity of decompositions of symplectic operastors
modulo n, which follows from the bound on the diameter of Gn. We may define the
symplectic form (modulo n) as the 2m × 2m matrix

σ2m =

[

0m −Im

Im 0m

]

; (15)

the symplectic group modulo n Sp2m(Zn) is the set of 2m × 2m linear operators S (sym-
plectic operators) with coefficients in Zn such that S⊤σ2mS = σ2m.

Convention. For operators S ∈ Sp2m(Zn) for a fixed m, we will adopt the convention of
indexing the rows and columns by integers modulo 2m, starting with 1. Thus, for a row
k ∈ {m + 1, . . . , 2m} in the “bottom” half of a matrix S, the row k +m ∈ {1, . . . , m} will
be in the “top” half, and vice-versa.

Symplectic operators are clearly invertible operations, and therefore may be reduced
to I2m by Gaussian elimination. We also consider a variant procedure, in which row-
operations are constrained to themselves be symplectic. For the operator definitions
below, actions of operators are defined via the action of left-multiplication on a square
matrix over Zn.
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Definition IV. For row-indices j, k ∈ {1, . . . , 2m}, a symplectic row operation acting on

Sp2m(Zn) is one of the operators M
(α)
j , Ej,k , Cj,k , or C−1

j,k defined as follows:

• For any α ∈ Z
×

n , let µ
(α)
j ∈ GL2n(Zn) be the linear operator which multiplies the jth

row of its operand by α. Then, we define M
(α)
j = µ

(α)
j µ

(α–1)
j+m .

• Let εj,k ∈ GL2m(Zn) be the linear operator which exchanges rows j and k of its
operand. Then we define

Ej,k =

{

εj,k µ
(−1)
k , if j − k ≡ m (mod 2m);

εj,k εj+m,k+m otherwise,
(16)

for µ
(−1)
j as defined above.

• Let χj,k ∈ GL2m(Zn) be the linear operator which adds row j of its operand to row
k. Then we define

Cj,k =











χj,k , if j − k ≡ m (mod 2m);

χj,k χ−1
k+m,j+m , if 1 6 j, k 6 m or m + 1 6 j, k 6 2m;

χj,k χk+m,j+m , otherwise.

(17)

These operations are defined so as to be symplectic themselves; we wish to demonstrate
an upper bound to the number of such symplectic row operations required to transform
an arbitrary symplectic operator to the identity.

Hostens et al. [14] provide a decomposition of symplectic operators into O(m2 log(n))
symplectic row operations, in an application to the the decomposition of an important
family of unitary operators for quantum computation (specifically, the Clifford group over
qudits of dimension n). We refine this decomposition to obtain an upper bound to O(m2),
giving an upper bound which is independent of the modulus n.

4.1 Reduction to greatest common divisors modulo n

We first describe the decomposition of [14] in detail. The main concept is to reduce
S ∈ Sp2m(Zn) to another operator S ′ which acts trivially on, e.g., the standard basis
vectors êm, ê2m. This reduces the problem to decomposing an operator S̃ ∈ Sp2m−2(Zn),

S̃ =

[

A′

11 A′

12

A′

21 A′

22

]

for S ′ =

























0 0

A′

11

... A′

12

...
0 0

0 · · · 0 1 0 · · · 0 0
0 0

A′

21

... A′

22

...
0 0

0 · · · 0 0 0 · · · 0 1

























. (18)
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Embedding the matrix groups Sp2(Zn) ⊆ · · · ⊆ Sp2m−2(Zn) ⊆ Sp2m(Zn) in the manner
described above, one may recursively apply this process to obtain a sequence of symplectic
row operations which multiply to transform S to I2m. As the inverse of each symplectic
row operation is also a symplectic row operation, this yields a decomposition of S.

The reduction from S to S ′ as above is performed by a hybrid of Gaussian elimination
and Euclid’s algorithm for computing greatest common divisors. We illustrate this on
a 2m × 2 matrix [ v w ], for a pair of column vectors v = [ v1 v2 · · · v2m ]⊤ and
w = [ w1 w2 · · · w2m ]⊤ subject to the constraint w⊤σ2mv = 1. By performing suitable
symplectic row-additions, we may simulate the Euclidean algorithm in the second column,
for each pair of rows (j, j + m) for j ∈ {1, . . . , m}, to obtain































v1 w1

v2 w2

...
...

vm wm

vm+1 wm+1

vm+2 wm+2

...
...

v2m w2m































7−→































ṽ1 0

ṽ2 0
...

