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Abstract

The Jacobi-Stirling numbers of the first and second kinds were introduced in the

spectral theory and are polynomial refinements of the Legendre-Stirling numbers.

Andrews and Littlejohn have recently given a combinatorial interpretation for the

second kind of the latter numbers. Noticing that these numbers are very similar

to the classical central factorial numbers, we give combinatorial interpretations for

the Jacobi-Stirling numbers of both kinds, which provide a unified treatment of

the combinatorial theories for the two previous sequences and also for the Stirling

numbers of both kinds.

1 Introduction

It is well known that Jacobi polynomials P
(α,β)
n (t) satisfy the classical second-order Jacobi

differential equation:

(1 − t2)y′′(t) + (β − α − (α + β + 2)t)y′(t) + n(n + α + β + 1)y(t) = 0. (1.1)

Let ℓα,β[y](t) be the Jacobi differential operator:

ℓα,β[y](t) =
1

(1 − t)α(1 + t)β

(

−(1 − t)α+1(1 + t)β+1y′(t)
)′

.

Then, equation (1.1) is equivalent to say that y = P
(α,β)
n (t) is a solution of

ℓα,β[y](t) = n(n + α + β + 1)y(t).
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Table 1: The first values of JSk
n(z)

k\n 1 2 3 4 5 6
1 1 z + 1 (z + 1)2 (z + 1)3 (z + 1)4 (z + 1)5

2 1 5 + 3z 21 + 24z + 7z2 85 + 141z + 79z2 + 15z3 341 + 738z + 604z2 + 222z3 + 31z4

3 1 14 + 6z 147 + 120z + 25z2 1408 + 1662z + 664z2 + 90z3

4 1 30 + 10z 627 + 400z + 65z2

5 1 55 + 15z

6 1

In [5, Theorem 4.2], for each n ∈ N, Everitt et al. gave the following expansion of the
n-th composite power of ℓα,β :

(1 − t)α(1 + t)βℓn
α,β [y](t) =

n
∑

k=0

(−1)k
(

P (α,β)Sk
n(1 − t)α+k(1 + t)β+ky(k)(t)

)(k)
,

where P (α,β)Sk
n are called the Jacobi-Stirling numbers of the second kind. They [5, (4.4)]

also gave an explicit summation formula for P (α,β)Sk
n numbers, showing that these numbers

depend only on one parameter z = α+β+1. So we can define the Jacobi-Stirling numbers
as the connection coefficients in the following equation:

xn =

n
∑

k=0

JSk
n(z)

k−1
∏

i=0

(x − i(z + i)), (1.2)

where JSk
n(z) = P (α,β)Sk

n, while the Jacobi-Stirling numbers of the first kind can be defined
by inversing the above equation:

n−1
∏

i=0

(x − i(z + i)) =
n
∑

k=0

jsk
n(z)xk, (1.3)

where jsk
n(z) = P (α,β)sk

n in the notations of [5].
It follows from (1.2) and (1.3) that the Jacobi-Stirling numbers JSk

n(z) and jsk
n(z)

satisfy, respectively, the following recurrence relations:

{

JS0
0(z) = 1, JSk

n(z) = 0, if k 6∈ {1, . . . , n},
JSk

n(z) = JSk−1
n−1(z) + k(k + z) JSk

n−1(z), n, k > 1.
(1.4)

and
{

js0
0(z) = 1, jsk

n(z) = 0, if k 6∈ {1, . . . , n},
jsk

n(z) = jsk−1
n−1(z) − (n − 1)(n − 1 + z) jsk

n−1(z), n, k > 1.
(1.5)

The first values of JSk
n(z) and jsk

n(z) are given, respectively, in Tables 1 and 2.
As remarked in [4, 5, 1], the previous definitions are reminiscent to the well-known

Stirling numbers of the second (resp. the first) kind S(n, k) (resp. s(n, k)), which are

the electronic journal of combinatorics 17 (2010), #R70 2



Table 2: The first values of jsk
n(z)

k\n 1 2 3 4 5
1 1 −z − 1 2z2 + 6z + 4 −6z3 − 36z2 − 66z − 36 24z4 + 240z3 + 840z2 + 1200z + 576
2 1 −3z − 5 11z2 + 48z + 49 −50z3 − 404z2 − 1030z − 820
3 1 −6z − 14 35z2 + 200z + 273
4 1 −10z − 30
5 1

defined (see [2]) by

xn =

n
∑

k=0

S(n, k)

k−1
∏

i=0

(x − i),

n−1
∏

i=0

(x − i) =

n
∑

k=0

s(n, k)xk.

and satisfy the following recurrences:

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k), n, k > 1, (1.6)

s(n, k) = s(n − 1, k − 1) − (n − 1)s(n − 1, k), n, k > 1. (1.7)

