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Abstract

We give another description of certain subvarieties of the Brauer loop scheme of

Knutson and Zinn-Justin. As a consequence, we show that the Brauer loop scheme

is equidimensional.
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1 Introduction

Let N be a positive integer. An integer sequence (i1, . . . , ik) ∈ {1, . . . , N}k is said to be
cyclically ordered if either i1 = i2 = · · · = ik, or i1 6= ik and for some 1 6 l 6 k,
the cyclically rotated sequence (il, il+1, . . . , ik, i1, . . . , il−1) is weakly increasing. We will
write 	 (i1, . . . , ik) as shorthand for the statement “the sequence (i1, . . . , ik) is cyclically
ordered”.

Knutson and Zinn-Justin [1] defined a nonstandard multiplication • on MN (C), the
set of N × N complex matrices, by setting (P • Q)ik =

∑

j:	(i,j,k)

PijQjk. We refer to their

paper as a reference for several nice geometric models of this multiplication. We recall
the following facts from their paper.
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1. A matrix M is invertible under • if and only if the diagonal entries are nonzero.
The set of invertible matrices under • is a solvable Lie group, with the invertible diagonal
matrices T serving as a maximal torus, and with unipotent radical U the set of all matrices
with ones along the diagonal.

2. Let E = {M • M = 0 : M ∈ MN (C)}, which can be described set theoretically
by the (possibly nonreduced) equations (M • M)ij = 0 for 1 6 i, j 6 N and Mii = 0 for
1 6 i 6 N . Then

E =
∐

π∈I

Fπ

where I ⊂ SN is the set of involutions in Sn, and for each π ∈ I, Fπ is the set of all
matrices M ∈ E such that the upper triangular part of M is Borel conjugate to the
strictly upper triangular part of π.

3. Each Fπ is a union of (U, •) orbits; in other words, U • Fπ = Fπ.

4. Suppose π has k fixed points. Then Fπ is nonempty and irreducible of dimension
1
2
(N2 − k).

As a consequence, Knutson and Zinn-Justin were able to classify all the top dimen-
sional irreducible components of E and to give a partial set of equations for the top
dimensional components of E. Moreover, they compute the multidegree of these top di-
mensional components and connect that polynomial to the entries of the Frobenius-Perron
eigenvector of a certain Markov process associated to the Brauer loop model.

The main theorem of this paper is a proof of the following conjecture of Knutson and
Zinn-Justin.

Conjecture 1 The Brauer loop scheme is equidimensional; that is the irreducible com-
ponents of E are exactly Eπ = Fπ where π ∈ SN is an involution with maximal number
of 2-cycles. In particular, E is equidimensional of dimension ⌊N2/2⌋.

Our method for proving this conjecture is to generalize a construction of Knutson and
Zinn-Justin that gives a dense subvariety Gπ of Fπ for any involution π. As a consequence,
we can generalize the equations for the top dimensional components and also prove the
following characterization of the closure poset of the Fπ’s.

Theorem. Let π, π′ be two involutions in SN , and suppose that π has k 2-cycles
(i1, j1), . . . (ik, jk) and N − 2k fixed points 1 6 a1 < a2 < · · · < aN−2k 6 N . Then
Fπ ⊂ Fπ′ if and only if

a. Every two cycle (il, jl) (1 6 l 6 k) of π occurs in the disjoint cycle decomposition
of π′.

b. Every two cycle occurring in the disjoint cycle decomposition of π′ is either of the
form (il, jl) or of the form (ai, aN−2k+1−i) for some 1 6 i 6 ⌊N−2k

2
⌋.

The paper proceeds as follows. Section 2 reviews the decomposition of the Brauer
loop scheme into the finitely many irreducible locally closed schemes Fπ. In section 3,
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we generalize a theorem of Knutson and Zinn-Justin to obtain for each involution π a
parameterization of a dense subvariety Gπ of Fπ. In section 4, we take a quick digression
to analyze the effects of a natural cyclic action. In section 5, we show how to construct
a partial set of equations for each Fπ, and use this to characterize the closure poset of
the Fπ’s. The conjecture of Knutson and Zinn-Justin is an immediately corollary of the
classification of the poset.

