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Abstract

We show for k > 2 that if q > 3 and n > 2k + 1, or q = 2 and n > 2k + 2,
then any intersecting family F of k-subspaces of an n-dimensional vector space over
GF (q) with

⋂

F∈F
F = 0 has size at most

[

n−1
k−1

]

− qk(k−1)
[

n−k−1
k−1

]

+ qk. This bound
is sharp as is shown by Hilton-Milner type families. As an application of this result,
we determine the chromatic number of the corresponding q-Kneser graphs.

1 Introduction

1.1 Sets

Let X be an n-element set and, for 0 6 k 6 n, let
(

X
k

)

denote the family of all subsets of

X of cardinality k. A family F ⊂
(

X
k

)

is called intersecting if for all F1, F2 ∈ F we have
F1 ∩ F2 6= ∅. Erdős, Ko, and Rado [5] determined the maximum size of an intersecting
family, and introduced the so-called shifting technique.
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Theorem 1.1 (Erdős-Ko-Rado) Suppose F ⊂
(

X
k

)

is intersecting and n > 2k. Then

|F| 6
(

n−1
k−1

)

. Excepting the case n = 2k, equality holds only if F =
{

F ∈
(

X
k

)

: x ∈ F
}

for some x ∈ X.

For any family F ⊂
(

X
k

)

, the covering number τ(F) is the minimum size of a set

that meets all F ∈ F . Theorem 1.1 shows that if F ⊂
(

X
k

)

is an intersecting family of
maximum size and n > 2k, then τ(F) = 1.

Hilton and Milner [15] determined the maximum size of an intersecting family with
τ(F) > 2. Later, Frankl and Füredi [9] gave an elegant proof of Theorem 1.2 using the
shifting technique.

Theorem 1.2 (Hilton-Milner) Let F ⊂
(

X
k

)

be an intersecting family with k > 2,

n > 2k + 1, and τ(F) > 2. Then |F| 6
(

n−1
k−1

)

−
(

n−k−1
k−1

)

+ 1. Equality holds only if

(i) F = {F} ∪ {G ∈
(

X
k

)

: x ∈ G, F ∩ G 6= ∅} for some k-subset F and x ∈ X \ F .

(ii) F = {F ∈
(

X
3

)

: |F ∩ S| > 2} for some 3-subset S if k = 3.

1.2 Vector spaces

Theorem 1.1 and Theorem 1.2 have natural extensions to vector spaces. We let V always
denote an n-dimensional vector space over the finite field GF (q). For k ∈ Z

+, we write
[

V
k

]

q
to denote the family of all k-dimensional subspaces of V . For a, k ∈ Z

+, define the

Gaussian binomial coefficient by
[

a

k

]

q

:=
∏

06i<k

qa−i − 1

qk−i − 1
.

A simple counting argument shows that the size of
[

V
k

]

q
is

[

n
k

]

q
. From now on, we will

omit the subscript q.
If two subspaces of V intersect in the zero subspace, then we say they are disjoint

or that they trivially intersect; otherwise we say the subspaces non-trivially intersect. A
family F ⊂

[

V
k

]

is called intersecting if any two k-spaces in F non-trivially intersect. The
maximum size of an intersecting family of k-spaces was first determined by Hsieh [16].
For alternate proofs of Theorem 1.3, see [4] and [11]. We remark that there is as yet no
analog of the shifting technique for vector spaces.

Theorem 1.3 (Hsieh) Suppose F ⊂
[

V
k

]

is intersecting and n > 2k. Then |F| 6
[

n−1
k−1

]

.

Equality holds if and only if F =
{

F ∈
[

V
k

]

: v ⊂ F
}

for some one-dimensional subspace
v ⊂ V , unless n = 2k.