The starting point of this paper is the observation that the central factorial numbers
of the second (resp. the first) kind T (n, k) (resp. t(n, k)) seem to be more appropriate
for comparison. Indeed, these numbers are defined in Riordan’s book [8, p. 213-217] by

xn =

n
∑

k=0

T (n, k) x

k−1
∏

i=1

(

x +
k

2
− i

)

, (1.8)

and

x

n−1
∏

i=1

(

x +
n

2
− i
)

=

n
∑

k=0

t(n, k)xk. (1.9)

Therefore, if we denote the central factorial numbers of even indices by U(n, k) = T (2n, 2k)
and u(n, k) = t(2n, 2k), then :

U(n, k) = U(n − 1, k − 1) + k2U(n − 1, k), (1.10)

u(n, k) = u(n − 1, k − 1) − (n − 1)2u(n − 1, k). (1.11)

From (1.4)-(1.11), we easily derive the following result.

Theorem 1. Let n, k be positive integers with n > k. The Jacobi-Stirling numbers JSk
n(z)

and (−1)n−kjsk
n(z) are polynomials in z of degree n − k with positive integer coefficients.

Moreover, if

JSk
n(z) = a

(0)
n,k + a

(1)
n,kz + · · ·+ a

(n−k)
n,k zn−k, (1.12)

(−1)n−kjsk
n(z) = b

(0)
n,k + b

(1)
n,kz + · · ·+ b

(n−k)
n,k zn−k, (1.13)

then

a
(n−k)
n,k = S(n, k), a

(0)
n,k = U(n, k), b

(n−k)
n,k = |s(n, k)|, b

(0)
n,k = |u(n, k)|.
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Note that when z = 1, the Jacobi-Stirling numbers reduce to the Legendre-Stirling
numbers of the first and the second kinds [4]:

LS(n, k) = JSk
n(1), ls(n, k) = jsk

n(1). (1.14)

The integral nature of the involved coefficients in the above polynomials ask for com-
binatorial interpretations. Indeed, it is folklore (see [2]) that the Stirling number S(n, k)
(resp. |s(n, k)|) counts the number of partitions (resp. permutations) of [n] := {1, . . . , n}
into k blocks (resp. cycles). In 1974, in his study of Genocchi numbers, Dumont [3]
discovered the first combinatorial interpretation for the central factorial number U(n, k)
in terms of ordered pairs of supdiagonal quasi-permutations of [n] (cf. § 2). Recently,
Andrews and Littlejohn [1] interpreted JSk

n(1) in terms of set partitions (cf. § 2).
Several questions arise naturally in the light of the above known results:

• First of all, what is the combinatorial refinement of Andrews and Littlejohn’s model
which gives the combinatorial counterpart for the coefficient a

(i)
n,k?

• Secondly, is there any connection between the model of Dumont and that of Andrews
and Littlejohn?

• Thirdly, is there any combinatorial interpretation for the coefficient b
(i)
n,k in the

Jacobi-Stirling numbers of the first kind, generalizing that for the Stirling num-
ber |s(n, k)|?

The aim of this paper is to settle all of these questions. Additional results of the same
type are also provided.

In Section 2, after introducing some necessary definitions, we give two combinatorial
interpretations for the coefficient a

(i)
n,k in JSk

n(z) (0 6 i 6 n − k), and explicitly construct
a bijection between the two models. In Section 3, we give a combinatorial interpretation
for the coefficient b

(i)
n,k in jsk

n(z) (0 6 i 6 n − k). In Section 4, we give the combinatorial
interpretation for two sequences which are multiples of the central factorial numbers of odd
indices and we also establish a simple derivation of the explicit formula of Jacobi-Stirling
numbers.

2 Jacobi-Stirling numbers of the second kind JSk
n(z)

2.1 First interpretation

For any positive integer n, we define

[±n]0 := {0, 1,−1, 2,−2, 3,−3, . . . , n,−n}.

The following definition is equivalent to that given by Andrews and Littlejohn [1] in order
to interpret Legendre-Stirling numbers, where 0 is added to avoid empty block and also
to be consistent with the model for the Jacobi-Stirling numbers of the first kind.
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Definition 1. A signed k-partition of [±n]0 is a set partition of [±n]0 with k+1 non-empty
blocks B0, B1, . . .Bk with the following rules:

1. 0 ∈ B0 and ∀i ∈ [n], {i,−i} 6⊂ B0,

2. ∀j ∈ [k] and ∀i ∈ [n], we have {i,−i} ⊂ Bj ⇐⇒ i = min Bj ∩ [n].

For example, the partition π = {{2,−5}0, {±1,−2}, {±3}, {±4, 5}} is a signed 3-
partition of [±5]0, with {2,−5}0 := {0, 2,−5} being the zero-block.

Theorem 2. For any positive integers n and k, the integer a
(i)
n,k (0 6 i 6 n − k) is the

number of signed k-partitions of [±n]0 such that the zero-block contains i signed entries.

