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Abstract

In this paper we compute the generating function of modular, k-noncrossing
diagrams. A k-noncrossing diagram is called modular if it does not contain any
isolated arcs and any arc has length at least four. Modular diagrams represent
the deformation retracts of RNA tertiary structures and their properties reflect
basic features of these bio-molecules. The particular case of modular noncrossing
diagrams has been extensively studied. Let Qk(n) denote the number of modular
k-noncrossing diagrams over n vertices. We derive exact enumeration results as well

as the asymptotic formula Qk(n) ∼ ckn
−(k−1)2− k−1

2 γ−n
k for k = 3, . . . , 9 and derive

a new proof of the formula Q2(n) ∼ 1.4848n−3/2 1.8489n (Hofacker et al. 1998).

1 Introduction

A ribonucleic acid (RNA) molecule is the helical configuration of a primary structure of
nucleotides, A, G, U and C, together with Watson-Crick (A-U, G-C) and (U-G) base
pairs. It is well-known that RNA structures exhibit cross-serial nucleotide interactions,
called pseudoknots. First recognized in the turnip yellow mosaic virus in [17], they are
now known to be widely conserved in functional RNA molecules.

Modular k-noncrossing diagrams represent a model of RNA pseudoknot structures
[5, 9, 11], that is RNA structures exhibiting cross-serial base pairings. The particular case
of modular noncrossing diagrams, i.e. RNA secondary structures has been extensively
studied [7, 14, 21, 22].

The main result of this paper is the computation of the generating function of modular
k-noncrossing diagrams, Qk(z). A diagram is a labeled graph over the vertex set [n] =
{1, . . . , n} with vertex degrees not greater than one. The standard representation of a
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diagram is derived by drawing its vertices in a horizontal line and its arcs (i, j) in the
upper half-plane. A k-crossing is a set of k distinct arcs (i1, j1), (i2, j2), . . . , (ik, jk) with
the property

i1 < i2 < . . . < ik < j1 < j2 < . . . < jk.

Similarly a k-nesting is a set of k distinct arcs such that

i1 < i2 < . . . < ik < jk < . . . j2 < j1.

Let A,B be two sets of arcs, then A is nested in B if any element of A is nested in any
element of B. A diagram without any k-crossings is called a k-noncrossing diagram. The
length of an arc, (i, j), is s = j − i, and we refer to such arc as s-arc. Furthermore,

• a stack of length σ, Sσ
i,j, is a maximal sequence of “parallel” arcs,

((i, j), (i+ 1, j − 1), . . . , (i+ (σ − 1), j − (σ − 1))).

Sσ
i,j is also referred to as a σ-stack.

• a stem of size s is a sequence

(
Sσ1

i1,j1
, Sσ2

i2,j2
, . . . , Sσs

is,js

)

where Sσm

im,jm
is nested in S

σm−1

im−1,jm−1
such that any arc nested in S

σm−1

im−1,jm−1
is either

contained or nested in Sσm

im,jm
, for 2 6 m 6 s, see Fig. 1.

5’

3’

5’3’ 5 10 15 20 25

5

1015
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25

Fig. 1: Features of a modular 3-noncrossing diagram represented as planar graph (top) and in
standard representation (bottom). We display a stack of length two (green), a stem of size two
(red) and a 5-arc (blue).

RNA secondary structures [8, 21, 22, 23] are in the language of diagrams exactly
modular, 2-noncrossing diagrams. In [9, 10, 11, 13], various classes of k-noncrossing
diagrams have been enumerated. However the approach employed in these papers does
not work for modular k-noncrossing diagrams. In contrast to the situation for RNA
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secondary structures, the combination of minimum arc length and nonexistence of isolated
arcs poses serious difficulties. The main idea is to build modular k-noncrossing diagrams
via inflating their colored Vk-shapes, see Fig. 2. These shapes will be discussed in detail in
Section 4. The inflation gives rise to “stem-modules” over shape-arcs and is the key for the
symbolic derivation of Qk(z). One additional observation maybe worth to be pointed out:
the computation of the generating function of colored shapes in Section 4, hinges on the
intuition that the crossings of short arcs are relatively simple and give rise to manageable
recursions. The coloring of these shapes then allows to identify the arc-configurations
that require special attention during the inflation process. Our results are of importance
in the context of RNA pseudoknot structures [17] and evolutionary optimization [16].
Furthermore they allow for conceptual proofs of the results in [4, 10, 11, 13].

