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Université du Québec à Montréal

CP 8888 Succ. Centre-Ville
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Abstract

In this article, we show that Loday’s realization of the associahedron has the the

same center of gravity as the permutahedron. This proves an observation made by

F. Chapoton.

We also prove that this result holds for the associahedron and the cyclohedron

as realized by the first author and C. Lange.

1 Introduction.

This article is the continuation of previous work [7, 8, 1] devoted to the study of generalized
associahedra via geometric and combinatorial tools arising from finite Coxeter groups.

In 1963, J. Stasheff discovered a cell complex [21, 22] of great importance in alge-
braic topology, geometric topology and combinatorics ([2, 6, 10]). This cell complex can
be realized as a simple n − 1-dimensional convex polytope in R

n : the associahedron.
Many realizations of the associahedron were given over the last thirty years ([13]). In
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2004, J. L. Loday ([9]) computed the classical realization of the associahedron given by
S. Shnider and S. Sternberg in [19]. Loday gave a beautiful combinatorial algorithm to
compute the integer coordinates of the vertices of the associahedron, and showed that
his realization can be obtained naturally from the classical permutahedron of dimension
n − 1, i.e. the convex hull of all possible permutations of the point (1, . . . , n) in R

n.
The permutahedron encodes the combinatorics and the geometry behind the symmetric
group Sn. The main motivation behind Loday’s realization is to study the geometric and
combinatorial properties of the associahedron via those of the well-known permutahedron.

Among the many areas of mathematics where the associahedron appears, cluster al-
gebra and Cambrian fans are the ones motivating our work. In 2000, S. Fomin and
A. Zelevinsky introduced a new family of fans indexed by Weyl groups called cluster fans,
whose structure encodes the one of finitely generated cluster algebras [5]. These fans
are polytopal and the corresponding polytopes, called generalized associahedra, have been
first realized by F. Chapoton, S. Fomin and A. Zelevinsky in [4]. In this realization, not
only is the face structure of generalized associahedra relevant, but so is their geometry. It
turned out that generalized associahedra associated to symmetric groups are combinato-
rially isomorphic to Stasheff’s associahedra, but different from Loday’s realization.

In 2006, N. Reading came up with an elegant framework that suggested how to study
generalized associahedra via the theory of Coxeter groups, a superclass of Weyl groups.
The key objects introduced by N. Reading are called Cambrian fans and lattices [14, 15,
16, 17]. For each orientation of the Coxeter graph of a given finite Coxeter group, there
is a Cambrian fan which provides a combinatorial and geometric interpretation of cluster
fans as well as an explanation of their links with quiver theory as discussed by R. Marsh,
M. Reineke and A. Zelevinsky in [12].

The discovery of polytopal realizations of Cambrian fans built from W -permutahedra
[8] strengthened the relationship between Coxeter groups theory and Cambrian theory. It
is now worth mentioning that the permutahedron can be realized for any finite Coxeter
group W simply by taking the convex hull of the orbit of a generic point under the
reflective action of W . These realizations enjoy two important properties. First, they
generalize Loday’s realization to any finite Coxeter group as they are obtained by simply
removing some of the defining halfspaces of the W -permutahedron (Figure 1). Second,
they provide combinatorial and geometric interpretations of cluster fans and their links to
quiver theory since their normal fans are of Cambrian nature. We name these realizations
c-generalized associahedra, where c refers to the orientation of the Coxeter graph of W .

We investigate the following question : what are the geometric properties that are pre-
served when we construct a c-generalized associahedron from a given W -permutahedron?
We believe that the answer to this question would help us to highlight and refine the
links between finite Coxeter groups theory and Cambrian theory. Except for the isometry
classes of these realizations [1], little is known about them. What are their volumes? The
number of integer points they contain? Their isometry groups?

