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Abstract

Albertson conjectured that if a graph G has chromatic number r, then the
crossing number of G is at least as large as the crossing number of Kr, the complete
graph on r vertices. Albertson, Cranston, and Fox verified the conjecture for r 6 12.
In this paper we prove it for r 6 16.

Dedicated to the memory of Michael O. Albertson.

1 Introduction

Graphs in this paper are without loops and multiple edges. Every planar graph is four-
colorable by the Four Color Theorem [2, 24]. The efforts to solve the Four Color Problem
had a great effect on the development of graph theory, and FCT is one of the most
important theorems of the field.

The crossing number of a graph G, denoted cr(G), is the minimum number of edge
crossings in a drawing of G in the plane. It is a natural relaxation of planarity, see [25]
for a survey. The chromatic number of a graph G, denoted χ(G), is the minimum number
of colors in a proper coloring of G. The Four Color Theorem states: if cr(G) = 0, then
χ(G) 6 4. Oporowski and Zhao [18] proved that every graph with crossing number at
most two is 5-colorable. Albertson et al. [5] showed that if cr(G) 6 6, then χ(G) 6 6. It

∗Research is supported by OTKA Grants PD 75837 and K 76099, and the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

†Research is supported by OTKA T 038397 and T 046246.

the electronic journal of combinatorics 17 (2010), #R73 1



was observed by Schaefer that if cr(G) = k, then χ(G) = O(
4
√

k), and this is the correct
order of magnitude [4].

Graphs with chromatic number r do not necessarily contain Kr as a subgraph, they
can have clique number 2, see [27]. The Hajós conjecture proposed that graphs with
chromatic number r contain a subdivision of Kr. This conjecture, whose origin is unclear
but attributed to Hajós, turned out to be false for r > 7. Also, it was shown by Erdős and
Fajtlowicz [9] that almost all graphs are counterexamples. Albertson posed the following

Conjecture 1 If χ(G) = r, then cr(G) > cr(Kr).

This statement is weaker than Hajós’ conjecture: if G contains a subdivision of Kr,
then cr(G) > cr(Kr).

For r = 5, Albertson’s conjecture is equivalent to the Four Color Theorem. Oporowski
and Zhao [18] verified it for r = 6. Albertson, Cranston, and Fox [4] proved it for r 6 12.
In this note, we take one more little step.

Theorem 2 For r 6 16, if χ(G) = r, then cr(G) > cr(Kr).

In their proof, Albertson, Cranston and Fox combined lower bounds for the number of
edges of r-critical graphs, and lower bounds on the crossing number of graphs with given
number of vertices and edges. Our proof is very similar, but we use better lower bounds
in both cases.

Albertson et al. proved that any minimal counterexample to Conjecture 1 should have
less than 4r vertices. We slightly improve this result as follows.

Lemma 3 If G is an n-vertex, r-critical graph with n > 3.57r, then cr(G) > cr(Kr).

In Section 2, we review lower bounds for the number of edges of r-critical graphs. In
Section 3, we discuss lower bounds on the crossing number. In Section 4, we combine
these two bounds to obtain the proof of Theorem 2. In Section 5, we prove Lemma 3.

Let n always denote the number of vertices of G. In notation and terminology, we
follow Bondy and Murty [6]. In particular, the join of two disjoint graphs G and H ,
denoted G ∨ H , arises by adding all edges between vertices of G and H . A vertex v is
of full degree, if it has degree n − 1. If a graph G contains a subdivision of H , then G
contains a topological H . A vertex v is adjacent to a vertex set X means that each vertex
of X is adjacent to v.