...

ṽm 0

ṽm+1 gcd(w1, wm+1, n)

ṽm+2 gcd(w2, wm+2, n)
...

...

ṽ2m gcd(wm, w2m, n)































=:































ṽ1 0

ṽ2 0
...

...

ṽm 0

ṽm+1 γ1

ṽm+2 γ2

...
...

ṽ2m γm































, (19a)

computing “greatest common divisors” (modulo n) in the lower block in the second col-
umn, and using these to clear the upper block. We then perform further row-additions to
compute further greatest common divisors in the second column, in pairs of rows (j, j +1)
for j ∈ {m + 1, . . . , 2m − 1}, in to perform the following transformation of the the second
column:



























0
0
...
0
γ1

γ2
...

γm



























7−→



























0
0
...
0
0

gcd(γ1, γ2)
...

γm



























7−→ · · · 7−→



























0
0
...
0
0
0
...

gcd(γ1, γ2, . . . , γ2m)



























. (19b)

Note that as w⊤σ2mv = 1, there is an integer combination of the coefficients of w which
is equivalent to 1 modulo n; then

gcd(γ1, . . . , γm) = gcd(w1, . . . , w2m, n) = 1 . (20)
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The above row-transformations then transform the two-column matrix [ v w ] as follows:































v1 w1

v2 w2

...
...

vm wm

vm+1 wm+1

vm+2 wm+2

...
...

v2m w2m































7→































v′

1 0

v′

2 0
...

...

1 0

v′

m+1 0
v′

m+2 0
...

...
v′

2m 1































=:
[

v′ ê2m

]

, (21)

where v′

m = 1 follows from ê⊤

2mσ2mv′ = w⊤σ2mv = 1. We may repeat the sequence of
transformations to compute greatest common divisors in the first column, for each pair of
rows (j, j + m) for j ∈ {1, . . . , m}, and subsequently in row-pairs (j, j + 1) in the upper
block:































v′

1 0

v′

2 0
...

...

1 0

v′

m+1 0
v′

m+2 0
...

...
v′

2m 1































7→































ϕ1 0

ϕ2 0
...

...

1 0

0 0
0 0
...

...
0 1































7→































0 0

gcd(ϕ1, ϕ2) 0
...

...

1 0

0 0
0 0
...

...
0 1































7→































0 0

0 0
...

...

1 0

0 0
0 0
...

...
0 1































. (22)

The reduction of [14] applies this procedure for v = Sêm, w = Sê2m. Applying these
transformations to S yields a matrix S ′ as illustrated in (18), as the other columns S ′êk

for k /∈ {m, 2m} must satisfy

ê⊤

k S ′σ2mêm = êkSσ2mSêm = 0, (23)

and similarly ê⊤

k S ′σ2mê2m = 0. The complexity of a single iteration of this reduction
is O(m log(n)), which arises from the cost of repeating Euclid’s algorithm (expressed in
fixed-width integer addition steps) O(m) times to reduce the mth and 2mth columns to
êm and ê2m respectively. Iterated m times over all column-pairs êj , êj+m, we obtain the
upper bound of O(m2 log(n)) reported by [14].

4.2 Improved upper bounds via the diameter of Gn

The complexity of the above decomposition may be reduced to O(m2), by substituting
an explicit simulation of Euclid’s algorithm via symplectic row transformations with a
product of constant size. This is possible by using short paths in the graphs Gn to reduce
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the number of addition steps in order to obtain coefficients γj and ϕj (or coefficients
equivalent to them, up to a multiplicative unit) using a constant number of row-operations.

The primary obstacle to reducing the complexity of a single iteration of the reduction
of [14] is the computation of greatest common divisors in row-pairs (j, j + m), arising
from constraints on obtaining “derived” row-additions on these row-pairs. The iterated
operator C α

j,k (for α ∈ {0, 1, . . . , n − 1}, which we identify with α ∈ Zn) can be easily
obtained in constant depth for j 6≡ k + m (mod 2m) and α ∈ Z

×

n , by the equality

C α
j,k = M

(α–1)
j Cj,k M

(α)
j , (24a)

which one may verify by the action on standard basis vectors. However, C α
j,j+m cannot

be decomposed in this manner: the closest we may come is in the case where α = u2 for
some u ∈ Z