(1)

(2)

Fig. 2: Modular k-noncrossing diagrams: the inflation method. A modular 3-noncrossing
diagram (top) is derived by inflating its V3-shape (bottom) in two steps. First we individually
inflate each shape-arc into a more complex configuration and second insert isolated vertices
(purple).

The paper is organized as follows. In Section 2 we recall some basic facts on singularity
analysis, the generating function of k-noncrossing matchings, Vk-shapes and symbolic
enumeration. In Section 3 we analyze modular, noncrossing diagrams and in Section 4
we compute the generating function of colored shapes. We prove our main theorem in
Section 5. In Section 6 we give the proofs of Lemma 3 and Lemma 4.
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2 Some basic facts

2.1 Singularity analysis

Oftentimes, we are given a generating function without having an explicit formula of its
coefficients. Singularity analysis is a framework that allows to analyze the asymptotics
of these coefficients. The key to the asymptotics of the coefficients is the singularities,
which raises the question on how to locate them. In the particular case of power series
f(z) =

∑
n>0 an z

n with nonnegative coefficients and a radius of convergence R > 0, a
theorem of Pringsheim [2, 19], guarantees a positive real dominant singularity at z =
R. As we are dealing here with combinatorial generating functions we always have this
dominant singularity. We shall prove that for all our generating functions it is the unique
dominant singularity. The class of theorems that deal with the deduction of information
about coefficients from the generating function are called transfer-theorems [2].

Theorem 1. [2] Let [zn]f(z) denote the n-th coefficient of the power series f(z) at z = 0.
(a) Suppose f(z) = (1 − z)−α, α ∈ C \ Z60, then

[zn] f(z) ∼
nα−1

Γ(α)

[
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2
+

α2(α− 1)2(α− 2)(α− 3)

48n3
+O

(
1

n4

)]
. (2.1)

(b) Suppose f(z) = (1 − z)r log( 1
1−z

), r ∈ Z>0, then we have

[zn]f(z) ∼ (−1)r r!

n(n− 1) . . . (n− r)
. (2.2)

We use the notation

(f(z) = Θ (g(z)) as z → ρ) ⇐⇒ (f(z)/g(z) → c as z → ρ) , (2.3)

where c is some constant. We say a function f(z) is ∆ρ analytic at its dominant singularity
z = ρ, if it analytic in some domain ∆ρ(φ, r) = {z | |z| < r, z 6= r, |Arg(z − ρ)| > φ}, for
some φ, r, where r > |ρ| and 0 < φ < π

2
. Since the Taylor coefficients have the property

∀ γ ∈ C \ 0; [zn]f(z) = γn[zn]f(
z

γ
), (2.4)

We can, without loss of generality, reduce our analysis to the case where z = 1 is the unique
dominant singularity. The next theorem transfers the asymptotic expansion of a function
near its unique dominant singularity to the asymptotic of the function’s coefficients.

Theorem 2. [2] Let f(z) be a ∆1 analytic function at its unique dominant singularity
z = 1. Let

g(z) = (1 − z)α logβ

(
1

1 − z

)
, α, β ∈ R.
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That is we have in the intersection of a neighborhood of 1

f(z) = Θ(g(z)) for z → 1. (2.5)

Then we have
[zn]f(z) = Θ ([zn]g(z)) . (2.6)

2.2 k-noncrossing matchings

A k-noncrossing matching is a k-noncrossing diagram without isolated points. Let fk(2n)
denote the number of k-noncrossing matchings. The exponential generating function of
k-noncrossing matchings satisfies the following identity [1, 3, 9]

∑

n>0

fk(2n) ·
z2n

(2n)!
= det[Ii−j(2z) − Ii+j(2z)]|

k−1
i,j=1, (2.7)

where Ir(2z) =
∑

j>0
z2j+r

j!(j+r)!
is the hyperbolic Bessel function of the first kind of order

r. Eq. (2.7) combined with the fact that recursions for the coefficients of the exponential
generating function translate into recursions for the coefficients of the ordinary generating
function, allows us to prove:

Lemma 1. The generating function of k-noncrossing matchings over 2n vertices, Fk(z) =∑
n>0 fk(2n) zn is D-finite, [18], i.e. there exists some e ∈ N such that

q0,k(z)
de

dze
Fk(z) + q1,k(z)

de−1

dze−1
Fk(z) + · · ·+ qe,k(z)Fk(z) = 0, (2.8)

where qj,k(z) are polynomials.