2 Color-critical graphs

A graph G is r-critical, if χ(G) = r, but all proper subgraphs of G have chromatic number
less than r. In what follows, let G denote an r-critical graph with n vertices and m edges.
Since G is r-critical, every vertex has degree at least r− 1, therefore, 2m > (r− 1)n. The
value 2m − (r − 1)n is the excess of G. For r > 3, Dirac [7] proved the following: if G is
not complete, then 2m > (r − 1)n + (r − 3). For r > 4, Dirac [8] gave a characterization
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of r-critical graphs with excess r − 3. For a positive integer r, r > 3, let ∆r be the
following family of graphs. For any graph in the family, let the vertex set consist of three
non-empty, pairwise disjoint sets A, B1, B2 and two additional vertices a and b. Here,
|B1|+ |B2| = |A|+ 1 = r−1. The sets A and B1 ∪B2 both span cliques, a is connected to
A∪B1 and b is connected to A∪B2. See Figure 1. Graphs in ∆r are called Hajós graphs
of order 2r − 1. Observe, that these graphs have chromatic number r, and they contain
a topological Kr. Hence they satisfy Hajós’ conjecture.

a

b

A

B

B

2

1

Figure 1: The family ∆r

Gallai [10] proved that any r-critical graph with at most 2r − 2 vertices is the join of
two smaller graphs. Therefore, the complement of any such graph is disconnected. Based
on this observation, Gallai proved that non-complete r-critical graphs on at most 2r − 2
vertices have much larger excess than in Dirac’s result.

Lemma 4 [10] Let r, p be integers, r > 4 and 2 6 p 6 r − 1. If G is an r-critical graph
with n vertices and m edges, where n = r + p, then 2m > (r−1)n+ p(r−p)−2. Equality
holds if and only if G is the join of Kr−p−1 and G ∈ ∆p+1.

Since every G in ∆p+1 contains a topological Kp+1, the join of Kr−p−1 and G contains
a topological Kr. This yields a slight improvement for our purposes.

Corollary 5 Let r, p be integers, r > 4 and 2 6 p 6 r − 1. If G is an r-critical graph
with n vertices and m edges, where n = r + p, and G does not contain a topological Kr,
then 2m > (r − 1)n + p(r − p) − 1.
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We call the bound given by Corollary 5 the Gallai bound.
For r > 3, let Er denote the family of the following graphs G. The vertex set of

any G consists of four non-empty pairwise disjoint sets A1, A2, B1, B2, and one additional
vertex c. Here |B1|+ |B2| = |A1|+ |A2| = r − 1 and |A2|+ |B2| 6 r − 1. Let A = A1 ∪A2

and B = B1 ∪B2. The sets A and B each induce a clique in G. The vertex c is connected
to A1∪B1. A vertex a in A is adjacent to a vertex b in B if and only if a ∈ A2 and b ∈ B2.

A

A

1

B

B1

2 2

c

Figure 2: The family Er

Observe, that Er ⊃ ∆r, and every graph G in Er is r-critical with 2r − 1 vertices.
Kostochka and Stiebitz [15] improved Dirac’s bound as follows.

Lemma 6 [15] Let r be a positive integer, r > 4, and let G be an r-critical graph. If G
is neither Kr nor a member of Er, then 2m > (r − 1)n + (2r − 6).

Corollary 7 Let r be a positive integer, r > 4, and let G be an r-critical graph. If G
does not contain a topological Kr, then 2m > (r − 1)n + (2r − 6).

Proof: We show that any member of Er contains a topological Kr. The sets A and B
both span a complete graph on r − 1 vertices. We only have to show that vertex c is
connected to A2 or B2 by vertex-disjoint paths. To see this, we observe that |A2| or |B2|
is the smallest of {|A1|, |A2|, |B1|, |B2|}. Indeed, if |B1| was the smallest, then |A2| > |B1|
implies |A2| + |B2| > |B1| + |B2| = r − 1 contradicting our assumption. We may assume
that |A2| is the smallest. Now c is adjacent to A1, and there is a matching of size |A2|
between B1 and B2 and between B2 and A2. Therefore, we can find a set S of disjoint
paths from c to A2. In this way, A ∪ c ∪ S is a topological r-clique. 2

The bound in Corollary 7 is the Kostochka, Stiebitz bound, or KS-bound for short.
In what follows, we obtain a complete characterization of r-critical graphs on r + 3 or

r + 4 vertices.
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Lemma 8 For r > 8, there are precisely two r-critical graphs on r + 3 vertices. They
can be constructed from two 4-critical graphs on seven vertices by adding vertices of full
degree.