Proof. Let A
(i)
n,k be the set of signed k-partitions of [±n]0 such that the zero-block contains

i signed entries and ã
(i)
n,k = |A

(i)
n,k|. By convention ã

(0)
0,0 = 1. Clearly ã

(0)
1,1 = 1 and for ã

(i)
n,k 6= 0

we must have n > k > 1 and 0 6 i 6 n − k. We divide A
(i)
n,k into four parts:

(i) the signed k-partitions of [±n]0 with {−n, n} as a block. Clearly, the number of

such partitions is ã
(i)
n−1,k−1.

(ii) the signed k-partitions of [±n]0 with n in the zero-block. We can construct such
partitions by first constructing a signed k-partition of [±(n − 1)]0 with i signed
entries in the zero block and then insert n into the zero block and −n into one of
the k other blocks; so there are kã

(i)
n−1,k such partitions.

(iii) the signed k-partitions of [±n]0 with −n in the zero-block. We can construct such
partitions by first constructing a signed k-partition of [±(n − 1)]0 with i− 1 signed
entries in the zero-block, and then placing n into one of the k non-empty blocks, so
there are kã

(i−1)
n−1,k possibilities.

(iv) the signed k-partitions of [±n]0 where neither n nor −n appears in the zero-block
and {−n, n} is not a block. We can construct such partitions by first choosing a
signed k-partition of [±(n − 1)]0 with i signed entries in the zero block, and then

placing n and −n into two different non-zero blocks, so there are k(k − 1)ã
(i)
n−1,k

possibilities.

Summing up we get the following equation:

ã
(i)
n,k = ã

(i)
n−1,k−1 + kã

(i−1)
n−1,k + k2ã

(i)
n−1,k. (2.1)

By (1.4), it is easy to see that a
(i)
n,k satisfies the same recurrence and initial conditions as

ã
(i)
n,k, so they agree.

Since LS(n, k) =
∑n−k

i=0 a
(i)
n,k, Theorem 2 implies immediately the following result of

Andrews and Littlejohn [1].
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Table 3: The first values of JSk
n(z) in the basis {(z + 1)i}i=0,...,n−k

k\n 1 2 3 4 5
1 1 (z + 1) (z + 1)2 (z + 1)3 (z + 1)4

2 1 2 + 3(z + 1) 4 + 10(z + 1) + 7(z + 1)2 8 + 28(z + 1) + 34(z + 1)2 + 15(z + 1)3

3 1 8 + 6(z + 1) 52 + 70(z + 1) + 25(z + 1)2

4 1 20 + 10(z + 1)
5 1

Corollary 1. The integer LS(n, k) is the number of signed k-partitions of [±n]0.

By Theorems 1 and 2, we derive that the integer S(n, k) is the number of signed k-
partitions of [±n]0 such that the zero-block contains n−k signed entries. By definition, in
this case, there is no positive entry in the zero-block. By deleting the signed entries in the
remaining k blocks, we recover then the following known interpretation for the Stirling
number of the second kind.

Corollary 2. The integer S(n, k) is the number of partitions of [n] in k blocks.

For a partition π = {B1, B2, . . . , Bk} of [n] in k blocks, denote by min π the set of
minima of blocks

min π = {min(B1), . . . , min(Bk)}.

The following partition version of Dumont’s interpretation for the central factorial number
of even indices can be found in [6, Chap. 3].

Corollary 3. The integer U(n, k) is the number of ordered pairs (π1, π2) of partitions of
[n] in k blocks such that min(π1) = min(π2).

Proof. As U(n, k) = a
(0)
n,k, by Theorem 2, the integer U(n, k) counts the number of signed

k-partitions of [±n]0 such that the zero-block doesn’t contain any signed entry. For any
such a signed k-partition π, we apply the following algorithm: (i) move each positive
entry j of the zero-block into the block containing −j to obtain a signed k-partition
π′ = {{0}, B1, . . . , Bk}, (ii) π1 is obtained by deleting the negative entries in each block
Bi of π′, and π2 is obtained by deleting the positive entries and taking the opposite values
of signed entries in each block of π′. For example, if π = {{3}0, {±1,−3, 4}, {±2,−4}}
is the signed 2-partition of [±4]0, the corresponding ordered pair of partitions is (π1, π2)
with π1 = {{1, 3, 4}, {2}} and π2 = {{1, 3}, {2, 4}}.

The following result shows that the coefficients in the expansion of the Jacobi-Stirling
numbers JSk

n(z) in the basis {(z + 1)i}i=0,...,n−k are also interesting.

Theorem 3. Let

JSk
n(z) = d

(0)
n,k + d

(1)
n,k(z + 1) + · · ·+ d

(n−k)
n,k (z + 1)n−k. (2.2)

Then the coefficient d
(i)
n,k is a positive integer, which counts the number of signed k-

partitions of [±n]0 such that the zero-block contains only zero and i negative values.
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Proof. We derive from (1.4) that the coefficients d
(i)
n,k verify the following recurrence rela-

tion:
d

(i)
n,k = d

(i)
n−1,k−1 + kd

(i−1)
n−1,k + k(k − 1)d

(i)
n−1,k. (2.3)

As for the a
(i)
n,k, we can prove the result by a similar argument as in proof of Theorem 2.