It has been observed in numerous and large example (see [7, 8]) that the center of
gravity remains unchanged whatever the orientation is chosen to be. J. L. Loday already
reported in [9, Section 2.11] an observation made by F. Chapoton that the centers of
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Figure 1: We obtain the associahedron (right) from the permutahedron (left) for the
Coxeter group S4 and the left-to-right orientation by removing all shaded halfspaces.

gravity of the vertices of the associahedron and of the permutahedron are the same.
No proof is given, and after asking both F. Chapoton and J. L. Loday, it seems that
this property of Loday’s realization has never been proven until now. For symmetric
groups (type A) and hyperoctahedral groups (type B), c-generalized associahedra were
first realized by C. Hohlweg and C. Lange [7], a realization that recovers Loday’s for a
particular choice of orientation of the Coxeter graph of type A.

In this article we prove that for type A and B, the center of gravity remains unchanged
when we remove halfspaces from the permutahedron to build a c-generalized associahe-
dron.

The center of gravity (also known as isobarycenter or centroid) is a classical invariant
of configuration of points whose significance in mechanical physics and classical euclidean
geometry is not disputed. It also appears as a powerful tool in computational geometry
and computer science (see [18, 11]).

Our result highlights an interesting partition of the set of vertices of c-generalized
associahedra. A classical way to prove that a point is the center of gravity is to find
enough isometries of the polytope whose axes intersect in this point. Unfortunately,
already in the case A2, there is only one nontrivial isometry of c-generalized associahedra,
so we may only conclude that the center of gravity takes place on this axe. In order to
overcome this problem, we find a partition of the set of vertices, which are parameterized
in this case by the triangulations of a regular polygon, and by their isometry classes under
the action of the corresponding dihedral group. Then, we show that the center of gravity
for each of these classes is the same as the center of gravity of the permutahedron. For
the reader familiar with Cambrian fans and c-clusters, we want to note that preliminary
computations on general cases where the vertices are parameterized by c-clusters, allow
us to observe the same phenomenon and identify orbits of a particular nonlinear action
of a group on subsets of almost positive roots. The study of this group and its action will
be the subject of future publications.
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The article is organized as follows. In §2, we first recall the realization of the per-
mutahedron and how to compute its center of gravity. Then we compute the center of
gravity of Loday’s realization of the associahedron. In order to do this, we partition its
vertices into isometry classes of triangulations, which parameterize the vertices, and we
show that the center of gravity for each of those classes is the center of gravity of the
permutahedron.

In §3, we show that the computation of the center of gravity of any of the realizations
given by the first author and C. Lange is reduced to the computation of the center of
gravity of the Loday’s classical realization of the associahedron. We do the same for the
cyclohedron in §4.

We are grateful to Carsten Lange for allowing us to use some of the pictures he made
in [7].

2 Center of gravity of the classical permutahedron

and associahedron

2.1 The permutahedron

Let Sn be the symmetric group acting on the set [n] = {1, 2, . . . , n}. The permutahedron
Perm(Sn) is the classical n− 1-dimensional simple convex polytope defined as the convex
hull of the points

M(σ) = (σ(1), σ(2), . . . , σ(n)) ∈ R
n, ∀σ ∈ Sn.

The center of gravity (or isobarycenter) is the unique point G of R
n such that

∑

σ∈Sn

−−−−→
GM(σ) =

−→
0 .

Since the permutation w0 : i 7→ n + 1− i preserves Perm(Sn), we see, by sending M(σ) to

M(w0σ) = (n + 1 − σ(1), n + 1 − σ(2), . . . , n + 1 − σ(n)),

that the center of gravity is G = (n+1
2

, n+1
2

, . . . , n+1
2

).

2.2 Loday’s realization

We present here the realization of the associahedron given by J. L. Loday [9]. How-
ever, instead of using planar binary trees, we use triangulations of a regular polygon to
parameterize the vertices of the associahedron (see [7, Remark 1.2]).
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2.2.1 Triangulations of a regular polygon

Let P be a regular (n + 2)-gon in the Euclidean plane with vertices A0, A1, . . . , An+1 in
counterclockwise direction. A triangulation of P is a set of n noncrossing diagonals of P .

Let us be more explicit. A triangle of P is a triangle whose vertices are vertices of P .
Therefore a side of a triangle of P is either an edge or a diagonal of P . A triangulation of P

is then a collection of n distinct triangles of P with noncrossing sides. Any of the triangles
in T can be described as AiAjAk with 0 6 i < j < k 6 n+1. Each 1 6 j 6 n corresponds
to a unique triangle ∆j(T ) in T because the sides of triangles in T are noncrossing.