2 A decomposition and the dimension of the Fπ’s

Given a matrix M , we define M6 to be the upper triangular matrix associated to M ;
namely (M6)ij = Mij if i 6 j, and (M6)ij = 0 otherwise. Similarly, we will write M<

and M> to refer to the strictly upper triangular matrix associated to M and the strictly
lower triangular matrix associated to M respectively. Notice that M = M6 +M> for any
matrix M .

Recall that E = {M : M • M = 0}. From the definition of •, M ∈ E if and only if
M2

6 = 0 and M6M> + M>M6 is upper triangular. (The alternative characterizations of
• given in [1] make this more apparent.) In particular, one can characterize the matrices
M6 arising from M ∈ E by the following theorem of Melnikov [2].

Theorem 1 Let B ⊂ GLN be the Borel subgroup of invertible upper triangular matrices.
Then B acts by conjugation (under ordinary matrix multiplication) on the set V = {L : L
is upper triangular and L2 = 0}. Under this action, V decomposes into a finite union of
B orbits, indexed bijectively by involutions π ∈ SN . The B orbit associated to π is B ·π<.

For each involution π ∈ SN , define the locally closed subset Fπ of E to be {M :
M • M = 0 and M6 ∈ B · π<}. We have the following results from Knutson and Zinn-
Justin.

Theorem 2 Let I ⊂ SN be the set of all involutions. Then,

1. E =
∐

π∈I

Fπ

2. Each Fπ is a union of (U, •) orbits.

3. Suppose π has k fixed points. Then Fπ is nonempty and irreducible of dimension
1
2
(N2 − k).

Since E =
⋃

π∈I

Fπ decomposes into a union of finitely many irreducible closed subvari-

eties, we can immediately make the following observation about E.

Corollary 1 The only possible irreducible components of E are the varieties Fπ and
the top dimensional components correspond bijectively with involutions having a maxi-
mal number of two cycles.

Conceivably the lower dimensional Fπ’s could also be irreducible components of E.
The point of the rest of the paper is to show that each of these subvarieties is contained
in some top dimensional component.
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3 A geometric description

Our next goal is to give a geometric description of the varieties Fπ; we will see that each
such variety is the closure of the • conjugation orbit of a torus invariant subspace. This
construction generalizes the parameterization of top dimensional components developed
by Knutson and Zinn-Justin.

Let π ∈ SN be an involution with k 2-cycles (i1, j1), . . . , (ik, jk), where il < jl for all
1 6 l 6 k, and N − 2k fixed points a1 < a2 < · · · < aN−2k. We define a matrix π as
follows.

1. If i is not a fixed point of π, πi,m = δπ(i),m.

2. For ⌊N−2k+1
2

⌋ + 1 6 l 6 N − 2k, πal,m
= δaN−2k+1−l ,m.

3. For 1 6 l 6 ⌊N−2k+1
2

⌋, πal,m
= 0.

Examples.

1. If N is even and π has a maximal number of two cycles, then π is the permutation
matrix of π. If N is odd and π has a maximal number of two cycles, then π is the
permutation matrix of π with the unique nonzero diagonal entry replaced by zero.

2. If π = idN , then π is just (w0)>, where w0 is the matrix with 1’s on the antidiagonal
and zeroes elsewhere. For example, id4 is given by









0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0









3. In general, one can obtain π from π by replacing the k× k square submatrix whose
rows and columns are the fixed points of π with (w0)>, where w0 again only has 1’s on
the antidiagonal. For example, if π = (12) ∈ S4, then (12) is given by









0 1 0 0
1 0 0 0
0 0 0 0
0 0 1 0









Recall that the group of • invertible matrices contains a torus T given by the set of
all invertible diagonal matrices and a unipotent factor U given by the set of all matrices
with ones on the diagonals. For any element t ∈ T , we will write ti as shorthand for tii,
1 6 i 6 N .

We are now ready to construct for each involution π ∈ SN an dense subvariety Gπ of
the Fπ.

Theorem 3 Let Gπ = U • {πt : t ∈ T} (so the U action is by •-conjugation, while πt is
defined in terms of ordinary matrix multiplication.) Then Fπ = Gπ.
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Proof. Direct calculation shows πt ∈ E for all t ∈ T . The upper triangular part of
πt is of the form π<t by construction, and thus πt ⊂ Fπ. Since Fπ is invariant under •
conjugation by U , Gπ ⊂ Fπ, and thus Gπ ⊂ Fπ. By the irreducibility of Fπ, in order
to prove Gπ = Fπ we merely need to prove that both Fπ and Gπ both have the same
dimension 1

2
(N2 − k).