Corollary 4. The integer Jk
n(−1) = d

(0)
n,k is the number of signed k-partitions of [±n]0

with {0} as zero-block.

Remark 1. A priori, it was not obvious that Jk
n(−1) =

n−k
∑

i=i

(−1)ia
(i)
n,k was positive.

From Theorem 1 and (2.2), we derive the following relations :

a
(i)
n,k =

n−k
∑

j=i

(

j

i

)

d
(j)
n,k, U(n, k) =

n−k
∑

j=i

d
(j)
n,k, LS(n, k) =

n−k
∑

j=i

2jd
(j)
n,k. (2.4)

We can give combinatorial interpretations for these formulas. For example, for the first
one, we can split the set A

(i)
n,k by counting the total number j of elements in the zero-block

(1 6 j 6 n − k). Then to construct such an element, we first take a signed k-partition

of [±n]0 with no positive values in the zero-block, so there are d
(j)
n,k possibilities, and then

we choose the j − i numbers that are positive among the j possibilities in the zero-block.
Similar proofs can be easily described for the two other formulas.

2.2 Second interpretation

We now propose a second model for the coefficient a
(i)
n,k, inspired by Foata and Schützen-

berger [7] and Dumont [3]. Let Sn be the set of permutations of [n]. In the rest of this
paper, we identify any permutation σ in Sn with its diagram D(σ) = {(i, σ(i)) : i ∈ [n]}.

For any finite set X, we denote by |X| its cardinality. If α = (i, j) ∈ [n]× [n], we define
prx(α) = i and pry(α) = j to be its x and y projections. For any subset Q of [n]× [n], we
define the x and y projections by

prx(Q) = {prx(α) : α ∈ Q}, pry(Q) = {pry(α) : α ∈ Q};

and the supdiagonal and subdiagonal parts by

Q+ = {(i, j) ∈ Q : i 6 j}, Q− = {(i, j) ∈ Q : i > j}.

Definition 2. A simply hooked k-quasi-permutation of [n] is a subset Q of [n] × [n] such
that

i) Q ⊂ D(σ) for some permutation σ of [n],

ii) |Q| = n − k and prx(Q
−) ∩ pry(Q

+) = ∅.
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Figure 1: The diagonal hook H4 and simply hooked quasi-permutation of [6].

Figure 2: An ordered pair of simply hooked quasi-permutations in C
(3)
10,3

A simply hooked k-quasi-permutation Q of [n] can be depicted by darkening the n−k
corresponding boxes of Q in the n×n square tableau. Conversely, if we define the diagonal
hook Hi := {(i, j) : i 6 j} ∪ {(j, i) : i 6 j} (1 6 i 6 n), then a black subset of the n × n
square tableau represents a simply hooked quasi-permutation if there is no black box on
the main diagonal and at most one black box in each row, in each column and in each
diagonal hook. An example is given in Figure 1.

Theorem 4. The integer a
(i)
n,k (1 6 i 6 n − k) is the number of ordered pairs (Q1, Q2) of

simply hooked k-quasi-permutations of [n] satisfying the following conditions:

Q−
1 = Q−

2 , |Q−
1 | = |Q−

2 | = i and pry(Q1) = pry(Q2). (2.5)

Proof. Let C
(i)
n,k be the set of ordered pairs (Q1, Q2) of simply hooked k-quasi-permutations

of [n] verifying (2.5), and let c
(i)
n,k = |C

(i)
n,k|.

For example, the ordered pair (Q1, Q2) with

Q1 = {(1, 3), (2, 5), (3, 7), (4, 1), (5, 6), (8, 2), (10, 9)},

Q2 = {(1, 5), (2, 3), (3, 6), (4, 1), (5, 7), (8, 2), (10, 9)},
(2.6)

is an element of C
(3)
10,3. A graphical representation is given in Figure 2.

We divide the set C
(i)
n,k into three parts:

• the ordered pairs (Q1, Q2) such that the n-th rows and n-th columns of Q1 and Q2

are empty. Clearly, there are c
(i)
n−1,k−1 such elements.
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• the ordered pairs (Q1, Q2) such that the n-th columns of Q1 and Q2 are not empty.

We can first construct an ordered pair (Q′
1, Q

′
2) of C

(i−1)
n−1,k and then choose a box in

the same position of the n-th column of both simply hooked quasi-permutations,
there are n − 1 − (n − k − 1) = k positions available. So there are kc

(i−1)
n−1,k such

elements.

• the ordered pairs (Q1, Q2) such that the n-th rows of Q1 and Q2 are not empty. We

can first construct an ordered pair (Q′
1, Q

′
2) of C

(i)
n−1,k and then add a black box in

the top of both simply hooked quasi-permutations, the box can be placed on any
of the n − 1 − (n − k − 1) = k positions whose columns are empty. So there are

k2c
(i)
n−1,k such elements.