Therefore we write T = {∆1(T ), . . . , ∆n(T )} for a triangulation T , where ∆j(T ) is the
unique triangle in T with vertex Aj and the two other vertices Ai and Ak satisfying the
inequation 0 6 i < j < k 6 n + 1.

Denote by Tn+2 the set of triangulations of P .

2.2.2 Loday’s realization of the associahedron

Let T be a triangulation of P . The weight δj(T ) of the triangle ∆j(T ) = AiAjAk, where
i < j < k, is the positive number

δj(T ) = (j − i)(k − j).

The weight δj(T ) of ∆j(T ) represents the product of the number of boundary edges of P

between Ai and Aj passing through vertices indexed by smaller numbers than j with the
number of boundary edges of P between Aj and Ak passing through vertices indexed by
larger numbers than j.

The classical associahedron Asso(Sn) is obtained as the convex hull of the points

M(T ) = (δ1(T ), δ2(T ), . . . , δn(T )) ∈ R
n, ∀T ∈ Tn+2.

We are now able to state our first result.

Theorem 2.1. The center of gravity of Asso(Sn) is G = (n+1
2

, n+1
2

, . . . , n+1
2

).

In order to prove this theorem, we need to study closely a certain partition of the
vertices of P .

2.3 Isometry classes of triangulations

As P is a regular (n + 2)-gon, its isometry group is the dihedral group Dn+2 of order
2(n + 2). So Dn+2 acts on the set Tn+2 of all triangulations of P : for f ∈ Dn+2 and
T ∈ Tn+2, we have f · T ∈ Tn+2. We denote by O(T ) the orbit of T ∈ Tn+2 under the
action of Dn+2.

We know that G is the center of gravity of Asso(Sn) if and only if

∑

T∈Tn+2

−−−−−→
GM(T ) =

−→
0 .
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As the orbits of the action of Dn+2 on Tn+2 form a partition of the set Tn+2, it is sufficient
to compute

∑

T∈O

−−−−−→
GM(T )

for any orbit O. The following key observation implies directly Theorem 2.1.

Theorem 2.2. Let O be an orbit of the action of Dn+2 on Tn+2, then G is the center of

gravity of {M(T ) | T ∈ O}. In particular,
∑

T∈O

−−−−−→
GM(T ) =

−→
0 .

Before proving this theorem, we need to prove the following result.

Proposition 2.3. Let T ∈ Tn+2 and j ∈ [n], then
∑

f∈Dn+2

δj(f · T ) = (n + 1)(n + 2).

Proof. We prove this proposition by induction on j ∈ [n]. For any triangulation T ′, we
denote by aj(T

′) < j < bj(T
′) the indices of the vertices of ∆j(T

′). Let H be the group
of rotations in Dn+2. It is well-known that for any reflection s ∈ Dn+2, the classes H and
sH form a partition of Dn+2 and that |H| = n+2. We consider also the unique reflection
sk ∈ Dn+2 which maps Ax to An+3+k−x, where the values of the indices are taken in modulo
n + 2. In particular, sk(A0) = An+3+k = Ak+1, sk(A1) = Ak, sk(Ak+1) = An+2 = A0, and
so on.

Basic step j = 1: We know that a1(T
′) = 0 for any triangulation T ′, hence the weight

of ∆1(T
′) is δ1(T

′) = (1 − 0)(b1(T
′) − 1) = b1(T

′) − 1.
The reflection s0 ∈ Dn+2 maps Ax to An+3−x (where An+2 = A0 and An+3 = A1). In

other words, s0(A0) = A1 and s0(∆1(T
′)) is a triangle in s0 · T

′. Since

s0(∆1(T
′)) = s0(A0A1Ab1(T ′)) = A0A1An+3−b1(T ′)

and 0 < 1 < n + 3 − b1(T
′), s0(∆1(T

′)) has to be ∆1(s0 · T
′). In consequence, we obtain

that
δ1(T

′) + δ1(s0 · T
′) = (b1(T

′) − 1) + (n + 3 − b1(T
′) − 1) = n + 1,

for any triangulation T ′. Therefore

∑

f∈Dn+2

δ1(f · T ) =
∑

g∈H

(

(δ1(g · T ) + δ1(s0 · (g · T ))
)

= |H|(n + 1) = (n + 1)(n + 2),

proving the initial case of the induction.