Let the covering number τ(F) of a family F ⊂
[

V
k

]

be defined as the minimum dimen-
sion of a subspace of V that intersects all elements of F nontrivially. Theorem 1.3 shows
that, as in the set case, if F is a maximum intersecting family of k-spaces, then τ(F) = 1.
Families satisfying τ(F) = 1 are known as point-pencils.
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In this paper, we will extend Theorem 1.2 to vector spaces, and determine the maxi-
mum size of an intersecting family F ⊂

[

V
k

]

with τ(F) > 2. For two subspaces S, T 6 V ,
we let S +T 6 V denote their linear span. We observe that for a fixed 1-subspace E 6 V
and a k-subspace U with E 66 U , the family

FE,U = {U} ∪ {W ∈
[

V
k

]

: E 6 W, dim(W ∩ U) > 1}

is not maximal as we can add all subspaces in
[

E+U
k

]

that are not in FE,U . We will say
that F is an HM-type family if

F =
{

W ∈
[

V
k

]

: E 6 W, dim(W ∩ U) > 1
}

∪
[

E+U
k

]

for some E ∈
[

V
1

]

and U ∈
[

V
k

]

with E 66 U . If F is an HM-type family, then its size is

|F| = f(n, k, q) :=

[

n − 1

k − 1

]

− qk(k−1)

[

n − k − 1

k − 1

]

+ qk. (1.1)

The main result of the paper is the following theorem.

Theorem 1.4 Suppose k > 3, and either q > 3 and n > 2k +1, or q = 2 and n > 2k +2.
For any intersecting family F ⊆

[

V
k

]

with τ(F) > 2, we have |F| 6 f(n, k, q) (with
f(n, k, q) as in (1.1)). Equality holds only if

(i) F is an HM-type family,

(ii) F = F3 = {F ∈
[

V
k

]

: dim(S ∩ F ) > 2} for some S ∈
[

V
3

]

if k = 3.

Furthermore, if k > 4, then there exists an ǫ > 0 (independent of n, k, q) such that if
|F| > (1 − ǫ)f(n, k, q), then F is a subfamily of an HM-type family.

If k = 2, then a maximal intersecting family F of k-spaces with τ(F) > 1 is the family of
all 2-subspaces of a 3-subspace, and the conclusion of the theorem holds.

After proving Theorem 1.4 in Section 2, we apply this result to determine the chro-
matic number of q-Kneser graphs. The vertex set of the q-Kneser graph qKn:k is

[

V
k

]

. Two
vertices of qKn:k are adjacent if and only if the corresponding k-subspaces are disjoint.
In [3], the chromatic number of the q-Kneser graph qKn:2 is determined, and the mini-
mum colorings are characterized. In [18], the chromatic number of the q-Kneser graph is
determined in general for q > qk. In Section 4, we prove the following theorem.

Theorem 1.5 If k > 3, and either q > 3 and n > 2k + 1, or q = 2 and n > 2k + 2, then
the chromatic number of the q-Kneser graph is χ(qKn:k) =

[

n−k+1
1

]

. Moreover, each color
class of a minimum coloring is a point-pencil and the points determining a color are the
points of an (n − k + 1)-dimensional subspace.

In Section 5, we prove the non-uniform version of the Erdős-Ko-Rado theorem.

Theorem 1.6 Let F be an intersecting family of subspaces of V .
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(i) If n is even, then |F| 6
[

n−1
n/2−1

]

+
∑

i>n/2

[

n
i

]

.

(ii) If n is odd, then |F| 6
∑

i>n/2

[

n
i

]

.

For even n, equality holds only if F =
[

V
>n/2

]

∪ {F ∈
[

V
n/2

]

: E 6 F} for some E ∈
[

V
1

]

, or

if F =
[

V
>n/2

]

∪
[

U
n/2

]

for some U ∈
[

V
n−1

]

. For odd n, equality holds only if F =
[

V
>n/2

]

.

Note that Theorem 1.6 follows from the profile polytope of intersecting families which
was determined implicitly by Bey [1] and explicitly by Gerbner and Patkós [12], but the
proof we present in Section 5 is simple and direct.

2 Proof of Theorem 1.4

This section contains the proof of Theorem 1.4 which we divide into two cases.

2.1 The case τ (F) = 2

For any A 6 V and F ⊆
[

V
k

]

, let FA = {F ∈ F : A 6 F}. First, let us state some easy
technical lemmas.