In conclusion, we obtain the recurrence

c
(i)
n,k = c

(i)
n−1,k−1 + kc

(i−1)
n−1,k + k2c

(i)
n−1,k. (2.7)

By (1.4), we see that a
(i)
n,k satisfies the same recurrence relation and the initial conditions

as c
(i)
n,k, so they agree.

Remark 2. In the first model, we don’t have a direct interpretation for the integer k2 in
(2.1) because it results from after the simplification k+k(k−1) = k2. While in the second
one, we can see what the coefficient k2 counts in (2.7).

Definition 3. A supdiagonal (resp. subdiagonal) quasi-permutation of [n] is a simply
hooked quasi-permutation Q of [n] with Q− = ∅ (resp. Q+ = ∅).

From Theorems 1 and 4, we recover Dumont’s combinatorial interpretation for the
central factorial numbers of the second kind [3], and Riordan’s interpretation for the
Stirling numbers of the second kind (see [7, Prop. 2.7]).

Corollary 5. The integer U(n, k) is the number of ordered pairs (Q1, Q2) of supdiagonal
k-quasi-permutations of [n] such that pry(Q1) = pry(Q2).

Corollary 6. The integer S(n, k) is the number of subdiagonal (resp. supdiagonal) k-
quasi-permutations of [n].

Remark 3. To recover the classical interpretation of S(n, k) in Corollary 2, we can apply
a simple bijection, say ϕ, in [7, Prop. 3]. Starting from a k-partition π = {B1, . . . , Bk}
of [n], for each non-singleton block Bi = {p1, p2, . . . , pni

} with ni > 2 elements p1 < p2 <
. . . < pni

, we associate the subdiagonal quasi-permutation

Qi = {(pni
, pni−1

), (pni−1
, pni−2

), . . . , (p2, p1)}

with ni − 1 elements of [n] × [n]. Clearly, the union of all such Q′
is is a subdiagonal

quasi-permutation of cardinality n − k. An example of the map ϕ is given in Figure 3.
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Figure 3: The subdiagonal quasi-permutation corresponding to a partition via the map ϕ

π = {{1, 4, 6}, {2, 5}, {3}} −→

Finally, we derive from Theorem 4 and (1.14) a new combinatorial interpretation for
the Legendre-Stirling numbers of the second kind. The correspondence between the two
models will be established in the next subsection.

Corollary 7. The integer LS(n, k) is the number of ordered pairs (Q1, Q2) of simply
hooked k-quasi-permutations of [n] such that pry(Q1) = pry(Q2).

Remark 4. We haven’t found an interpretation neither for the numbers d
(i)
n,k in (2.2), nor

for the formulas expressed in (2.4), in terms of simply hooked quasi-permutations.

2.3 The link between the two models

We introduce a third interpretation which permits to make the connection easier between
the two previous models. Let Πn,k be the set of partitions of [n] in k non-empty blocks.

Definition 4. Let B
(i)
n,k be the set of triples (π1, π2, π3) in Πn,k+i × Πn,k+i × Πn,n−i such

that:

i) min(π1) = min(π2) and Sing(π1) = Sing(π2),

ii) min(π1) ∪ Sing(π3) = Sing(π1) ∪ min(π3) = [n],

where Sing(π) denotes the set of singletons in π.

We will need the following result.

Lemma 5. For (π1, π2, π3) ∈ B
(i)
n,k, we have:

i) |min(π1) ∩ min(π3)| = k,

ii) |Sing(π1) \ min(π3)| = i,

iii) |Sing(π3) \ min(π1)| = n − k − i.

Proof. By definition, we have |min(π1)| = k + i and |min(π3)| = n − i. Since min(π1) ∪
min(π3) = [n], by sieve formula, we deduce

|min(π1) ∩ min(π3)| = |min(π1)| + |min(π3)| − |min(π1) ∪ min(π3)| = k,

and

|Sing(π1) \ min(π3)| = |Sing(π1)| − |Sing(π1) ∩ min(π3)| = n − |min(π3)| = i.

In the same way, we obtain iii).
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Theorem 6. There is a bijection between A
(i)
n,k and B

(i)
n,k.

Proof. Let π = {B0, B1, . . . , Bk} be a signed k-partition in A
(i)
n,k. We construct the triple

(π1, π2, π3) of partitions by the following algorithm.

π1, π2: • Let π′ = {B′
0, B

′
1, . . . , B

′
k} be the partition obtained by exchanging all j and

−j in π if j ∈ B0 (resp. j ∈ [n]).

• Let π′′ = {B′′
0 , B

′′
1 , . . . , B

′′
k} be the partition obtained by removing all the

negative values in π′.

• Define π1 (resp. π2) to be the partition obtained by splitting the i positive
elements in B′′

0 into i singletons and deleting 0 in π′′.

The resulting partitions π1 and π2 are clearly elements of Πn,k+i and satisfy
min(π1) = min(π2) and Sing(π1) = Sing(π2).