Figure 3: The two 4-critical graphs on seven vertices

Proof: The proof is by induction on r. For the base case r = 8, there are precisely two
8-critical graphs on 11 vertices, see Royle’s complete search [22].

Let G be an r-critical graph with r > 9 and n = r + 3 > 12. The minimum degree is
at least r−1, and r−1 = n−4. If G has a vertex v of full degree, then we use induction.
So we may assume that every vertex in G, the complement of G, has degree 1, 2, or 3.
By Gallai’s theorem, G is disconnected. Observe the following: if there are at least four
independent edges in G, then χ(G) 6 n−4 = r−1, a contradiction. That is, there are at
most three independent edges in G. Therefore, G has two or three components. If there
is a triangle in the complement, then we can save two colors. If there were two triangles,
then χ(G) 6 n − 4 = r − 1, a contradiction.

Assume that there are three components in G. Since each degree is at least one, there
are at least three independent edges. Therefore, there is no triangle in G and no path with
three edges. That is, the complement consists of three stars. Since the degree is at most
three and there are at least 12 vertices, there is only one possibility: G = K1,3∪K1,3∪K1,3,
see Figure 4.

Figure 4: The complement and a removable edge

We have to check whether this concrete graph is indeed critical. Observe, that if we
remove the edge connecting two centers of these stars, the chromatic number remains r.
Therefore, our graph is not r-critical, a contradiction.

the electronic journal of combinatorics 17 (2010), #R73 5



In the remaining case, G has two components H1 and H2. Since there are at most
three independent edges, there is one in H1 and two in H2. It implies that H1 has at most
four vertices. Therefore, H2 has at least eight vertices. Consider a spanning tree T of H2

and remove two adjacent vertices of T , one of them being a leaf. It is easy to see that
the remainder of T contains a path with three edges. Therefore, in total we found three
independent edges of H2, a contradiction. 2

In Lemma 10, we characterize r-critical graphs on r + 4 vertices. For that proof, we
need the following result of Gallai.

Theorem 9 [10] Let r > 3 and n < 5
3
r. If G is an r-critical, n-vertex graph, then it

contains at least
⌈

3
2

(

5
3
r − n

)⌉

vertices of full degree.

The existence of a vertex of full degree gives rise to an inductive proof of the following

Lemma 10 For r > 6, there are precisely twenty-two r-critical graphs on r + 4 vertices.
Each of them can be constructed by adding vertices of full degree to a graph in the following
list:
• the 3-critical graph on seven vertices,
• the four 4-critical graphs on eight vertices,
• the sixteen 5-critical graphs on nine vertices, or
• the 6-critical graph on ten vertices.

Proof: For the base of induction, we use Royle’s table again, see [22]. The full computer
search shows that there are precisely twenty-two 6-critical graphs on ten vertices. One
of them has three vertices of full degree, four of them has two, sixteen graphs have one
vertex of full degree, and one graph has no such vertex. For the induction step, we use
Theorem 9, and see that there are at least r− 6 vertices of full degree. Since r > 7, there
is always a vertex of full degree. We remove it, and use the induction hypothesis to finish
the proof. 2

There is an explicit list of twenty-one 5-critical graphs on nine vertices [22]. We had
to check that each of those graphs contains a topological K5. Mader [16] proved that any
n-vertex graph with at least 3n − 5 edges contains the subdivision of K5. We made a
verification partly manually, partly using Mader’s extremal result. Therefore, if we add
r − 5 vertices of full degree to any of these graphs, then the resulting graph contains
a topological Kr. Also, the above mentioned 6-critical graph on ten vertices contains a
topological K6. These two observations imply the following

Corollary 11 Any r-critical graph on at most r + 4 vertices satisfy the Hajós conjecture.

We believe that 4 can be replaced by any other constant in the above result.