Recall that the dimension of Fπ was shown to be 1
2
(N2 − k) for any involution π by

Knutson and Zinn-Justin [1].

To compute the dimension of Gπ, we generalize an argument of Knutson and Zinn-
Justin. First, we compute the dimension of the (U, •)-orbit of a generic point in {πt :
t ∈ T}. Then we show the elements of {πt : t ∈ T} correspond to distinct U orbits,
so that the dimension of Gπ is the dimension of the generic orbit plus the dimension of
{πt : t ∈ T}.

We compute the dimension of the generic orbit by finding the size of the U -stabilizer.
Let U = {M ∈ MN(C) : Mii = 0} denote the Lie algebra of U . In order to compute the
dimension of the U stabilizer of πt, it suffices to find the stabilizer of πt in U. Equivalently,
we must find the dimension of the solution space of πt • P = P • πt where P ∈ U. Note
that then the dimension of the generic orbit will be equal to the generic number of linearly
independent equations arising from the condition πt • P = P • πt.

Associate to π a partially directed link diagram Lπ as follows: If i is not a fixed point of
π, then connect the points i and π(i) with an undirected edge. Recall that we have labeled
the fixed points of π as a1 < a2 < · · · < aN−2k; to complete the partially directed link
diagram, for each ⌊N−2k+1

2
⌋ + 1 6 l 6 N − 2k draw a directed edge from al to aN−2k+1−l

for all ⌊N−2k
2

⌋ 6 l 6 N − 2k (the arrow should point from the larger value to the smaller
value). Note that if N is odd, there will be a unique fixed point in the diagram.

We make a few observations about the resulting diagrams. If i1 < i2 < i3 < i4 contain
a pair of directed arrows, then those arrows do not cross and consist of an arrow pointing
from i4 to i1 and an arrow pointing from i3 to i2. Similarly, if i1 < i2 < i3 consist of a
directed arrow and the unique fixed point, then the directed arrow points from i3 to i1,
and i2 is the fixed point.

In order to simplify notation in the upcoming discussion, we will introduce the involu-
tion π′ associated to the link diagram obtained by replacing all directed edges in Lπ with
undirected edges; the main convenience is that an edge connects two distinct points i, j
in the link diagram Lπ if and only if π′(i) = j. In addition, πt can be obtained from π′t
by setting ti = 0 for each i that is the tail of a directed edge and setting ti = 0 for the
unique fixed point of π′ if N is odd. Similarly the equations for the stabilizer of πt can
be obtained from those of π′t by setting the same ti’s equal to 0.

The equation arising from π′t • P = P • π′t in coordinate (i, j) is of the form

tπ′(i)Pπ′(i)j [	 (i 6 π′(i) 6 j)] = Piπ′(j)tj [	 (i 6 π′(j) 6 j)]

where 1 6 i, j 6 N and [S] is defined by [S] = 1 if S is a true statement and [S] = 0
otherwise. As previously observed, the equations for the stabilizer of πt are obtained from
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the equations for the stabilizer of π′t by setting ti = 0 for all i at the tail of a directed
edge and for the unique fixed point of the link diagram when N is odd.

After setting the appropriate t’s to 0, the equations corresponding to i = j or i = π′(j)
hold trivially, since either the logical condition is 0 or we have set ti = tj = 0. So we
can assume that i and j lie on distinct orbits of π′ and we group the equations by the
corresponding pair of orbits (i, π′(i)), (j, π′(j)) (note that if N is odd, the one of these
orbits may be a fixed point, but not both.) We will show that each pair of edges of the
link diagram contributes four linearly independent equations to the stabilizer of a generic
πt, and if N is odd, each pair of an edge and the unique unmatched point generically
contributes two linearly independent equations.

Let us start with two crossing edges, so we may assume 	 (i < j < π′(i) < π′(j)).
Looking first at the stabilizer of π′t, we get the four equations:

tiPij = Pπ′(i)π′(j)tj

tjPjπ′(i) = Pπ′(j)itπ′(i)

tπ′(i)Pπ′(i)π′(j) = Pijtπ′(j)

tπ′(j)Pπ′(j)i = Pjπ′(i)ti

These equations are linearly independent unless titπ(i) = tjtπ(j), and so for a generic
choice of ti’s we get four linearly independent equations.