π3: • For all p ∈ [n] \ min π such that B0 ∩ {±p} = ∅, move p into the zero-block
and obtain the partition π′ = {B′

0, B
′
1, . . . , B

′
k}. So there are n−k−i positive

entries in the new B′
0.

• Let π′′ = {B′′
0 , B

′′
1 , . . . , B

′′
k} be the partition obtained by removing all the

negative values in π′.

• Define π3 to be the partition obtained by splitting the n − k − i positive
elements in B′′

0 into n − k − i singletons and deleting 0 in π′′.

The resulting partition π3 is an element of Πn,n−i.

For any p ∈ [n] \min(π1), if p /∈ B0 then B0 ∩{±p} 6= ∅, by definition p will be moved
in the zero-block, otherwise p is already in the zero-block. Thus, the elements that are
not in min(π1) become singletons in π3. Hence min(π1) ∪ Sing(π3) = [n]. Similarly we
have Sing(π1) ∪ min(π3) = [n].

For example, for the signed 3-partition of [±10]0:

π = {{−4, 6, 7,−8,−10}0, {±1, 3, 4,−5,−7}, {±2,−3, 5,−6, 8}, {±9, 10}}, (2.8)

the corresponding triple is (π1, π2, π3) ∈ Π10,6 × Π10,6 × Π10,7 with :

π1 = {{1, 3, 7}, {2, 5, 6}, {4}, {8}, {9}, {10}},
π2 = {{1, 5, 7}, {2, 3, 6}, {4}, {8}, {9}, {10}},

π3 = {{1, 4}, {2, 8}, {3}, {5}, {6}, {7}, {9, 10}}.
(2.9)

Conversely, for any (π1, π2, π3) ∈ B
(i)
n,k, we construct π = {B0, B1, . . . , Bk} ∈ A

(i)
n,k with

the following procedure:

• Use the k elements of min(π1)∩min(π3), say p1, . . . , pk and 0 to create k +1 blocks:

B0 = {. . .}0, B1 = {±p1, . . .}, . . . , Bk = {±pk . . .}, (2.10)

where “. . .” means that the blocks are not completed. For instance, for the triple
(π1, π2, π3) in (2.9), we create four blocks: {0, . . .}, {±1, . . .}, {±2, . . .} and {±9, . . .}.
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• For each element xj of [n] \ min(π3) (1 6 j 6 i), suppose that xj appears in a
non-singleton block Cj of π3. Then put −xj into the zero-block B0 and xj into the
block in (2.10) that contains min(Cj). Note that we must show that min(Cj) ∈
min(π1) ∩ min(π3) to warrant the existence of such a block in (2.10). Indeed, if
min(Cj) /∈ min(π1), then, by Definition 4, we would have min(Cj) ∈ Sing(π3). For
the current example, we place the number 4 in the block that contains 1.

• For each element yj of [n] \min(π2) (1 6 j 6 n− k − i), suppose that yj appears in
a non-singleton block Dj (resp. Ej) of π2 (resp. π1). Then put −pj into the block
in (2.10) that contains min(Dj) and put pj into the block in (2.10) that contains
min(Ej) if this block dosn’t contains −pj , into the zero-block B0 otherwise. For the
current example, we place the number −3 in the block that contains 2. and 5 in
the block that contains 2, and 6 in the zero-block because the block that contains 2
already has −6.

Since ϕ described in Remark 3 maps each partition to a subdiagonal quasi-permutation,
for every triple (π1, π2, π2) of partitions satisfying the conditions of Theorem 6, we can
associate a triple (P1, P2, P3) = (ϕ(π1), ϕ(π2), ϕ(π3)) of subdiagonal quasi-permutations.
If Pi denotes the supdiagonal quasi-permutation obtained from Pi exchanging the x and y
coordonates, then (Q1, Q2) = (P1∪P3, P2∪P3) is an ordered pair of simply hooked quasi-
permutations satisfying the conditions of Theorem 4. Thus, we obtain a bijection between
the signed k-partitions and the ordered pairs of simply hooked quasi-permutations.

For example, for the signed 3-partition π in (2.8), the corresponding ordered pair of
simply hooked quasi-permutations (Q1, Q2) is then given by (2.6) (cf. Figure 2).

3 Jacobi-Stirling numbers of the first kind jsk
n(z)

For a permutation σ of [n]0 := [n]∪ {0} (resp. [n]) and for j ∈ [n]0 (resp. [n]), denote by
Orbσ(j) = {σℓ(j) : ℓ > 1} the orbit of j and min(σ) the set of its cyclic minima, i.e.,

min(σ) = {j ∈ [n] : j = min(Orbσ(j) ∩ [n])}.

Definition 5. Given a word w = w(1) . . . w(ℓ) on the finite alphabet [n], a letter w(j) is
a record of w if w(k) > w(j) for every k ∈ {1, . . . , j − 1}. We define rec(w) to be the
number of records of w and rec0(w) = rec(w) − 1.