This follows from the fact that Ir(2z) is D-finite and D-finite power series form an
algebra [18]. Lemma 1 is of importance for two reasons: first any singularity of Fk(z) is
contained in the set of roots of q0,k(z) [18], which we denote by Rk. Second, the specific
form of the ODE in eq. (2.8) is the key to derive the singular expansion of Fk(z), see
Proposition 1 below.

We proceed by computing for 2 6 k 6 9, the polynomials q0,k(z) and their roots, see
Table 1 and observe that [12]

fk(2n) ∼ c̃k n
−((k−1)2+(k−1)/2) (2(k − 1))2n, c̃k > 0, k > 2. (2.9)

Equation (2.9) and Table 1 guarantee that Fk(z) has the unique dominant singularity ρ2
k,

where ρk = 1/(2k−2). According to Lemma 1, Fk(z) is D-finite, whence we have analytic
continuation in any simply connected domain containing zero avoiding its singularities
[20]. As a result Fk(z) is ∆ρ2

k
analytic as required by Theorem 2. Lemma 1 and eq. (2.9)

put us in position to present the singular expansion of Fk(z):

the electronic journal of combinatorics 17 (2010), #R76 5



k q0,k(z) Rk

2 (4z − 1)z {1
4
}

3 (16z − 1)z2 { 1
16
}

4 (144z2 − 40z + 1)z3 {1
4
, 1

36
}

5 (1024z2 − 80z + 1)z4 { 1
16
, 1

64
}

6 (14400z3 − 4144z2 + 140z − 1)z5 {1
4
, 1

36
, 1

100
}

7 (147456z3 − 12544z2 + 224z − 1)z6 { 1
16
, 1

64
, 1

144
}

8 (2822400z4 − 826624z3 + 31584z2 − 336z + 1)z7 {1
4
, 1

36
, 1

100
, 1

196
}

9 (37748736z4 − 3358720z3 + 69888z2 − 480z + 1)z8 { 1
16
, 1

64
, 1

144
, 1

256
}

Table 1: The polynomials q0,k(z) and their nonzero roots obtained by the MAPLE package
GFUN.

Proposition 1. [6, 20] For 2 6 k 6 9, the singular expansion of Fk(z) for z → ρ2
k is

given by

Fk(z) =

{
Pk(z − ρ2

k) + c′k(z − ρ2
k)

((k−1)2+(k−1)/2)−1 log(z − ρ2
k) (1 + o(1))

Pk(z − ρ2
k) + c′k(z − ρ2

k)
((k−1)2+(k−1)/2)−1 (1 + o(1)) ,

depending on k being odd or even. Furthermore, the terms Pk(z) are polynomials of degree
not larger than (k − 1)2 + (k − 1)/2 − 1, c′k is some constant, and ρk = 1/(2k − 2).

In our derivations the following instance of the supercritical paradigm [2] is of central
importance: we are given a D-finite function, f(z) and an algebraic function g(u) satis-
fying g(0) = 0. Furthermore we suppose that f(g(u)) has a unique real valued dominant
singularity γ and g is regular in a disc with radius slightly larger than γ. Then the su-
percritical paradigm stipulates that the subexponential factors of f(g(u)) at u = 0, given
that g(u) satisfies certain conditions, coincide with those of f(z).

Theorem 1, Theorem 2 and Proposition 1 allow under certain conditions to obtain the
asymptotics of the coefficients of supercritical compositions of the “outer” function Fk(z)
and “inner” function ψ(z).

Proposition 2. Let ψ(z) be an algebraic, analytic function in a domain D = {z||z| 6

r} such that ψ(0) = 0. Suppose γ is the unique dominant singularity of Fk(ψ(z)) and
minimum positive real solution of ψ(γ) = ρ2

k, |γ| < r, where ψ′(γ) 6= 0. Then Fk(ψ(z))
has a singular expansion and

[zn]Fk(ψ(z)) ∼ An−((k−1)2+(k−1)/2)

(
1

γ

)n

, (2.10)

where A is some constant.
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2.3 Shapes

Definition 1. A Vk-shape is a k-noncrossing matching having stacks of length exactly
one.

In the following we refer to Vk-shape simply as shapes. That is, given a modular,
k-noncrossing diagram, δ, its shape is obtained by first replacing each stem by an arc and
then removing all isolated vertices, see Fig. 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7

16 17 18 19 20 1 2 3 4 5 6

Fig. 3: From diagrams to shapes: A modular, 3-noncrossing diagram (top-left) is mapped in
two steps into its V3-shape (top-right). A stem (blue) is replaced by an single shape-arc (blue).