Now we consider what happens to these equations when we set ti = 0 as described
above to get the equations of the stabilizer of πt. By the previous observations, at most
one of the crossing edges is directed. No matter which I is at the head of a directed edge,
at most one of the t’s will be set equal to 0. If no ti’s are set equal to 0, then we will
still generically have four linearly independent equations. If exactly one ti is set equal to
0, then we still have that titπ(i) 6= tjtπ(j) generically (since one side will be zero, and the
other generically nonzero), and so there will still generically be four linearly independent
equations as desired.

If we have a pair of edges that do not cross, we can assume 	 (i < j < π′(j) < π′(i)).
Then for the stabilizer of π′t we get the following six equations:

(a) tiPiπ′(j) = Pπ′(i)jtπ′(j)

(b) tπ′(j)Pπ′(j)i = Pjπ′(i)ti

(c) 0 = Pi,jtπ′(j)

(d) tiPij = 0
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(e) 0 = Pπ′(j)π′(i)ti

(f) tπ′jPπ′(j)π′(i) = 0

Again, we obtain equations of πt by setting some of the ti’s equal to 0. Clearly, the pair
of equations (c) and (d) contribute at most one linearly independent equation, as does the
pair (e) and (f). However, as long as at most one of the edges is directed, so at most one
t is equal to zero, the equations (a)− (f) generically contribute four linearly independent
equations. Suppose that both edges are directed, so two t’s have been set equal to zero.
By changing the roles of i, j, π′(i), and π′(j) and using our previous observations about
link diagrams, we may assume that i < j < π′(j) < π′(i), that tπ′(i) = tπ′(j) = 0 and that
ti and tj are nonzero. Then the equations simplify to:

tiPiπ′(j) = 0

0 = Pjπ′(i)ti

tiPij = 0

0 = Pπ′(j)π′(i)ti

which again is generically four linearly independent equations.

Finally, if we have an edge and a fixed point, we may assume that j is the fixed point,
so i 6= π′(i). We may assume i < j < π′(i) and that ti is nonzero by construction of π.
Then we get the two equations for the stabilizer of πt:

tiPij = 0

0 = Pjπ′(i)ti

which are by construction generically linearly independent.

Note that for each pair of edges and for each pair of and edge an a fixed point, we have
found a collection of linear independent equations in the corresponding variables. Since
this partitions the variables into distinct nonoverlapping sets, the corresponding sets of
equations are all mutually independent.

Let N = 2n + r (n an integer, r = 0 or 1). Counting the set of independent equations

shows that the dimension of the generic orbit is 4n(n−1)
2

+ 2nr = 2n2 − 2n + 2nr. Now,
1
2
(N2 − k) = 1

2
(4n2 − 4nr + r2 − k) = (2n2 − 2n + 2nr) + (2n + r − k) = the dimension of

the generic U -orbit of πt plus the dimension of πt. Thus if we can show that each orbit
contains at most one element of πt, we are done.

So suppose P • πt = πt′ •P for some P ∈ U . We must show that ti = t′i for all i lying
on either an undirected edge or the head of an edge of the corresponding link diagram.
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In either case the equation in entry (π′(i), i) reads Pπ′(i)iti = tiPii and since P ∈ U , one
gets ti = t′i for the required indices. In particular, πt = πt′ as desired.�

4 A cyclic action on the Fπ

Given an integer k, we define [[k]] to be the unique number in {1, . . . , N} such that
k = [[k]] mod N .

Knutson and Zinn-Justin [1] observe that there is a natural continuous cyclic action
acting on MN(C) that preserves the nonstandard multiplication •, given by sending the
matrix M to c(M), where c(M)ij = M[[i−1]],[[j−1]]. Such a cyclic rotation preserves the
relation 	, and thus preserves the multiplication •. Alternatively one can visualize this
action as a translation in their infinite strip model, which again makes it clear that c
is a ring homomorphism. The action c fixes the zero matrix, hence also the variety
E = {M |M • M = 0}.

While the Fπ are not invariant under the action of c, Knutson and Zinn-Justin were
able to show that c maps top dimensional components of E to other top dimensional
components. Moreover, for these top dimensional Fπ, c corresponds to rotating the link
diagram associated to a π.

Our goal is to prove the following weaker version of the above statement for general
Fπ.