Conjecture 12 For every positive integer c, there exists a bound r(c) such that for any
r, where r > r(c), any r-critical graph on r + c vertices satisfies the Hajós conjecture.
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3 The crossing number

It follows from Euler’s formula that a planar graph can have at most 3n−6 edges. Suppose
that G has more than 3n − 6 edges. By deleting crossing edges one by one, it follows by
induction that for n > 3,

cr(G) > m − 3(n − 2) (1)

Pach et al. [19, 21] generalized this idea and proved the following lower bounds. Both
of them holds for any graph G with n vertices and m edges, n > 3.

cr(G) > 7m/3 − 25(n − 2)/3 (2)

cr(G) > 4m − 103(n − 2)/6 (3)

cr(G) > 5m − 25(n − 2) (4)

Inequality (1) is the best for m 6 4(n − 2),
(2) is the best for 4(n − 2) 6 m 6 5.3(n − 2),
(3) is the best for 5.3(n − 2) 6 m 6 47(n − 2)/6,
(4) is the best for 47(n − 2)/6 6 m.

It was also shown in [19] that (1) can not be improved in the range m 6 4(n − 2),
and (2) can not be improved in the range 4(n−2) 6 m 6 5(n−2), apart from an additive
constant. Inequalities (3) and (4) are conjectured to be far from optimal. Using the
methods in [19], one can obtain an infinite family of such linear inequalities of the form
am − b(n − 2). For instance, cr(G) > 3m − 35(n − 2)/3.

The most important inequality for crossing numbers is undoubtedly the Crossing
Lemma, first proved by Ajtai, Chvátal, Newborn, Szemerédi [1], and independently by
Leighton [13]. If G has n vertices and m edges, m > 4n, then

cr(G) >
1

64

m3

n2
. (5)

The original constant was much larger. The constant 1
64

comes from the well-known
probabilistic proof of Chazelle, Sharir, and Welzl [3]. The basic idea is to take a random
induced subgraph and apply inequality (1) for that.

The order of magnitude of this bound can not be improved, see [19]. The best known
constant is obtained in [19]. If G has n vertices and m edges, m >

103
16

n, then

cr(G) >
1

31.1

m3

n2
. (6)

The proof is very similar to the proof of (5), the main difference is that instead of (1),
inequality (3) is applied for the random subgraph. The proof of the following technical
lemma is based on the same idea.
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Lemma 13 Suppose that n > 10, and 0 < p 6 1. Let

cr(n, m, p) =
4m

p2
− 103n

6p3
+

103

3p4
− 5n2(1 − p)n−2

p4
.

For any graph G with n vertices and m edges, the following holds:

cr(G) > cr(n, m, p).

Proof: Observe that inequality (3) does not hold for graphs with at most two vertices.
For any graph G, let

cr′(G) =















cr(G) if n > 3
4 if n = 2
18 if n = 1
35 if n = 0

It is easy to see that for any graph G

cr′(G) > 4m − 103

6
(n − 2). (7)

Let G be a graph with n vertices and m edges. Consider a drawing of G with cr(G)
crossings. Choose each vertex of G independently with probability p, and let G′ be a
subgraph of G induced by the selected vertices. Consider the drawing of G′ inherited
from the drawing of G. That is, each edge of G′ is drawn exactly as it is drawn in G. Let
n′ and m′ be the number of vertices and edges of G′, and let x be the number of crossings
in the present drawing of G′. Notice that E(n′) = pn, E(m′) = p2m, E(x) = p4cr(G).
Using inequality (7), and the linearity of expectations, the following holds:

E(x) > E(cr(G′)) > E(cr′(G′)) − 4P (n′ = 2) − 18P (n′ = 1) − 35P (n′ = 0)

> 4p2m − 103

6
pn +

103

3
− 4

(

n

2

)

p2(1 − p)n−2 − 18np(1 − p)n−1 − 35(1 − p)n

> 4p2m − 103

6
pn +

103

3
− 5n2(1 − p)n−2.