For example, if w = 574862319, then the records are 5, 4, 2, 1. Hence rec(w) = 4.

Theorem 7. The integer b
(i)
n,k is the number of ordered pairs (σ, τ) such that σ (resp. τ)

is a permutation of [n]0 (resp. [n]) with k cycles, satisfying

i) 1 ∈ Orbσ(0),

ii) min σ = min τ ,

iii) rec0(w) = i, where w = σ(0)σ2(0) . . . σl(0) with σl+1(0) = 0.

the electronic journal of combinatorics 17 (2010), #R70 12



Proof. Let E
(i)
n,k be the set of ordered pairs (σ, τ) satisfying the conditions of Theorem 7

and e
(i)
n,k =

∣

∣

∣
E

(i)
n,k

∣

∣

∣
. We divide E

(i)
n,k into three parts:

(i) the ordered pairs (σ, τ) such that σ−1(n) = n. Then n forms a cycle in both σ and

τ and there are clearly e
(i)
n−1,k−1 possibilities.

(ii) the ordered pairs (σ, τ) such that σ−1(n) = 0. We can construct such ordered pairs

by first choosing an ordered pair (σ′, τ ′) in E
(i−1)
n−1,k and then inserting n in σ′ as image

of 0 (resp. in τ ′). Clearly, there are (n − 1)e
(i−1)
n−1,k possibilities.

(iii) the ordered pairs (σ, τ) such that σ−1(n) 6∈ {0, n}. We can construct such ordered

pairs by first choosing an ordered pair (σ′, τ ′) in E
(i)
n−1,k and then inserting n in σ′

(resp. in τ ′). Clearly, there are (n − 1)2e
(i)
n−1,k possibilities.

Summing up, we get the following equation:

e
(i)
n,k = e

(i)
n−1,k−1 + (n − 1)e

(i−1)
n−1,k + (n − 1)2e

(i)
n−1,k. (3.1)

By (1.5), it is easy to see that the coefficients b
(i)
n,k satisfy the same recurrence.

We show now how to derive from Theorems 1 and 7 the combinatorial interpretations
for the numbers |ls(n, k)|, |s(n, k)| and |u(n, k)|.

Corollary 8. The integer |ls(n, k)| is the number of ordered pairs (σ, τ) such that σ
(resp. τ) is a permutation of [n]0 (resp. [n]) with k cycles, satisfying 1 ∈ Orbσ(0) and
min σ = min τ .

Corollary 9. The integer |s(n, k)| is the number of permutations of [n] with k cycles.

Proof. By Theorem 7, the integer |s(n, k)| is the number of ordered pairs (σ, τ) in E
(n−k)
n,k .

Since σ and τ both have k cycles with same cyclic minima, the permutation σ is completely
determinated by τ because Orbσ(1) is the only non singleton cycle, of cardinality n−k+2,
so the n−k elements different from 0 and 1 are exactly the elements of [n]\min τ arranged
in decreasing order in the word w = σ(0)σ2(0) . . . 1 with σ(1) = 0.

The following result is the analogue interpretation to Corollary 3 for the central facto-
rial numbers of the first kind. This analogy is comparable with that of Stirling numbers
of the first kind |s(n, k)| versus the Stirling numbers of the second kind |S(n, k)|.

Corollary 10. The integer |u(n, k)| is the number of ordered pairs (σ, τ) ∈ S2
n with k

cycles, such that min(σ) = min(τ).

Indeed, the integer |u(n, k)| is the number of ordered pairs (σ, τ) in E
(0)
n,k. Theorem 7

implies that σ−1(1) = 0. The result follows then by deleting the zero in σ.

Remark 5. By the substitution i → n + 1 − i, we can derive that the number |u(n, k)| is
also the number of ordered pairs (σ, τ) in S2

n with k cycles, such that max(σ) = max(τ),
where max(σ) is the set of cyclic maxima of σ, i.e.,

max(σ) = {j ∈ [n] : j = max(Orbσ(j)}.
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Table 4: The first values of V (n, k) and |v(n, k)|

k\n 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 10 91 820 7381

2 1 35 966 24970

3 1 84 5082

4 1 165

5 1

k\n 0 1 2 3 4 5

0 1 1 9 225 11025 893025

1 1 10 259 12916 1057221

2 1 35 1974 172810

3 1 84 8778

4 1 165

5 1

4 Further results

4.1 Central factorial numbers of odd indices

For all n, k > 0, set

V (n, k) = 4n−kT (2n + 1, 2k + 1), v(n, k) = 4n−kt(2n + 1, 2k + 1).

Note that these numbers are also integers (see Table 4). By definition, we have the
following recurrence relations :

V (n, k) = V (n − 1, k − 1) + (2k + 1)2V (n − 1, k), (4.1)

v(n, k) = v(n − 1, k − 1) − (2n − 1)2v(n − 1, k). (4.2)

The natural question is to find a combinatorial interpretation for these numbers. We
can easily find it from combinatorial theory of generating functions.