Theorem 4 Suppose we fix an involution π and an integer d. Then cd(Fπ) is of the form
U • {cd(π)t|t ∈ T}. Let π∗ be the unique involution such that cd(π)< = π∗

<. Then cd(π)
can be obtained from π∗ by setting certain nonzero entries of π∗ to zero. In particular,
cd(Fπ) ⊂ Fπ∗ , and cd(π) = π∗ if rank(cd(π)<) =rank(π∗

<).

Proof. Note c(U) = U , since U is the set of •-invertible matrices, and c fixes the iden-
tity. Then U • {cd(π)t|t ∈ T} = cd(Gπ) is contained in cd(Fπ), and since c is continuous,
taking closures gives us the first statement.

Fix π, let Lπ be the link diagram associated to π, and let a1 < a2 < · · · < aN−2k be
the fixed points of π. We can naturally associate to cd(π) the link diagram Lcd(π) obtained
by rotating the link diagram Lπ d times; we observe that cd(π) is a partial permutation
matrix such that cd(π)ij = 1 if either i and j are connected by an undirected edge of Lcd(π)

or if there is a directed edge of Lcd(π) pointing from i to j.

Now cd(π)< is a partial permutation matrix, with nonzero entries in coordinates (i, j)
with i < j, and either i and j connected by an unmatched edge of Lcd(π) or a directed
edge of Lcd(π) pointing from i to j (in this case the edge points from the smaller number
to the larger number.) In particular, when we construct π∗, Lπ∗ has undirected edges
corresponding to the undirected edges of Lcd(π) and the directed edges of Lcd(π) that point
from a smaller number to a larger numbers.
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From the above discussion, the only reason why cd(π) might not be obtained from π∗

by setting certain nonzero entries of π∗ to zero is that fixed points of π∗ aren’t matched
together by directed edges in the proper way. Let at1 < · · · < atj be the fixed points of π
that when rotated by c give rises to to the fixed points of π∗ (so [[at1 + d]], . . . , [[atj + d]]
are the fixed points of π∗.) In Lπ there is a directed arrow from atm to atj−m+1

for

⌊ j

2
⌋ 6 m 6 j; this implies that the there is a directed arrow from [[atm +d]] to [[atj−m+1

+d]]

for ⌊ j

2
⌋ 6 m 6 j. We must show [[at1 +d]] < · · · < [[atj +d]] if it does, this means that the

directed edges in Lπ∗ agree with the directed edges of Lcd(π) on this set, and we are done.
No matter what, we have 	 ([[at1 + d]], . . . , [[atj + d]]), since we took a cyclic ordered set
and rotated it. To finish, we observe [[at1 + d]] < [[atj + d]], otherwise we would have
replaced that directed edge with an undirected edge in creating Lπ∗ , and thus we can
conclude that at1 + d < · · · < atj + d mod N as desired.

The final statement follows immediately from the second statement.�

5 Equations for the Fπ’s

The geometric description of the Fπ’s allows one to construct equations satisfied by these
varieties. We have the following generalization of a theorem of Knutson and Zinn-Justin
[1]. (Because the proofs of the theorems are identical, we refer the reader to their paper
for both the proof and a description of the strip model mentioned below.)

Proposition 1 Fix an involution π ∈ SN . The variety Fπ satisfies the following equa-
tions:

(1) M • M = 0.

(2) (diagonal conditions) (M2)ii = 0 if i is a fixed point of π. (Notice that this equation
is defined in terms of ordinary matrix multiplication, not in terms of •.)

(3) (more diagonal conditions) (M2)ii = (M2)π(i)π(i) if i is not a fixed point of π

(4) for any (i, j), rij(M) 6 rij(π). (equivalently, require the vanishing of all rij(π)+ 1
minors of the submatrix southwest of (i, j) in the strip model of Knutson and Zinn-Justin.

We conjecture that these equations define the Fπ as a reduced scheme. As supporting
evidence, we have the following:

Theorem 5 Let π, π′ be two involutions in SN , and suppose that π has k 2-cycles
(i1, j1), . . . (ik, jk) and N − 2k fixed points 1 6 a1 < a2 < · · · < aN−2k 6 N . Then
Fπ ⊂ Fπ′ if and only if

a. Every two cycle (il, jl) (1 6 l 6 k) of π occurs in the disjoint cycle decomposition
of π′.

b. Every two cycle occurring in the disjoint cycle decomposition of π′ is either of the
form (il, jl) or of the form (ai, aN−2k+1−i) for some 1 6 i 6 ⌊N−2k

2
⌋.
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For the if direction, notice conditions (a) and (b) imply that πT ⊂ π′T and then the
statement follows immediately from Theorem 3.