Lemma 2.1 Let a > 0 and n > k > a + 1 and q > 2. Then

[

k

1

][

n − a − 1

k − a − 1

]

<
1

(q − 1)qn−2k

[

n − a

k − a

]

.

Proof. The inequality to be proved simplifies to

(qk−a − 1)(qk − 1)qn−2k < qn−a − 1. �

Lemma 2.2 Let E ∈
[

V
1

]

. If E 66 L 6 V , where L is an l-subspace, then the number

of k-subspaces of V containing E and intersecting L is at least
[

l
1

][

n−2
k−2

]

− q
[

l
2

][

n−3
k−3

]

(with

equality for l = 2), and at most
[

l
1

][

n−2
k−2

]

.

Proof. The k-spaces containing E and intersecting L in a 1-dimensional space are counted
exactly once in the first term. Those subspaces that intersect L in a 2-dimensional space
are counted

[

2
1

]

= q+1 times in the first term and −q times in the second term, thus once

overall. If a subspace intersects L in a subspace of dimension i > 3, then it is counted
[

i
1

]

times in the first term and −q
[

i
2

]

times in the second term, and hence a negative number
of times overall. �

Our next lemma gives bounds on the size of an HM-type family that are easier to work
with than the precise formula mentioned in the introduction.

Lemma 2.3 Let n > 2k + 1, k > 3 and q > 2. If F ⊂
[

V
k

]

is an HM-type family, then

(1 − 1
q3−q

)
[

k
1

][

n−2
k−2

]

<
[

k
1

][

n−2
k−2

]

− q
[

k
2

][

n−3
k−3

]

6 f(n, k, q) = |F| 6
[

k
1

][

n−2
k−2

]

.
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Proof. Since q
[

k
2

]

=
[

k
1

]

(
[

k
1

]

− 1)/(q + 1) and n > 2k + 1, the first inequality follows from
Lemma 2.1. Let F be the HM-type family defined by the 1-space E and the k-space
U . Then F contains all k-subspaces of V containing E and intersecting U , so that the
second inequality follows from Lemma 2.2. For the last inequality, Lemma 2.2 almost
suffices, but we also have to count the k-subspaces of

[

E+U
k

]

that do not contain E. Each
(k − 1)-subspace W of U is contained in q + 1 such subspaces, one of which is E + W .
On the other hand, E + W was counted at least q + 1 times since k > 3. This proves the
last inequality. �

Lemma 2.4 If a subspace S does not intersect each element of F ⊂
[

V
k

]

, then there is a

subspace T > S with dim T = dim S + 1 and |FT | > |FS|/
[

k
1

]

.

Proof. There is an F ∈ F such that S ∩ F = 0. Average over all T = S + E where E is
a 1-subspace of F . �

Lemma 2.5 If an s-dimensional subspace S does not intersect each element of F ⊂
[

V
k

]

,

then |FS| 6
[

k
1

][

n−s−1
k−s−1

]

.

Proof. There is an (s + 1)-space T with
[

n−s−1
k−s−1

]

> |FT | > |FS|/
[

k
1

]

. �

Corollary 2.6 Let F ⊆
[

V
k

]

be an intersecting family with τ(F) > s. Then for any

i-space L 6 V with i 6 s we have |FL| 6
[

k
1

]s−i[n−s
k−s

]

. �

Proof. If i = s, then clearly |FL| 6
[

n−s
k−s

]

. If i < s, then there exists an F ∈ F such that
F ∩ L = 0; now apply Lemma 2.4 s − i times. �

Before proving the q-analogue of the Hilton-Milner theorem, we describe the essential
part of maximal intersecting families F ⊂

[

V
k

]

with τ(F) = 2.