×

n , in which case we have

C α
j,k = C u2

j,k = M
(u–1)
j Cj,j+m M

(u)
j . (24b)

We may apply the result of Theorem 10 as follows:

Lemma 13. For distinct row-indices j, k ∈ {1, . . . , 2m} and for any α ∈ Zn, there exists
a sequence of units a1, . . . , aℓ ∈ Z

×

n and signs s1, . . . , sℓ ∈ {−1, +1} for some ℓ 6 12, such
that

C α
j,k = M

a–1
1

j C s1

j,k M
a–1
2 a1

j C s2

j,k M
a–1
3 a2

j · · · M
a–1

ℓ
aℓ−1

j C sℓ

j,k Maℓ

j . (25)

Proof. It suffices to note that as diam(Gn) 6 12, there exists such a sequence of signs
and quadratic units u1, . . . , uℓ ∈ Qn such that α = s1u1 + s2u2 + · · · + sℓuℓ. We may
then take either aj = uj (in the case that k 6= j + m) or a unit aj such that uj = a2

j (in
the case that k = j + m), and apply the decompositions of (24) to obtain the desired
decomposition.3

We may apply this to reduce the complexity of decomposing symplectic operators as
follows. We use the following additional Lemma, whose proof is deferred to the appendix:

Lemma 14. Let γ = gcd(x, y, n): then there exist a, b, c ∈ Z such that ax + by + cn = γ
and where both a and b are relatively prime to n.

For a vector x = [ x1 x2 · · · x2m ]⊤, let γj = gcd(xj , xj+m, n) for each j ∈
{1, . . . , m}. Let aj be coefficients such that aj+mxj+m + ajxj ≡ γj (mod n) as guaranteed

3For k 6= j + m, we may in fact obtain the further bound of ℓ 6 3, as the diameter of the unitary
Cayley graph Xn = Cay(Zn, Z×

n
) is at most three [4].
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by Lemma 14, and define rj = a−1
j+maj : we then have

C r1

1,m+1 · · ·C rm

m,2m x =





































x1

x2

...

xm

xm+1 + a−1
m+1a1x1

xm+2 + a−1
m+2a2x2

...

x2m + a−1
2mamxm





































=





































x1

x2

...

xm

a−1
m+1γ1

a−1
m+2γ2

...

a−1
2mγm





































=:





































x1

x2

...

xm

γ̃1

γ̃2

...

γ̃m





































. (26)

Each coefficient γ̃j generates the same additive subgroup as γj modulo n; if d1, . . . , dm are
coefficients such that xj = dma−1

j+mγj = dmγ̃j, we then have

C−d1

m+1,1 · · ·C−dm

2m,m

[

x1 · · · xm γ̃1 · · · γ̃m

]⊤
=
[

0 · · · 0 γ̃1 · · · γ̃m

]⊤
. (27)

The above performs the reduction of (19a), up to multiplicative units, in O(m) symplectic
row operations. We may similarly emulate the reductions of (19b) and (22) in O(m)
symplectic row operations, using Lemma 14 to reduce the computation of greatest common
divisors (up to multiplicative unit factors) to performing powers of the operators Cj,k.

To summarize, using the bound on the diameter of the quadratic unitary graph Gn, we
may refine the decomposition of symplectic operators in [14] by substituting an explicit
simulation of Euclid’s algorithm by a constant-size sequence of symplectic operations.
This substitution provides an upper bound of O(m2) for a decomposition of an operator
S ∈ Sp2m(Zn), a bound independent of the modulus n.

5 Remarks and open problems

It should be noted that quadratic unitary graphs, while easy to describe, are closely tied to
unsolved problems in computational complexity theory. In particular, testing adjacency
in a graph Gn is precisely the quadratic residuacity problem, which has no known efficient
algorithms and is considered unlikely to be efficiently solvable (see e.g. Chapter 3 of [15]).4

Because of this, an efficient algorithm (deterministic or randomized) for discovering the
shortest path between two vertices in Gn should be considered unlikely. We may then
ask whether there are efficient algorithms for discovering “short” paths (having length
bounded by a fixed constant) between vertices in Gn.