Let Ik(s,m) (ik(s,m)) denote the set (number) of the Vk-shapes with s arcs and m
1-arcs having the bivariate generating function

Ik(z, u) =
∑

s>0

s∑

m=0

ik(s,m)zsum. (2.11)

The bivariate generating function of ik(s,m) and the generating function of Fk(z) are
related as follows:

Lemma 2. [15] Let k be natural number where k > 2, then the generating function Ik(z, u)
satisfy

Ik(z, u) =
1 + z

1 + 2z − zu
Fk

(
z(1 + z)

(1 + 2z − zu)2

)
. (2.12)

2.4 Symbolic enumeration

In the following we will compute the generating functions via the symbolic enumeration
method [2]. For this purpose we need the notion of a combinatorial class. A combinatorial
class (C, wC) is a set together with a size-function, wC : C −→ Z+ such that Cn = w−1

C
(n)

is finite for any n ∈ Z
+. We write w instead of wC and set Cn = |Cn|. Two special combi-

natorial classes are E and Z which contain only one element of size 0 and 1, respectively.
The generating function of a combinatorial class C is given by

C(z) =
∑

c∈C

zw(c) =
∑

n>0

Cn z
n, (2.13)
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where Cn ⊂ C. In particular, the generating functions of the classes E and Z are E(z) = 1
and Z(z) = z. Suppose C,D are combinatorial classes. Then C is isomorphic to D,
C ∼= D, if and only if ∀n > 0,|Cn| = |Dn|. In the following we shall identify isomorphic
combinatorial classes and write C = D if C ∼= D. We set

• C + D := C ∪ D, if C ∩ D = ∅ and for α ∈ C + D,

wC+D(α) =

{
wC(α) if α ∈ C

wD(α) if α ∈ D.
(2.14)

• C × D := {α = (c, d) | c ∈ C, d ∈ D} and for α ∈ C × D,

wC×D((c, d)) = wC(c) + wD(d). (2.15)

and furthermore Cm :=
∏m

h=1 C and Seq(C) := E + C + C2 + · · · . Plainly, Seq(C) is
a combinatorial class if and only if there is no element in C of size 0. We immediately
observe

Proposition 3. Suppose A, C and D are combinatorial classes with generating functions
A(z), C(z) and D(z). Then
(a) A = C + D =⇒ A(z) = C(z) + D(z)
(b) A = C × D =⇒ A(z) = C(z) · D(z)
(c) A = Seq(C) =⇒ A(z) = 1

1−C(z)
.

3 Modular, noncrossing diagrams

Let us begin by studying first the case k = 2 [7], where the asymptotic formula

Q2(n) ∼ 1.4848 · n−3/2 · 1.8489n

has been derived. In the following we extend the result in [7] by computing the gener-
ating function explicitly. The above asymptotic formula follows then easily by means of
singularity analysis.

Proposition 4. The generating function of modular, noncrossing diagrams is given by

Q2(z) =
1 − z2 + z4

1 − z − z2 + z3 + 2z4 + z6
· F2

(
z4 − z6 + z8

(1 − z − z2 + z3 + 2z4 + z6)2

)
(3.1)

and the coefficients Q2(n) satisfy

Q2(n) ∼ c2n
−3/2γ−n

2 ,

where γ2 is the minimal, positive real solution of ϑ(z) = 1/4, and

ϑ(z) =
z4 − z6 + z8

(1 − z − z2 + z3 + 2z4 + z6)2
. (3.2)

Here we have γ2 ≈ 1.8489 and c2 ≈ 1.4848.
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Proof. Let Q2 denote the set of modular noncrossing diagrams, I2 the set of all V2-shapes
and I2(m) those having exactly m 1-arcs. Then we have the surjective map

ϕ : Q2 → I2.

The map ϕ is obviously surjective, inducing the partition Q2 = ∪̇γϕ
−1(γ), where ϕ−1(γ)

is the preimage set of shape γ under the map ϕ. Accordingly, we arrive at

Q2(z) =
∑

m>0

∑

γ∈ I2(m)

Qγ(z). (3.3)

We proceed by computing the generating function Qγ(z). We shall construct Qγ(z) from
certain combinatorial classes as “building blocks”. The latter are: M (stems), K (stacks),
N (induced stacks), L (isolated vertices), R (arcs) and Z (vertices), where Z(z) = z and
R(z) = z2. We inflate γ ∈ I2(m) having s arcs, where s > max{1, m}, to a modular
noncrossing diagram in two steps:
Claim. For any shape γ ∈ I2(s,m) we have

Qγ(z) =




z4

1−z2

1 − z4

1−z2

(
2 z

1−z
+
(

z
1−z

)2)




s(
1

1 − z

)2s+1−m(
z3

1 − z

)m

= (1 − z)−1

(
z4

(1 − z2)(1 − z)2 − (2z − z2)z4

)s

(z3)m.