Proposition 2.7 Let n > 2k and let F ⊂
[

V
k

]

be a maximal intersecting family with
τ(F) = 2. Define T to be the family of 2-spaces of V that intersect all subspaces in F .
One of the following three possibilities holds:

(i) |T | = 1 and
[

n−2
k−2

]

< |F| <
[

n−2
k−2

]

+ (q + 1)
([

k
1

]

− 1
) [

k
1

][

n−3
k−3

]

;

(ii) |T | > 1, τ(T ) = 1, and there is an (l + 1)-space W (with 2 6 l 6 k) and a 1-space
E 6 W so that T = {M : E 6 M 6 W, dim M = 2}. In this case,
[

l
1

][

n−2
k−2

]

− q
[

l
2

][

n−3
k−3

]

6 |F| 6
[

l
1

][

n−2
k−2

]

+
[

k
1

]

(
[

k
1

]

−
[

l
1

]

)
[

n−3
k−3

]

+ ql
[

n−l
k−l

]

.

For l = 2, the upper bound can be strengthened to

|F| 6 (q + 1)
[

n−2
k−2

]

− q
[

n−3
k−3

]

+
[

k
1

]

(
[

k
1

]

−
[

2
1

]

)
[

n−3
k−3

]

+ q2
[

k
1

][

n−3
k−3

]

;

(iii) T =
[

A
2

]

for some 3-subspace A and F = {U ∈
[

V
k

]

: dim(U ∩ A) > 2}. In this case,

|F| = (q2 + q + 1)(
[

n−2
k−2

]

−
[

n−3
k−3

]

) +
[

n−3
k−3

]

.
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Proof. Let F ⊂
[

V
k

]

be a maximal intersecting family with τ(F) = 2. By maximality, F
contains all k-spaces containing a T ∈ T . Since n > 2k and k > 2, two disjoint elements
of T would be contained in disjoint elements of F , which is impossible. Hence, T is
intersecting.

Observe that if A, B ∈ T and A ∩ B < C < A + B, then C ∈ T . As an intersecting
family of 2-spaces is either a family of 2-spaces containing some fixed 1-space E or a
family of 2-subspaces of a 3-space, we get the following:

(∗): T is either a family of all 2-subspaces containing some fixed 1-space E that lie in
some fixed (l + 1)-space with k > l > 1, or T is the family of all 2-subspaces of a 3-space.

(i) : If |T | = 1, then let S denote the only 2-space in T and let E 6 S be any
1-space. Since τ(F) > 1, there exists an F ∈ F with E 66 F , for which we must have
dim(F ∩ S) = 1. As S is the only element of T , for any 1-subspace E ′ of F different
from F ∩ S, we have FE+E′ 6

[

k
1

][

n−3
k−3

]

by Lemma 2.5. Hence the number of subspaces

containing E but not containing S is at most (
[

k
1

]

− 1)
[

k
1

][

n−3
k−3

]

. This gives the upper
bound.

(ii) : Assume that τ(T ) = 1 and |T | > 1. By (∗), T is the set of 2-spaces in an (l+1)-
space W (with l > 2) containing some fixed 1-space E. Every F ∈ F \ FE intersects W
in a hyperplane. Let L be a hyperplane in W not on E. Then F contains all k-spaces on
E that intersect L. Hence the lower bound and the first term in the upper bound come
from Lemma 2.2. The second term comes from using Lemma 2.5 to count the k-spaces of
F that contain E and intersect a given F ∈ F (not containing E) in a point of F \W . If
l > 3, then there are ql hyperplanes in W not containing E and there are

[

n−l
k−l

]

k-spaces
through such a hyperplane; this gives the last term. For l = 2, we use the tight lower
bound in Lemma 2.2 to count the number of k-spaces on E that intersect L. There are
q2 hyperplanes in W , and they cannot be in T , so Lemma 2.5 gives the bound.

(iii) : This is immediate. �

Corollary 2.8 Let F ⊂
[

V
k

]

be a maximal intersecting family with τ(F) = 2. Suppose
q > 3 and n > 2k + 1, or q = 2 and n > 2k + 2. If F is at least as large as an HM-type
family and k > 3, then F is an HM-type family. If k = 3, then F is an HM-type family
or an F3-type family.

There exists an ǫ > 0 (independent of n, k, q) such that if k > 4 and |F| is at least
(1 − ǫ) times the size of an HM-type family, then F is an HM-type family.

Proof. Apply Proposition 2.7. Note that the HM-type families are precisely those from
case (ii) with l = k.