Inductive step: Assume that, for a given 1 6 j < n, we have

∑

f∈Dn+2

δj(f · T ) = (n + 1)(n + 2).

We will show that
∑

f∈Dn+2

δj+1(f · T ) =
∑

f∈Dn+2

δj(f · T ).
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Let r ∈ H ⊆ Dn+2 be the unique rotation mapping Aj+1 to Aj. In particular, r(A0) =
An+1. Let T ′ be a triangulation of P . We have two cases:

Case 1. If aj+1(T
′) > 0 then aj+1(T

′)−1 < j < bj+1(T
′)−1 are the indices of the vertices

of the triangle r(∆j+1(T
′)) in r ·T ′. Therefore, by unicity, r(∆j+1(T

′)) must be ∆j(r ·T
′).

Thus

δj+1(T
′) = (bj+1(T

′) − (j + 1))(j + 1 − aj+1(T
′))

=
(

(bj+1(T
′) − 1) − j

)

(j − (ai+1(T
′) − 1))

= δj(r · T
′).

In other words:

∑

f∈Dn+2,

aj+1(f ·T ) 6=0

δj+1(f · T ) =
∑

f∈Dn+2,

aj+1(f ·T ) 6=0

δj(r · (f · T )) (1)

=
∑

g∈Dn+2,

bj (g·T ) 6=n+1

δj(g · T ).

Case 2. If aj+1(T
′) = 0, then j < bj+1(T

′) − 1 < n + 1 are the indices of the vertices of
r(∆j+1(T

′)), which is therefore not ∆j(r · T
′): it is ∆bj+1(T ′)−1(r · T

′). To handle this, we
need to use the reflections sj and sj−2.

On one hand, observe that j + 1 < n + 3 + j − bj+1(T
′) because bj+1(T

′) < n + 1.
Therefore

sj(∆j+1(T
′)) = Aj+1A0An+3+j−bj+1(T ′) = ∆j+1(sj · T

′).

Hence

δj+1(T
′) + δj+1(sj · T

′) = (j + 1)(bj+1(T
′) − (j + 1))

+(j + 1)(n + 3 + j − bj+1(T
′) − (j + 1))

= (j + 1)(n + 1 − j).

On the other hand, consider the triangle ∆j(r · T
′) in r · T ′. Since

r(∆j+1(T
′)) = AjAbj+1(T ′)−1An+1 = ∆bj+1(T ′)−1(r · T

′)

is in r · T ′, [j, n + 1] is a diagonal in r · T ′. Hence bj(r · T ′) = n + 1. Thus ∆j(r · T ′) =
Aaj(r·T ′)AjAn+1 and δj(r · T ′) = (j − aj(r · T ′))(n + 1 − j). We have sj−2(Aj) = An+1,
sj−2(An+2) = Aj and sj−2(Aaj(r·T ′)) = An+1+j−aj(r·T ′) = Aj−aj(r·T ′)−1 since aj(r · T ′) < j.
Therefore sj−2(∆j(r · T ′)) = Aj−aj(r·T ′)−1AjAn+1 = ∆j(sj−2r · T ′) and δj(sj−2r · T ′) =
(aj(r · T

′) + 1)(n + 1 − j). Finally we obtain that

δj(r · T
′) + δj(sj−2r · T

′) = (j − aj(r · T
′))(n + 1 − j) + (aj(r · T

′) + 1)(n + 1 − j)

= (j + 1)(n + 1 − j).
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Since {H, skH} forms a partition of Dn+2 for any k, we have

∑

f∈Dn+2,

aj+1(f ·T )=0

δj+1(f · T ) =
∑

f∈H,
aj+1(f ·T )=0

(

δj+1(f · T ) + δj+1(sjf · T )
)

(2)

=
∑

f∈H,
aj+1(f ·T )=0

(j + 1)(n + 1 − j)

=
∑

rf∈H,

bj (rf ·T )=n+1

(

δj(rf · T ) + δj(sj−2rf · T )
)

, since r ∈ H

=
∑

g∈H,

bj (g·T )=n+1

δj(g · T ).