Step I: we inflate any shape-arc to a stack of length at least 2 and subsequently add
additional stacks. The latter are called induced stacks and have to be separated by means
of inserting isolated vertices, see Fig. 4. Note that during this first inflation step no

Fig. 4: Illustration of Step I.

intervals of isolated vertices, other than those necessary for separating the nested stacks
are inserted. We generate
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• sequences of isolated vertices L = Seq(Z), where

L(z) =
1

1 − z

• stacks, i.e.
K = R

2 × Seq (R)

with the generating function

K(z) = z4 ·
1

1 − z2
,

• induced stacks, i.e. stacks together with at least one nonempty interval of isolated
vertices on either or both its sides.

N = K ×
(
Z × L + Z × L + (Z × L)2)

with generating function

N(z) =
z4

1 − z2

(
2

z

1 − z
+

(
z

1 − z

)2
)
,

• stems, that is pairs consisting of a stack K and an arbitrarily long sequence of
induced stacks

M = K × Seq (N)

with generating function

M(z) =
K(z)

1 −N(z)
=

z4

1−z2

1 − z4

1−z2

(
2 z

1−z
+
(

z
1−z

)2) .

Step II: we insert additional isolated vertices at the remaining (2s + 1) positions. For
each 1-arc at least three such isolated vertices are necessarily inserted, see Fig. 5. We

Fig. 5: Step II: the noncrossing diagram (left) obtained in (1) in Fig. 4 is inflated to a modular
noncrossing diagram (right) by adding isolated vertices (red).

arrive at
Qγ = (M)s × L

2s+1−m ×
(
Z

3 × L
)m

, (3.4)
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where Qγ is the combinatorial class of modular noncrossing diagrams having shape γ ∈
I2(s,m). Combining these generating functions the Claim follows.
Since for any γ, γ1 ∈ I2(s,m) we have Qγ(z) = Qγ1

(z), we derive

Q2(z) =
∑

m>0

∑

γ∈ I2(m)

Qγ(z) =
∑

s>0

s∑

m=0

i2(s,m)Qγ(z).

We set

η(z) =
z4

(1 − z2)(1 − z)2 − (2z − z2)z4

and note that Lemma 2 guarantees

∑

s>0

s∑

m=0

i2(s,m) xs ym =
1 + x

1 + 2x− xy

∑

s>0

f2(2s)

(
x(1 + x)

(1 + 2x− xy)2

)s

.

Therefore, setting x = η(z) and y = z3 we arrive at

Q2(z) =
1 − z2 + z4

1 − z − z2 + z3 + 2z4 + z6
· F2

(
z4 − z6 + z8

(1 − z − z2 + z3 + 2z4 + z6)2

)

By Lemma 1, Q2(z) is D-finite. Pringsheim’s Theorem [19] guarantees that Q2(z) has a
dominant real positive singularity γ2. We verify that γ2 which is the unique solution of
minimum modulus of the equation ϑ(z) = ρ2

2, where ρ2
2 is the unique dominant singularity

of F2(z) and ρ2 = 1/2. Furthermore we observe that γ2 is the unique dominant singularity
of Q2(z). It is straightforward to verify that ϑ′(γ2) 6= 0. According to Proposition 2, we
therefore have

Q2(n) ∼ c2n
−3/2γ−n

2 ,

and the proof of Proposition 4 is complete.

4 Colored shapes

In the following we shall assume that k > 2, unless stated otherwise. The key to compute
the generating function of modular k-noncrossing diagrams are certain refinements of their
Vk-shapes. These refined shapes are called colored shapes and obtained by distinguishing
a variety of crossings of 2-arcs, i.e. arcs of the form (i, i+ 2). Each such class requires its
specific inflation-procedure in Theorem 3.

Let us next have a closer look at these combinatorial classes (colors):

• C1 the class of of 1-arcs,

• C2 the class of arc-pairs consisting of mutually crossing 2-arcs,

• C3 the class of arc-pairs (α, β) where α is the unique 2-arc crossing β and β has
length at least three.