Let n = 2k + r where r > 1. We have |F|/
[

n−2
k−2

]

< 1 + q+1
(q−1)qr

[

k
1

]

in case (i) of

Proposition 2.7 by Lemma 2.1. We have |F|/
[

n−2
k−2

]

< (1
q

+ 1
(q−1)qr )

[

k
1

]

+ q2

(q−1)qr in case (ii)
when l < k. In both cases, for q > 3 and k > 3, or q = 2, k > 4, and r > 2, this is less
than (1− ǫ) times the lower bound on the size of an HM-type family given in Lemma 2.3.
Using the stronger estimate in Lemma 2.3, we find the same conclusion for q = 2, k = 3,
and r > 2.
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In case (iii), |F3| =
[

3
2

][

n−2
k−2

]

− q3−q
q−1

[

n−3
k−3

]

. For k > 4, this is much smaller than the size
of the HM-type families. For k = 3, the two families have the same size. �

Proposition 2.9 Suppose that k > 3 and n > 2k. Let F ⊆
[

V
k

]

be an intersecting family
with τ(F) > 2. Let 3 6 l 6 k. If there is an l-space that intersects each F ∈ F and

|F| >
[

l
1

][

k
1

]l−1[n−l
k−l

]

, (2.2)

then there is an (l − 1)-space that intersects each F ∈ F .

Proof. By averaging, there is a 1-space P with |FP | > |F|/
[

l
1

]

. If τ(F) = l, then by

Corollary 2.6, |F| 6
[

l
1

][

k
1

]l−1[n−l
k−l

]

, contradicting the hypothesis. �

Corollary 2.10 Suppose k > 3 and either q > 3 and n > 2k+1, or q = 2 and n > 2k+2.

Let F ⊆
[

V
k

]

be an intersecting family with τ(F) > 2. If |F| >
[

3
1

][

k
1

]2[n−3
k−3

]

, then
τ(F) = 2; that is, F is contained in one of the systems in Proposition 2.7, which satisfy
the bound on |F|.

Proof. By Lemma 2.1 and the conditions on n and q, the right hand side of (2.2) decreases
as l increases, where 3 6 l 6 k. Hence, by Proposition 2.9, we can find a 2-space that
intersects each F ∈ F . �

Remark 2.11 For n > 3k, all systems described in Proposition 2.7 occur.

2.2 The case τ (F) > 2

Suppose that F ⊂
[

V
k

]

is an intersecting family and τ(F) = l > 2. We shall derive a
contradiction from |F| > f(n, k, q), and even from |F| > (1 − ǫ)f(n, k, q) for some ǫ > 0
(independent of n, k, q).

2.2.1 The case l = k

First consider the case l = k. Then |F| 6
[

k
1

]k
by Corollary 2.6. On the other hand,

|F| >

(

1 − 1
q3−q

)

[

k
1

][

n−2
k−2

]

>
(

1 − 1
q3−q

)

[

k
1

]k−1 (

(q − 1)qn−2k
)k−2

by Lemma 2.3 and Lemma 2.1. If either q > 3, n > 2k+1 or q = 2, n > 2k+2, then either
k = 3, (n, k, q) = (9, 4, 3), or (n, k, q) = (10, 4, 2). If (n, k, q) = (9, 4, 3) then f(n, k, q) =
3837721, and 404 = 2560000, which gives a contradiction. If (n, k, q) = (10, 4, 2), then
f(n, k, q) = 153171, and 154 = 50625, which again gives a contradiction. Hence k = 3.
Now |F| > (1 − 1

q3−q
)
[

k
1

][

n−2
k−2

]

gives a contradiction for n > 8, so n = 7. Therefore, if we

assume that n > 2k + 1 and either q > 3, (n, k) 6= (7, 3) or q = 2, n > 2k + 2 then we are
not in the case l = k.

It remains to settle the case n = 7, k = l = 3, and q > 3. By Lemma 2.4, we can choose
a 1-space E such that |FE| > |F|/

[

3
1

]

and a 2-space S on E such that |FS| > |FE|/
[

3
1

]

.
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Then |FS| > q+1 since |F| >
[

2
1

][

3
1

]2
. Pick F ′ ∈ F disjoint from S and define H := S+F ′.