Dividing by p4, we obtain the statement of the lemma. 2

Note that in our applications, p will be at least 1/2, n will be at least 13. Therefore,

the last term in the inequality, 5n2(1−p)n−2

p4 , is negligible.

We also need some bounds on the crossing number of the complete graph, cr(Kr). It
is known that

cr(Kr) 6 Z(r) =
1

4

⌊r

2

⌋

⌊

r − 1

2

⌋⌊

r − 2

2

⌋⌊

r − 3

2

⌋

, (8)

see [23]. Guy [11] conjectured cr(Kr) = Z(r). It has been verified for r 6 12, but
still open for r > 12. The best known lower bound is due to de Klerk et al. [14]:
cr(Kr) > 0.86Z(r).
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4 Proof of Theorem 2

Suppose that G is an r-critical graph. If G contains a topological Kr, then cr(G) >

cr(Kr). Suppose in the sequel that G does not contain a topological Kr. Therefore, we
can apply the Kostochka, Stiebitz- and the Gallai bound on the number of edges. Next
we use Lemma 13 to get the desired lower bound on the crossing number. Albertson et
al. used the same approach in [4]. They used a weaker version of the bounds, and instead
of Lemma 13, they applied the weaker inequality (3). In the tables below, we include
the results of our calculations. For comparison, we also include the result Albertson et
al. might have had using (3). In the appendix, we present our simple Maple program
performing all calculations.

1. Let r = 13. By (8), we have cr(K13) 6 225. By Corollary 11, we only need to
consider n > r + 5 = 18. If n > 22, then the KS-bound combined with (3) gives the
desired result: 2m > 12n + 20 ⇒ cr(G) > 4(6n + 10) − 103/6(n − 2) > 224.67.

For 18 6 n 6 21 the result follows from the table below.

n m bound (3) p ⌈cr(n,m, p)⌉
18 128 238 0.719 288
19 135 249 0.732 296
20 141 255 0.751 298
21 146 258 0.774 294

2. Let r = 14. By (8), we have cr(K14) 6 315. By Corollary 11, we only need to
consider n > r + 5 = 19. If n > 27, then the KS-bound combined with (3) gives the
desired result: 2m > 13n + 22 ⇒ cr(G) > 4(6.5n + 11) − 103/6(n − 2) > 316.

For 19 6 n 6 26 the result follows from the table below.

n m bound (3) p ⌈cr(n,m, p)⌉
19 146 293 0.659 388
20 154 307 0.670 402
21 161 318 0.684 407
22 167 325 0.702 406
23 172 328 0.723 398
24 176 327 0.747 384
25 179 322 0.775 366
26 181 312 0.807 344

3. Let r = 15. By (8), we have cr(K15) 6 441. By Corollary 11, we only need to
consider n > r +5 = 20. Suppose now that G is 15-critical and n > 28. By the KS-bound
we have m > 7n+ 12. Apply Lemma 13 with p = 0.764 and a straightforward calculation
gives cr(G) > cr(n, m, 0.764) > 441.

For 20 6 n 6 27 the result follows from the table below.
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n m bound (3) p ⌈cr(n,m, p)⌉
20 165 351 0.610 510
21 174 370 0.617 531
22 182 385 0.623 542
23 189 396 0.642 545
24 195 403 0.659 539
25 200 406 0.678 526
26 204 404 0.700 508
27 207 399 0.725 484

4. Let r = 16. By (8), we have cr(K16) 6 588. By Corollary 11, we only need to
consider n > r +5 = 21. Suppose now that G is 16-critical and n > 32. By the KS-bound
we have m > 7.5n + 13. Apply Lemma 13 with p = 0.72 and again a straightforward
calculation gives cr(G) > cr(n, m, 0.72) > 588.

For 21 6 n 6 31 the result follows from the table below.

n m bound (4) p ⌈cr(n,m, p)⌉
21 185 450 0.567 657
22 195 475 0.573 687
23 204 495 0.581 706
24 212 510 0.592 714
25 219 520 0.605 712
26 225 525 0.621 701
27 230 525 0.639 683
28 234 520 0.659 658
29 237 510 0.681 628
30 239 495 0.706 593
31 246 505 0.713 601

This concludes the proof of Theorem 2. 2

Remark For r > 17, we could not completely verify Albertson’s conjecture. By (8),
cr(K17) 6 784. By Corollary 11, we only need to consider n > r + 5 = 22.