Theorem 8. The integer V (n, k) is the number of partitions of [2n+1] into 2k+1 blocks
of odd cardinality.

Proof. This follows from the known generating function (see [8, p. 214]):

∑

n,k>0

V (n, k)tk
xn

n!
= sinh(t sinh(x)),

and the classical combinatorial theory of generating functions (see [7, Chp. 3] and [9,
Chp. 5]).

To interpret the integer |v(n, k)|, we need to introduce the following definition.

Definition 6. A (n, k)-Riordan complex is a (2k + 1)-tuple

((B1, σ1, τ1), . . . , (B2k+1, σ2k+1, τ2k+1))

such that
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i) {B1, . . . , B2k+1} is a partition of [2n + 1] into blocks Bi of odd cardinality;

ii) σi and τi (1 6 i 6 2k + 1) are fixed point free involutions on Bi\max(Bi).

Theorem 9. The integer |v(n, k)| is the number of (n, k)-Riordan complexes.

Proof. It is known that (see [8, p. 214]):

∑

n,k>0

|v(n, k)|tk
xn

n!
= sinh(t arcsin(x)),

and

arcsin(x) =
∑

n>0

((2n − 1)!!)2 x2n+1

(2n + 1)!
,

where (2n− 1)!! = (2n− 1)(2n− 3) · · ·3 · 1. Since (2n− 1)!! is the number of involutions
without fixed points on [2n] (see [2]), the integer ((2n − 1)!!)2 is the number of ordered
pairs of involutions without fixed points on [2n + 1]\{2n + 1}.

Define the numbers J(n, m) by:

exp

(

t
∑

n>1

((2n − 1)!!)2 x2n+1

(2n + 1)!

)

=
∑

n,m>0

J(2n + 1, m)tm
x2n+1

(2n + 1)!
.

Then, by the theory of exponential generating functions (see [7, Chp. 3] and [9, Chp. 5]),
the coefficient J(2n + 1, m) is the number of m-tuples

(B1, σ1, τ1), . . . , (Bm, σm, τm);

where {B1, . . . , Bm} is a partition of [2n + 1] with |Bi| odd (1 6 i 6 m), and σi and τi

are involutions without fixed points on Bi\max(Bi). As sinh(x) = (ex − e−x)/2, we have
|v(n, m)| = J(2n + 1, 2k + 1) if m = 2k + 1, and |v(n, m)| = 0 if m is even.

Remark 6. From (1.9), we can easily deduce that

n
∑

k=0

|v(n, k)|t2k+1 = t(t2 + 1)(t2 + 32) . . . (t2 + (2n − 1)2). (4.3)

It is interesting to note that a proof of the latter result is not obvious from (4.3). In the
same way, proofs for Theorems 8 and 9 by using (4.1) or (4.2) are not obvious.

Example 1. There are ten (2, 1)-Riordan complexes. Since the numbers n and k are
small, the involved involutions are identical transpositions.

{1}, {(2, 3), 4}, {5}, {1}, {2}, {(3, 4), 5},
{(1, 2), 3}, {4}, {5}, {(1, 2), 5}, {3}, {4},
{(1, 3), 4}, {2}, {5}, {(1, 3), 5}, {2}, {4},
{(1, 2), 4}, {3}, {5}, {(1, 4), 5}, {2}, {3},
{1}, {(2, 3), 5}, {4}, {1}, {(2, 4), 5}, {3},

where {1}, {(2, 3), 4}, {5} means that π = {{1}, {2, 3, 4}, {5}}, and σ = τ = 13245.
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4.2 Generating functions

In [5], the authors made a long calculation to derive an explicit formula for the Jacobi-
Stirling numbers. Actually, we can derive an explicit formula for the Jacobi-Stirling
numbers straightforwardly from the Newton interpolation formula:

xn =
n
∑

j=0









j
∑

r=0

xn
r

∏

k 6=i

(xr − xk)









j−1
∏

i=0

(x − xi). (4.4)

Indeed, making the substitutions x → m(z + m) and xi → i(z + i) in (4.4), we obtain

(m(m + z))n =
n
∑

j=0

JSj
n(z)(m − j + 1)j(z + m)j, (4.5)

where

JSj
n(z) =

j
∑

r=0

(−1)r [r(r + z)]n

r!(j − r)!(z + r)r(z + 2r + 1)j−r

, (4.6)

and (z)n = z(z + 1) . . . (z + n − 1).

Remark 7. If we substitute x by m(m + z) + k, we obtain [5, Theorem 4.1].

From the recurrence (1.4), we derive:

∑

n>k

JSk
n(z)xn =

x

1 − k(k + z)

∑

n>k−1

JSk−1
n (z)xn; (4.7)

therefore,

∑

n>k

JSk
n(z)xn =

xk

(1 − (z + 1)x)(1 − 2(z + 2)x) . . . (1 − k(z + k)x)
. (4.8)
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