We conclude the induction by adding Equations (1) and (2).

Proof of Theorem 2.2. We have to prove that

−→u =
∑

T ′∈O(T )

−−−−−→
GM(T ′) =

−→
0 .

Denote by Stab(T ′) = {f ∈ Dn+2 | f · T ′ = T ′} the stabilizer of T ′, then

∑

f∈Dn+2

M(f · T ) =
∑

T ′∈O(T )

|Stab(T ′)|M(T ′).

Since T ′ ∈ O(T ), |Stab(T ′)| = |Stab(T )| = 2(n+2)
|O(T )|

, we have

∑

f∈Dn+2

M(f · T ) =
2(n + 2)

|O(T )|

∑

T ′∈O(T )

M(T ′).

Therefore by Proposition 2.3 we have for any i ∈ [n]

∑

T ′∈O(T )

δi(T
′) =

|O(T )|

2(n + 2)
(n + 1)(n + 2) =

|O(T )|(n + 1)

2
. (3)

Denote by O the point of origin of R
n. Then

−−→
OM = M for any point M of R

n. By
Chasles’ relation we have finally

−→u =
∑

T ′∈O(T )

−−−−−→
GM(T ′) =

∑

T ′∈O(T )

(M(T ′) − G) =
∑

T ′∈O(T )

M(T ′) − |O(T )|G.

So the ith coordinate of −→u is
∑

T ′∈O(T ) δi(T
′) − |O(T )|(n+1)

2
= 0, hence −→u =

−→
0 by (3).
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3 Center of gravity of generalized associahedra of

type A and B

3.1 Realizations of associahedra

As a Coxeter group (of type A), Sn is generated by the simple transpositions τi = (i, i+1),
i ∈ [n − 1]. The Coxeter graph Γn−1 is then

τ1 τ2 τ3 τn−1
. . .

Let A be an orientation of Γn−1. We distinguish between up and down elements of
[n] : an element i ∈ [n] is up if the edge {τi−1, τi} is directed from τi to τi−1 and down
otherwise (we set 1 and n to be down). Let DA be the set of down elements and let UA

be the set of up elements (possibly empty).
The notion of up and down induces a labeling of the (n + 2)-gon P as follows. Label

A0 by 0. Then the vertices of P are, in counterclockwise direction, labeled by the down
elements in increasing order, then by n + 1, and finally by the up elements in decreasing
order. An example is given in Figure 2.

0

1

2

3

4

5

6
τ1 τ2 τ3 τ4

Figure 2: A labeling of a heptagon that corresponds to the orientation A of Γ4 shown
inside the heptagon. We have DA = {1, 3, 5} and UA = {2, 4}.

We recall here a construction due to Hohlweg and Lange [7]. Consider P labeled
according to a fixed orientation A of Γn−1. For each l ∈ [n] and any triangulation T of
P , there is a unique triangle ∆A

l (T ) whose vertices are labeled by k < l < m. Now, count
the number of edges of P between i and k, whose vertices are labeled by smaller numbers
than l. Then multiply it by the number of edges of P between l and m, whose vertices
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are labeled by greater numbers than l. The result ωA

l (T ) is called the weight of ∆A

l (T ).
The injective map

MA : Tn+2 −→ R
n

T 7−→ (xA

1 (T ), xA

2 (T ), . . . , xA

n (T ))

that assigns explicit coordinates to a triangulation is defined as follows:

xA

j (T ) :=

{

ωA

j (T ) if j ∈ DA

n + 1 − ωA

j (T ) if j ∈ UA .

Hohlweg and Lange showed that the convex hull AssoA (Sn) of {MA (T ) | T ∈ Tn+2}
is a realization of the associahedron with integer coordinates [7, Theorem 1.1]. Observe
that if the orientation A is canonic, that is, if UA = ∅, then AssoA (Sn) = Asso(Sn).