Conversely, suppose Fπ ⊂ Fπ′. Note that for all t ∈ T , (πt)2
ii = titπ(i) if i 6= π(i) and

= 0 if i is a fixed point of π. Now the equations from Theorem 4 hold on Fπ′. Suppose that
i is a fixed point of π′. Then (M2)ii = 0 on Fπ′ and since πt ∈ Fπ′, we have (πt)2

ii = 0 as
well for all t ∈ T . By the previous computation i must be a fixed point of π also (otherwise
titπ(i) is generically nonzero.) Suppose (i, j) is a 2-cycle of π′. Then (M2)ii = (M2)jj on
Fπ′ , and thus for all πt. By the previous calculation, the equality only happen if either
(i, j) is a 2-cycle of Fπ or i and j are both fixed points of π (otherwise we are trying to set
titπ(i) = 0 or titπ(i) = tjtπ(j) where (i, π(i)), (j, π(j)) are distinct orbits of π.) In particular,
this implies condition a.

So we may assume π′ satisfies condition a. Now we show inductively that for each
1 6 l 6 ⌊N−2k

2
⌋ that either (al, aN−2k+1−l) is a 2 cycle of π′ or both al and aN−2k+1−l are

fixed points of π′. By induction we may assume the statement is true for l = 1, 2, . . . , j−1.
Now look at the equation of type 4 as defined in Theorem 4 corresponding to the coor-
dinates (aN−2k+1−j , aj) in π′. This gives a maximum for the rank of the corresponding
matrix for any point in Fπ′ . By induction, the submatrices of π′ and π lying southwest of
(aN−2k+1−j, aj) are identical except possibly at coordinate (aN−2k+1−j , aj), and that the
rank of this pair of matrices is equal if and only if π′ is nonzero in position (aN−2k+1−j , aj);
if the rank is not equal that π has a bigger rank and cannot be contained in Fπ′ , which is
a contradiction. But the requirement that π′ is nonzero in position (aN−2k+1−j , aj) is ex-
actly the requirement that either (aj, aN−2k+1−j) is a 2-cycle of π′ or both of aj , aN−2k+1−j

are fixed points of π′, as desired. �

Note that one can summarize the above theorem by Fπ ⊂ Fπ′ if and only if the support
of π is properly contained in the support of π′; here the support of a matrix is the set of
coordinates that have a nonzero entry.

One may worry that the shift action c might induce more equations on Fπ. But one
can modify the above proof to show that for any d, if cd(Fπ) ⊂ Fπ′ , then Fπ∗ ⊂ Fπ′ , where
π∗ was defined in section 4. (One uses the diagonal conditions to force the undirected
edges to imply that π′ inherits 2-cycles from cd(π) as above, and the rank conditions as
above on the directed edges; that is, one shows that the support of π′ contains the support
of cd(π) by using a cyclic shift of the proof of the above theorem, and then notes that any
π′ which contains the support of cd(π) also contains the support of π∗.) Thus we need
only check that Fπ∗ doesn’t induce any new equations on cd(Fπ) that we haven’t already
described, which follows from the fact that the support cd(π) is contained in the support
π∗, as shown in section 4.

Finally, since the irreducible components of E correspond to the maximal Fπ under
closure, the conjecture of Knutson and Zinn-Justin follows immediately as a corollary.

Corollary 2 The Brauer loop scheme E is equidimensional, with irreducible components
indexed bijectively by involutions with maximal number of 2-cycles. For any Fπ, there is
a unique involution π′ with maximal number of 2-cycles such that Fπ ⊂ Fπ′.
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Proof. For any Fπ that does not have a maximal number of 2-cycles, Theorem 4
describes how to construct a π′ with maximal number of 2-cycles such that Fπ ⊂ Fπ′ .
Moreover, this construction is unique (if π has fixed points a1 < a2 < ... < aN−2k, then
π′ = π(a1aN−2k) . . . (a⌊N−2k

2
⌋aN−2k+1−⌊N−2k

2
⌋).�
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