All F ∈ FS are contained in the 5-space H . Since |F| >
[

5
3

]

, there is an F0 ∈ F not
contained in H . If F0∩S = 0, then each F ∈ FS is contained in S +(H ∩F0); this implies
|FS| 6 q + 1, which is impossible. Thus, all elements of F disjoint from S are in H .

Now F0 must meet F ′ and S, so F0 meets H in a 2-space S0. Since |FS| > q + 1,
we can find two elements F1, F2 of FS with the property that S0 is not contained in the
4-space F1 +F2. Since any F ∈ F disjoint from S is contained in H and meets F0, it must
meet S0 and also F1 and F2. Hence the number of such F ’s is at most q5. Altogether

|F| 6 q5 +
[

2
1

][

3
1

]2
; the first term comes from counting F ∈ F disjoint from S and the

second term comes from counting F ∈ F on a given one-dimensional subspace E < S.
This contradicts |F| > (1 − 1

q3−q
)
[

3
1

][

5
1

]

.

2.2.2 The case l < k

Assume, for the moment, that there are two l-subspaces in V that non-trivially intersect
all F ∈ F , and that these two l-spaces meet in an m-space, where 0 6 m 6 l − 1. By

Corollary 2.6, for each 1-subspace P we have |FP | 6
[

k
1

]l−1[n−l
k−l

]

, and for each 2-subspace

L we have |FL| 6
[

k
1

]l−2[n−l
k−l

]

. Consequently,

|F| 6
[

m
1

][

k
1

]l−1[n−l
k−l

]

+ (
[

l
1

]

−
[

m
1

]

)2
[

k
1

]l−2[n−l
k−l

]

. (2.3)

The upper bound (2.3) is a quadratic in x =
[

m
1

]

and is largest at one of the extreme

values x = 0 and x =
[

l−1
1

]

. The maximum is taken at x = 0 only when
[

l
1

]

− 1
2

[

k
1

]

> 1
2

[

l−1
1

]

;
that is, when k = l. Since we assume that l < k, the upper bound in (2.3) is largest for
m = l − 1. We find

|F| 6
[

l−1
1

][

k
1

]l−1[n−l
k−l

]

+ (
[

l
1

]

−
[

l−1
1

]

)2
[

k
1

]l−2[n−l
k−l

]

.

On the other hand,

|F| > (1 − 1
q3−q

)
[

k
1

][

n−2
k−2

]

> (1 − 1
q3−q

)
[

k
1

]l−1[n−l
k−l

]

((q − 1)qn−2k)l−2.

Comparing these, and using k > l, n > 2k + 1, and n > 2k + 2 if q = 2, we find either
(n, k, l, q) = (9, 4, 3, 3) or q = 2, n = 2k + 2, l = 3, and k 6 5. If (n, k, l, q) = (9, 4, 3, 3)
then f(n, k, q) = 3837721, while the upper bound is 3508960, which is a contradiction. If
(n, k, l, q) = (12, 5, 3, 2) then f(n, k, q) = 183628563, while the upper bound is 146766865,
which is a contradiction. If (n, k, l, q) = (10, 4, 3, 2) then f(n, k, q) = 153171, while the
upper bound is 116205, which is a contradiction. Hence, under our assumption that there
are two distinct l-spaces that meet all F ∈ F , the case 2 < l < k cannot occur.

We now assume that there is a unique l-space T that meets all F ∈ F . We can pick
a 1-space E < T such that |FE| > |F|/

[

l
1

]

. Now there is some F ′ ∈ F not on E, so E is

in
[

k
1

]

lines such that each F ∈ FE contains at least one of these lines. Suppose L is one
of these lines and L does not lie in T ; we can enlarge L to an l-space that still does not
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meet all elements of F , so |FL| 6
[

k
1

]l−1[n−l−1
k−l−1

]

by Lemma 2.4 and Lemma 2.5. If L does

lie on T , we have |FL| 6
[

k
1

]l−2[n−l
k−l

]

by Corollary 2.6. Hence,

|F| 6
[

l
1

]

|FE| 6
[

l
1

]

(

[

l−1
1

]

(
[

k
1

]l−2[n−l
k−l

]

) + (
[

k
1

]

−
[

l−1
1

]

)(
[

k
1

]l−1[n−l−1
k−l−1

]

)
)

.