The key is now to observe that the weight of ∆A

j (T ) in T is precisely the weight of
∆j(T

′) where T ′ is a triangulation in the orbit of T under the action of Dn+2, as stated
in the next proposition.

Proposition 3.1. Let A be an orientation of Γn−1. Let j ∈ [n] and let Al be the vertex
of P labeled by j. There is an isometry rA

j ∈ Dn+2 such that:

(i) rA

j (Al) = Aj;

(ii) the label of the vertex Ak is smaller than j if and only if the index i of the vertex
Ai = rA

j (Ak) is smaller than j.

Moreover, for any triangulation T of P we have ωA
j (T ) = δj(r

A
j · T ).

Proof. If A is the canonical orientation, then rA

j is the identity, and the proposition is
straightforward. In the following proof, we suppose therefore that UA 6= ∅.

Case 1: Assume that j ∈ DA . Let α be the greatest up element smaller than j and let
Aα+1 be the vertex of P labeled by α. Then by construction of the labeling, Aα is labeled
by a larger number than j, and [Aα, Aα+1] is the unique edge of P such that Aα+1 is
labeled by a smaller number than j. Denote by ΛA the path from Al to Aα+1 passing
through vertices of P labeled by smaller numbers than j. This is the path going from Al

to Aα+1 in clockwise direction on the boundary of P .
By construction, Ak ∈ ΛA if and only if the label of Ak is smaller than j. In other

words, the path ΛA consists of all vertices of P labeled by smaller numbers than j.
Therefore the cardinality of ΛA is j + 1.

Consider rA

j to be the rotation mapping Al to Aj . Recall that a rotation is an isometry
preserving the orientation of the plane. Then the path ΛA , which is obtained by walking
on the boundary of P from Al to Aα+1 in clockwise direction, is sent to the path Λ
obtained by walking on the boundary of P in clockwise direction from Aj and going
through j + 1 = |ΛA | vertices of P . Therefore Λ = {A0, A1, . . . , Aj}, thus proving the
first claim of our proposition in this case.
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Case 2: assume that j ∈ UA . The proof is almost the same as in the case of a down
element. Let α be the greatest down element smaller than j and let Aα be the vertex of
P labeled by α. Then by construction of the labeling, Aα+1 is labeled by a larger number
than j, and [Aα, Aα+1] is the unique edge of P such that Aα is labeled by a smaller number
than j. Denote by ΛA the path from Al to Aα passing through vertices of P labeled by
smaller numbers than j. This is the path going from Aα to Al in clockwise direction on
the boundary of P .

As above, Ak ∈ ΛA if and only if the label of Ak is smaller than j. In other words, the
path ΛA consists of all the vertices of P labeled by smaller numbers than j. Therefore,
again, the cardinality of ΛA is j + 1.

Let rA

j be the reflection mapping Aα to A0 and Aα+1 to An+1. Recall that a reflection
is an isometry reversing the orientation of the plane. Then the path ΛA , which is obtained
by walking on the boundary of P from Aα to Al in clockwise direction, is sent to the path
Λ obtained by walking on the boundary of P in clockwise direction from Aα and going
through j +1 = |ΛA | vertices of P . Therefore Λ = {A0, A1, . . . , Aj}. Hence rA

j (Al) is sent
on the final vertex of the path Λ which is Aj , proving the first claim of our proposition.

Thus it remains to show that for a triangulation T of P we have ωA
j (T ) = δj(r

A
j · T ).

We know that ∆A

j (T ) = AkAlAm such that the label of Ak is smaller than j, which
is smaller than the label of Am. Write Aa = rA

j (Ak) and Ab = rA

j (Am). Because of
Proposition 3.1, a < j < b and therefore

rA

j (∆A

j (T )) = AaAjAb = ∆j(r
A

j · T ).

So (j − a) is the number of edges of P between Al and Ak, whose vertices are labeled by
smaller numbers than j. Similarly, (b − j) is the number of edges between Al and Am,
whose vertices are labeled by smaller numbers than j, and (b− j) is the number of edges
of P between Al and Am and whose vertices are labeled by larger numbers than j. So
ωA

l (T ) = (j − a)(b − j) = δj(r
A
j · T ).