4It should be noted that because quadratic residuacity can be reduced to integer factoring (by ex-
ploiting the Chinese Remainder theorem), and because factoring is solvable in a polynomial number of
operations with bounded error with a quantum computer [16], testing adjacency in Gn is also tractible
for a quantum computer.
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In Section 3.5, we provided a non-constructive proof that odd holes arise in quadratic
unitary graphs Gn which are odd but not a power of a prime p ≡ 3 (mod 4). Numeri-
cal investigation suggests that, in particular, five-holes (odd holes of size five) are very
common in those Gn which are not perfect graphs, even when restricting to five-holes
involving the arc 0 → 1. An explicit construction of five-holes in Gn, for all n for which
they exist, is likely to require insights into the structure of quadratic residues beyond the
results used in this article.

As we noted in the introduction and in Section 3.5, the graphs Gn for n ≡ 1 (mod 4)
prime are also Paley graphs. Shparlinski [17] shows that prime-order Paley graphs these
graphs have high energy (i.e. the operator 1-norm of the adjacency matrix), coming to
within a factor of (1 − 1

n
) of the upper bound Emax(n) = 1

2
n(
√

n + 1) shown in [18] for
graphs on n vertices. We may ask to what extent this and other properties of circulant
Paley graphs generalize for quadratic unitary graphs.
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A The existence of special Bézout coefficients

For a sequence of integers x1, x2, . . . , xk, Bézout coefficients are a corresponding sequence
of integer coefficients a1, a2, . . . , ak such that gcd(x1, . . . , xk) =

∑

ajxj ; the existence of
such a sequence of coefficients a1, . . . , ak is implied by the “simple” Euclidean algorithm.

Consider the greatest common divisior of a sequence x1, . . . , xk together with another
integer n: this is equivalent to computing γ = gcd(x1, . . . , xk) modulo n via Euclid’s
algorithm. We may compute greatest common divisors modulo n recursively, by comput-
ing γ2 = gcd(x1, x2) modulo n, then γ3 = gcd(gcd(x1, x2), x3) modulo n, and so forth.
However, for each intermediate stage 1 < j < k, it is not necessary to obtain γj itself, but
instead a similar residue γ̃j which generates the same subgroup modulo n; by definition,
the set of integer combinations modulo n of such an integer γ̃j is the same as the set of
integer combinations of γj, so that gcd(a, γ̃j) ≡ gcd(a, γj) (mod n) for any a ∈ Z.

The simplest application of this observation is that in Zn, any integer x may serve as
a substitute for its own greatest common divisor with n:

Lemma 15. Let γ = gcd(x, n) for x, n ∈ Z: then there exist a, b ∈ Z such that ax+bn = γ
and where a is relatively prime to n.
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Proof. Consider arbitrary a, b ∈ Z such that ax + bn = γ. Let α = gcd(a, γ): then α
divides a, x, and n. We have a

α
x = ( γ

α
− bD

α
) ∈ γ

α
Z. By construction, a

α
is an integer

relatively prime to γ

α
: thus, x is a multiple of γ

α
. Let m = αx

γ
: then m

α
= x

γ
∈ Z, and

furthermore is relatively prime to n. Then, if we let ā ∈ Z be such that ām
α

≡ 1 (mod n),
we have āx ≡ γ (mod n) as required.

We generalize the above lemma as follows. In order to compute a suitable integer γ̃j

which generates the same additive group (modulo n) as γj = gcd(γ̃j−1, xj) for each j, we
may compute Bézout coefficients a, b, c such that

axj + bγ̃j−1 + cn = γj. (28)

If we may find such a set of coefficients that a is coprime to n, we then have

xj + ãbγ̃j−1 ≡ ãγj (mod n) , (29)

where aã ≡ 1 (mod n) , in which case we may let γ̃j = ãγj. That is, if such a ∈ Z
×

n exists,
we may compute γ̃j as the sum of xj with some multiple of γ̃j−1, which can be computed
using a single addition operation and a single scalar multiplication. We show that such
Bézout coefficients may always be found by proving Lemma 14 (page 21):

Lemma 16. Let γ = gcd(x, y, n): then there exist a, b, c ∈ Z such that ax + by + cn = γ
and where both a and b are relatively prime to n.