On the other hand, we have |F| >
(

1 − 1
q3−q

)

((q − 1)qn−2k)l−2
[

k
1

]l−1[n−l
k−l

]

. Under our

standard assumptions n > 2k + 1 and n > 2k + 2 if q = 2, this implies q = 2, n = 2k + 2,
l = 3, which gives a contradiction. We showed: If q > 3 and n > 2k + 1 or if q = 2
and n > 2k + 2, then an intersecting family F ⊂

[

V
k

]

with |F| > f(n, k, q) must satisfy
τ(F) 6 2. Together with Corollary 2.8, this proves Theorem 1.4.

3 Critical families

A subspace will be called a hitting subspace (and we shall say that the subspace intersects
F), if it intersects each element of F .

The previous results just used the parameter τ , so only the hitting subspaces of smallest
dimension were taken into account. A more precise description is possible if we make the
intersecting system of subspaces critical.

Definition 3.1 An intersecting family F of subspaces of V is critical if for any two
distinct F, F ′ ∈ F we have F 6⊂ F ′, and moreover for any hitting subspace G there is a
F ∈ F with F ⊂ G.

Lemma 3.2 For every non-extendable intersecting family F of k-spaces there exists some
critical family G such that

F = {F ∈
[

V
k

]

: ∃ G ∈ G, G ⊆ F}.

Proof. Extend F to a maximal intersecting family H of subspaces of V , and take for G
the minimal elements of H. �

The following construction and result are an adaptation of the corresponding results
from Erdős and Lovász [6]:

Construction 3.3 Let A1, . . . , Ak be subspaces of V such that dim Ai = i and dim(A1 +
· · ·+ Ak) =

(

k+1
2

)

. Define

Fi = {F ∈
[

V
k

]

: Ai ⊆ F, dim Aj ∩ F = 1 for j > i}.

Then F = F1 ∪ . . .∪Fk is a critical, non-extendable, intersecting family of k-spaces, and
|Fi| =

[

i+1
1

][

i+2
1

]

· · ·
[

k
1

]

for 1 6 i 6 k.
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For subsets Erdős and Lovász proved that a critical, non-extendable, intersecting fam-
ily of k-sets cannot have more than kk members. They conjectured that the above con-
struction is best possible but this was disproved by Frankl, Ota and Tokushige [10]. Here
we prove the following analogous result.

Theorem 3.4 Let F be a critical, intersecting family of subspaces of V of dimension at

most k. Then |F| 6
[

k
1

]k
.

Proof. Suppose that |F| >
[

k
1

]k
. By induction on i, 0 6 i 6 k, we find an i-dimensional

subspace Ai of V such that |FAi
| >

[

k
1

]k−i
. Indeed, since by induction |FAi

| > 1 and F is
critical, the subspace Ai is not hitting, and there is an F ∈ F disjoint from Ai. Now all
elements of FAi

meet F , and we find Ai+1 > Ai with |FAi+1
| > |FAi

|/
[

k
1

]

. For i = k this
is a contradiction. �

Remark 3.5 For l 6 k this argument shows that there are not more than
[

l
1

][

k
1

]l−1

l-spaces in F .

If l = 3 and τ > 2 then for the size of F the previous remark essentially gives
[

3
1

][

k
1

]2[n−3
k−3

]

, which is the bound in Corollary 2.10.

Modifying the Erdős-Lovász construction (see Frankl [7]), one can get intersecting
families with many l-spaces in the corresponding critical family.

Construction 3.6 Let A1, . . . , Al be subspaces with dim A1 = 1, dim Ai = k + i − l for
i > 2. Define Fi = {F ∈

[

V
k

]

: Ai 6 F, dim(F ∩ Aj) > 1 for j > i}. Then F1 ∪ . . . ∪ Fl is

intersecting and the corresponding critical family has at least
[

k−l+2
1

]

· · ·
[

k
1

]

l-spaces.