Lemma 14 Let G be a 17-critical graph on n vertices. If n > 35, then cr(G) > 784 >

cr(K17).

Proof: Let p = 0.681. Then cr(G) > cr(n, m, 0.681) > 14.64n + 280.38. Therefore, if
n >

784−280.38
14.64

> 34.4, then we are done. 2

The next table contains our calculations. There are three cases, n = 32, 33, 34, for
which our approach is not sufficient.
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n m bound (4) p ⌈cr(n,m, p)⌉
22 206 530 0.530 832
23 217 560 0.534 874
24 227 585 0.541 902
25 236 605 0.550 917
26 244 620 0.560 920
27 251 630 0.573 913
28 257 635 0.588 897
29 262 635 0.604 872
30 266 630 0.622 840
31 269 620 0.643 802

32 271 605 0.665 759
33 278 615 0.672 765
34 286 630 0.677 779

Lemma 15 Let G be a 17-critical graph on 32 vertices. Then cr(G) > cr(K17).

Proof: Gallai [10] proved that any r-critical graph on at most 2r − 2 vertices is a join
of two smaller critical graphs. In our case, r = 17, and n = 2r − 2 = 32. Assume that
G = G1 ∨G2, where G1 is r1-critical on n1 vertices, G2 is r2-critical on n2 vertices, where
17 = r1 + r2 and 32 = n1 + n2. The sum of the degrees of G can be expressed as the sum
of the degrees of the vertices in Gi, for i = 1, 2, plus twice the number of edges between
G1 and G2:

2m > (r1 − 1)n1 + (r2 − 1)n2 + 2(r − 6) + 2n1n2.

Here, we used the KS-bound for the smaller parts, G1, G2. The right-hand side is minimal,
if r1n1 + r2n2 + 2n1n2 is minimal. With equivalent modifications, we get the following:
n1(r1 + n2) + n2(r2 + n1) = n1(r1 + n− n1) + (n− n1)(r − r1 + n1) = (n1 − r1)(n− 2n1) +
nr + n1(n − r). This expression is minimal, if n1 is minimal and n1 = r1. This yields the
following: 2m > n(r− 1) + 2n− r−n + 2(r− 6). In our case, it yields m > 275. Next we
apply Lemma 13 with p = 0.665, and we get cr(32, 275, 0.665) > 795 > cr(K17). 2

5 Proof of Lemma 3

Suppose that r > 17, and G is an r-critical graph with n vertices and m edges. If n > 4r,
then the statement of the lemma holds by [4]. Suppose that n = αr and 3.57 6 α 6 4. In
order to estimate the crossing number of G, instead of the probabilistic argument in the
proof of Lemma 13, we apply inequality (3) for each induced subgraph of G with exactly
52 vertices. Let k =

(

n

52

)

, and let G1, G2, . . . , Gk be the induced subgraphs of G with 52
vertices. Suppose that Gi has mi edges. By (3), the following holds for any i:

cr(Gi) > 4mi −
103

6
· 50,
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consequently,

cr(G) >
1

(

n−4
48

)

k
∑

i=1

(

4mi −
103

6
· 50

)

=
4m

(

n−4
48

)

(

n − 2

50

)

− 50
(

n−4
48

)

103

6

(

n

52

)

=
4(n − 2)(n − 3)m

50 · 49
− 103

6

n(n − 1)(n − 2)(n − 3)

52 · 51 · 49

>
2(n − 2)(n − 3)n(r − 1)

50 · 49
− 103

6

n(n − 1)(n − 2)(n − 3)

52 · 51 · 49

=
n(n − 2)(n − 3)

49

(

r − 1

25
− 103(n − 1)