Proof. Let x′ = gcd(x, n) and y′ = gcd(y, n): by Lemma 15, we then have x ≡ uxx
′

(mod n) and y ≡ uyy
′ (mod n) for multiplicative units ux, uy ∈ Z

×

n , and γ = gcd(x′, y′).
Define

x̄ =
x′

γ
, ȳ =

y′

γ
; (30)

these are both divisors of n, and form a relatively prime pair. We may then partition
the prime factors of n into those which divide x̄, those which divide ȳ, and those which
divide neither. Let Nx be the largest factor of n̄ whose prime factors divide x̄, Ny be the
largest factor of n̄ whose prime factors divide ȳ, and Nn = n/NxNy : then Nx and Ny are
coprime, so that Nn is also an integer and relatively prime both to Nx and Ny. We then
have n = NxNyNn.

As x̄ and ȳ are coprime, there exist integers a, b ∈ Z such that ax̄ + bȳ = 1. Note that
a is coprime to ȳ , from which it follows that a is coprime to Ny as well, as Ny and ȳ have
the same prime factors; similarly, b is coprime to Nx . Let

h =



















0 , if gcd(a, NxNd) = gcd(b, NyNn) = 1;

Ny , if gcd(a, NxNd) > 1, but gcd(b, NyNn) = 1;

Nx , if gcd(a, NxNd) = 1, but gcd(b, NyNn) > 1;

1 , otherwise;

(31)
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and let α = a + hȳ and β = b− hx̄. If a has prime factors in common with NxNn, then α
does not, by the fact that both ȳ and ȳNy are relatively prime to NxNn ; otherwise, α is
coprime to NxNn anyway by the coprimality of a to NxNn. In either case, we also have α
coprime to Ny, by the coprimality of a and ȳ. Thus, α is relatively prime to n = NxNyNn;
and similarly, β is coprime to n. We may then observe that

αx̄ + βȳ = (a + hȳ)x̄ + (b − hx̄)ȳ = ax̄ + bȳ = 1 , (32)

from which it follows that αx′ +βy′ = γ. Let ā, b̄ ∈ Z be such that uxā ≡ α (mod n) and
uyb̄ ≡ β (mod n) : then, we have

āx + b̄y ≡ αx′ + βy′ = γ (mod n) : (33)

as α, ux, β, and uy are all coprime to n, both ā and b̄ are also coprime to n.
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Corrigendum – submitted Jul 7, 2010

There is an unfortunate error in the proof of Theorem 12, in the case that n is divisible
by two distinct primes p1, p2 ≡ 3 (mod 4). It is easy to show that the graph Gp1p2

is
in fact not self-complementary. Therefore, for that particular case, the given approach
would neither prove that Gp1p2

is imperfect, nor that it has an odd hole if it is.
Fortunately, one may still prove the existence of odd holes for such graphs Gp1p2

.
Better still, for three separate cases, one may explicitly construct odd holes of size five (or
“five holes”). In what follows, we represent vertices by ordered pairs of residues modulo
p1 and p2:

• In the case that 2 is not a quadratic residue modulo either p1 or p2, we let p1 < p2,
which implies p2 = 11 or p2 > 17. There then exist consecutive triples of quadratic
residues modulo p2. If we let q, q + 1, q + 2 be a minimal such triple, one may show
that the five vertices

a =(0, 0); b = (1, 1); c =(2, q + 1); d =(0, 2); e =(2,−q) (34)

induce a five-hole in Gp1p2
.

• In the case that 2 is a quadratic residue modulo exactly one of p1 or p2 (say the
latter), we may show that the five vertices

a = (0, 0); b =(1, 1); c =(2, 2); d =(0, 3); e =(1, 4) (35)

induce a five-hole in Gp1p2
.

• In the case that 2 is a quadratic residue modulo both p1 and p2, there will be pairs
of consecutive quadratic residues modulo each of these primes. We let q − 1, q be
the minimal such residues modulo p1, and q′ − 1, q′ be the minimal such residues
modulo p2. It follows that q′ differs from −1, so that −q′ − 1 is a quadratic residue.
We may then show that the five vertices

a =(0, 0); b =(1, 1); c =(q,−q′) d =(0, 1) e = (1, q′) (36)

induce a five-hole in Gp1p2
.

Having explicitly constructed an odd hole in Gp1p2
, the rest of the proof carries forward

verbatim. These “five-holes” partially solve an open problem in the original article; it
would be interesting to obtain a classification of all five-holes in the imperfect graphs Gn,
both in this case and in the case of n divisible by a prime p ≡ 1 (mod 4).

A new version of this article which incorporates these corrections is also available at
[ www.arxiv.org/abs/1002.0713 ] (v2 or higher).
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