Corollary 3.2. For any orientation A of the Coxeter graph of Sn and for any j ∈ [n],
we have

∑

f∈Dn+2

xA

j (f · T ) = (n + 1)(n + 2).

Proof. Let rA

j ∈ Dn+2 be as in Proposition 3.1.
Suppose first that j ∈ UA , then

∑

f∈Dn+2

xA

i (f · T ) = 2(n + 2)(n + 1) −
∑

f∈Dn+2

ωA

i (f · T )

= 2(n + 2)(n + 1) −
∑

f∈Dn+2

δj(frA

j · T ), by Proposition 3.1

= 2(n + 2)(n + 1) −
∑

g∈Dn+2

δj(g
A · T ), since rA

j ∈ Dn+2

= (n + 1)(n + 2), by Proposition 2.3

If i ∈ DA , the result follows from a similar calculation.
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3.2 Center of gravity of associahedra

Theorem 3.3. The center of gravity of AssoA (Sn) is G = (n+1
2

, n+1
2

, . . . , n+1
2

) for any
orientation A .

By following precisely the same arguments as in §2.3, we just have to show the following
generalization of Theorem 2.2.

Theorem 3.4. Let O be an orbit of the action of Dn+2 on Tn+2, then G is the center of

gravity of {MA (T ) | T ∈ O}. In particular,
∑

T∈O

−−−−−−→
GMA (T ) =

−→
0 .

Proof. The proof is entirely similar to the proof of Theorem 2.2, using Corollary 3.2
instead of Proposition 2.3.

4 Center of gravity of the cyclohedron

In 1994, R. Bott and C. Taubes discovered the cyclohedron [3] in connection with knot
theory. It was rediscovered independently by R. Simion [20]. In [7], the first author
and C. Lange also gave a family of realizations for the cyclohedron, starting with the
permutahedron of type B. We show in this section that the centers of gravity of the
cyclohedron and of the permutahedron of type B are the same.

4.1 The type B-permutahedron

The hyperoctahedral group Wn is defined by Wn = {σ ∈ S2n | σ(i) + σ(2n + 1 − i) =
2n + 1, ∀i ∈ [n]}. The type B-permutahedron Perm(Wn) is the simple n-dimensional
convex polytope defined as the convex hull of the points

M(σ) = (σ(1), σ(2), . . . , σ(n)) ∈ R
2n, ∀σ ∈ Wn.

As w0 = (2n, 2n − 1, . . . , 3, 2, 1) ∈ Wn, we deduce from the same argument as in the case
of Perm(Sn) that the center of gravity of Perm(Wn) is

G = (
2n + 1

2
,
2n + 1

2
, . . . ,

2n + 1

2
).

4.2 Realizations of the associahedron

An orientation A of Γ2n−1 is symmetric if the edges {τi, τi+1} and {τ2n−i−1, τ2n−i} are
oriented in opposite directions for all i ∈ [2n−2]. There is a bijection between symmetric
orientations of Γ2n−1 and orientations of the Coxeter graph of Wn (see [7, §1.2]). A
triangulation T ∈ T2n+2 is centrally symmetric if T , viewed as a triangulation of P , is
centrally symmetric. Let T B

2n+2 be the set of the centrally symmetric triangulations of P .
In [7, Theorem 1.5] the authors show that for any symmetric orientation A of Γ2n−1. The
convex hull AssoA (Wn) of {MA (T ) | T ∈ T B

2n+2} is a realization of the cyclohedron with
integer coordinates.
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Since the full orbit of symmetric triangulations under the action of D2n+2 on triangu-
lations provides vertices of AssoA (Wn), and vice-versa, Theorem 3.4 implies the following
corollary.

Corollary 4.1. Let A be a symmetric orientation of Γ2n−1, then the center of gravity of
AssoA (Wn) is G = (2n+1

2
, 2n+1

2
, . . . , 2n+1

2
).

References

[1] N. Bergeron, C. Hohlweg, C. Lange and H. Thomas, Isometry classes of
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