For n large enough the Erdős-Ko-Rado theorem for vector spaces follows from the
obvious fact that no critical, intersecting family can contain more than one 1-dimensional
member. The Hilton-Milner theorem and the stability of the systems follow from (∗)
which was used to describe the intersecting systems with τ = 2. As remarked above, the
fact that the critical family has to contain only spaces of dimension 3 or more limits its
size to O(

[

n
k−3

]

), if k is fixed and n is large enough. Stronger and more general stability
theorems can be found in Frankl [8] for the subset case.

4 Coloring q-Kneser graphs

In this section, we prove Theorem 1.5. We will need the following result of Bose and
Burton [2] and its extension by Metsch [17].

Theorem 4.1 (Bose-Burton) If E is a family of 1-subspaces of V such that any k-
subspace of V contains at least one element of E , then |E| >

[

n−k+1
1

]

. Furthermore,

equality holds if and only if E =
[

H
1

]

for some (n − k + 1)-subspace H of V .
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Proposition 4.2 (Metsch) If E is a family of
[

n−k+1
1

]

− ε 1-subspaces of V , then the

number of k-subspaces of V that are disjoint from all E ∈ E is at least εq(k−1)(n−k).

Proof of Theorem 1.5. Suppose that we have a coloring with at most
[

n−k+1
1

]

colors.
Let G (the good colors) be the set of colors that are point-pencils and let B (the bad
colors) be the remaining set of colors. Then |G| + |B| 6

[

n−k+1
1

]

. Suppose |B| = ε > 0.

By Proposition 4.2, the number of k-spaces with a color in B is at least εq(k−1)(n−k), so
that the average size of a bad color class is at least q(k−1)(n−k). This must be smaller than
the size of a HM-type family. Thus, by Lemma 2.3,

q(k−1)(n−k) 6

[

k

1

][

n − 2

k − 2

]

.

For k > 3 and q > 3, n > 2k+1 or q = 2, n > 2k+2, this is a contradiction. (The weaker
form of Proposition 4.2, as stated in [17], suffices unless q = 2, n = 2k + 2.) If |B| = 0,
all color classes are point-pencils, and we are done by Theorem 4.1. �

5 Proof of Theorem 1.6

Let a + b = n, a < b and let Fa = F ∩
[

V
a

]

and Fb = F ∩
[

V
b

]

. We prove

|Fa| + |Fb| 6
[

n
b

]

(5.4)

with equality only if Fa = ∅ and Fb =
[

V
b

]

.
Adding up (5.4) for n/2 < b 6 n gives the bound on |F| in Theorem 1.6 if n is odd;

adding the result of Greene and Kleitman [14] that states |Fn/2| 6
[

n−1
n/2−1

]

proves it for
even n. For the uniqueness part of Theorem 1.6, we only have to note that if n is even
then, by results of Godsil and Newman [13], we must have Fn/2 = {F ∈

[

V
n/2

]

: E 6 F}

for some E ∈
[

V
1

]

or Fn/2 =
[

U
n/2

]

for some U ∈
[

V
n−1

]

.

Now we prove (5.4). Consider the bipartite graph with vertex set (
[

V
a

]

,
[

V
b

]

) and join

A ∈
[

V
a

]

and B ∈
[

V
b

]

if A ∩ B = 0. Observe that Fa ∪ Fb is an independent set in this
graph. Now, this graph is regular with degree qab. Therefore any independent set in this
graph has size at most

[

n
b

]

by König’s Theorem. Moreover, independent sets of size
[

n
b

]

can only be
[

V
a

]

or
[

V
b

]

, but the former is not an intersecting family. This proves (5.4). �
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P. Erdős on his 60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János
Bolyai, Vol. 10. North-Holland, Amsterdam, 1975.

[7] P. Frankl. On families of finite sets no two of which intersect in a singleton. Bull.
Austral. Math. Soc., 17(1):125–134, 1977.

[8] P. Frankl. On intersecting families of finite sets. J. Combin. Theory Ser. A, 24(2):146–
161, 1978.
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