6 · 52 · 51

)

since we counted each possible crossing at most
(

n−4
48

)

times, and each edge of G exactly
(

n−2
50

)

times. Finally, some calculation shows that this lower bound is greater than

r(r − 2)(r − 3)

49
(r − 1)

(

1

25
− 103α

6 · 52 · 51

)

>
1

64
r(r − 1)(r − 2)(r − 3) > cr(Kr)

for 3.57 6 α 6 4, which proves the lemma. 2

Remarks

1. As we have already mentioned, see (6), the best known constant in the Crossing
Lemma, 1/31.1, is obtained in [19]. Montaron [17] managed to improve it slightly for
dense graphs, that is, in the case when m = O(n2). His calculations are similar to the
proof of Lemma 3 and 13.

2. Our attack of the Albertson conjecture is based on the following philosophy. We
calculate a lower bound for the number of edges of an r-critical n-vertex graph G. Next
we substitute this into the lower bound given by Lemma 13. Finally, we compare the
result and Z(r). For large r, this method is not sufficient, but it gives the right order of
magnitude, and the constants are roughly within a factor of 4.

Let G be an r-critical graph with n vertices, where r 6 n 6 3.57r. Then 2m > (r−1)n.
We can apply (6):

cr(G) >
1

31.1

((r − 1)n/2)3

n2
=

(r − 1)3n

31.1 · 8
>

1

250
r(r − 1)3

>
Z(r)

4
.

3. Let G = G(n, p) be a random graph with n vertices and edge probability p = p(n). It
is known [12], that there exists a constant C0 > 0 such that if np > C0, then asymptotically
almost surely

χ(G) <
np

log np
.

Therefore, asymptotically almost surely

cr(Kχ(G)) 6 Z(χ(G)) <
n4p4

64 log4 np
.
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On the other hand, by [20], if np > 20, then almost surely

cr(G) >
n4p2

20000
.

Consequently, almost surely we have cr(G) > cr(Kχ(G)). Roughly speaking, unlike in
the case of the Hajós conjecture, a random graph almost surely satisfies the statement of
the Albertson conjecture.

4. If we do not believe in Albertson’s conjecture, we have to look for a counterexample
in the range n 6 3.57r. Any candidate must also be a counterexample for the Hajós
Conjecture. It is tempting to look at Catlin’s graphs.

Let Ck
5 denote the graph arising from C5 by repeating each vertex k times. That is,

each vertex of C5 is blown up to a complete graph on k vertices, and any edge of C5 is
blown up to a complete bipartite graph Kk,k.

Lemma 16 Catlin’s graphs satisfy the Albertson conjecture.

Proof: It is known that χ(Ck
5 ) = ⌈5

2
k⌉. To draw Ck

5 , we must draw two copies of K2k,
a Kk and three copies of Kk,k. Therefore,

cr(Ck
5 ) > 2Z(2k) + Z(k) + 3cr(Kk,k) ∼ 2

1

4
k4 +

1

4

(

k

2

)4

+ 3

(

k

2

)4

> 0.70k4.

On the other hand

cr(Kχ(Ck

5
)) ∼ cr(K 5

2
k) 6

1

4

(

5

4
k

)4

< 0.62k4 (9)

which proves the claim. 2
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Appendix

start:=proc(r,n)

local p,m,eredm,f,g,h,cr;

if (n<=2*r-2) then

p:=n-r;

m:=ceil(((r-1)*n+p*(r-p)-1)/2);

else

m:=ceil(((r-1)*n+2*(r-3))/2);

fi;

g:= ceil(5*m-25*(n-2));

print(m,g);

f:= 4*m*x^2-(103/6)*n*x^3+(103/3)*x^4;

eredm:=[solve((diff(f,x)/x)=0, x)];

print(evalf(eredm));

cr := min(eredm[1], eredm[2]);

print(evalf(1/cr));

h:= f-(5*n^2*(1-1/x)^(n-2))/(1/x)^4;

evalf((subs(x=cr, h)));

end:

the electronic journal of combinatorics 17 (2010), #R73 15