• C4 the class of arc-triples (α1, β, α2), where α1 and α2 are 2-arcs that cross β.
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Fig. 6: Colored Vk-shapes: a modular 3-noncrossing diagram (top) and its colored V3-shape
(bottom). In the resulting V3-shape we color the four classes as follows: C1(green), C2(black),
C3(blue) and C4(red).

In Fig. 6 we illustrate how these classes are induced by modular k-noncrossing diagrams.

Let us refine Vk-shapes in two stages. For this purpose let Ik(s, u1, u2) and ik(s, u1, u2)
denote the set and cardinality of Vk-shapes having s arcs, u1 1-arcs and u2 pairs of
mutually crossing 2-arcs. Our first objective consists in computing the generating function

Wk(x, y, w) =
∑

s>0

s∑

u1=0

⌊
s−u1

2
⌋∑

u2=0

ik(s, u1, u2) x
syu1wu2.

That is, we first take the classes C1 and C2 into account.

Lemma 3. For k > 2, the coefficients ik(s, u1, u2) satisfy

ik(s, u1, u2) = 0 for u1 + 2u2 > s (4.1)

⌊
s−u1

2
⌋∑

u2=0

ik(s, u1, u2) = ik(s, u1), (4.2)

where ik(s, u1) denotes the number of Vk-shapes having s arcs, u1 1-arcs. Furthermore we
have the recursion:

(u2 + 1)ik(s+ 1, u1, u2 + 1) = (u1 + 1)ik(s, u1 + 1, u2)

+(u1 + 1)ik(s− 1, u1 + 1, u2). (4.3)

The solution of eq. (4.1)–(4.3) is unique.

The proof of Lemma 3 is given in Section 6. We next compute Wk(x, y, w).

Proposition 5. For k > 2, we have

Wk(x, y, w) = (1 + x)vFk

(
x(1 + x)v2

)
, (4.4)

where v = ((1 − w)x3 + (1 − w)x2 + (2 − y)x+ 1)
−1

.
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Proof. According to Lemma 2, we have

Ik(z, u) =
1 + z

1 + 2z − zu
Fk

(
z(1 + z)

(1 + 2z − zu)2

)
.

This generating function is connected to Wk(x, y, z) via eq. (4.2) of Lemma 3 as follows:
setting w = 1, we have Wk(x, y, 1) = Ik(x, y). The recursion of eq. (4.3) gives rise to the
partial differential equation

∂Wk(x, y, w)

∂w
= x

∂Wk(x, y, w)

∂y
+ x2∂Wk(x, y, w)

∂y
. (4.5)

We next show

• the function

W∗
k(x, y, w) =

(1 + x)

(1 − w)x3 + (1 − w)x2 + (2 − y)x+ 1
×

Fk

(
(1 + x)x

((1 − w)x3 + (1 − w)x2 + (2 − y)x+ 1)2

)
(4.6)

is a solution of eq. (4.5),

• its coefficients, i∗k(s, u1, u2) = [xsyu1wu2]W∗
k(x, y, w), satisfy

i∗k(s, u1, u2) = 0 for u1 + 2u2 > s,

• W∗
k(x, y, 1) = Ik(x, y).

Firstly,

∂W∗
k(x, y, w)

∂y
= uFk (u) + 2uF′

k (u) (4.7)

∂W∗
k(x, y, w)

∂w
= x(1 + x)uFk (u) + 2x(1 + x)uF′

k (u) , (4.8)

where

u =
x(1 + x)

((1 − w)x3 + (1 − w)x2 + (2 − y)x+ 1)2

and F′
k (u) =

∑
n>0 nfk(2n)(u)n. Consequently, we derive

∂W∗
k(x, y, w)

∂w
= x

∂W∗
k(x, y, w)

∂y
+ x2∂W

∗
k(x, y, w)

∂y
. (4.9)

Secondly we prove i∗k(s, u1, u2) = 0 for u1 + 2u2 > s. To this end we observe that
W∗

k(x, y, w) is a power series, since it is analytic in (0, 0, 0). It now suffices to note that
the indeterminants y and w only appear in form of products xy and x2w or x3w. Thirdly,
the equality W∗

k(x, y, 1) = Ik(x, y) is obvious.
Claim.

W∗
k(x, y, w) = Wk(x, y, w). (4.10)
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By construction the coefficients i∗k(s, u1, u2) satisfy eq. (4.3) and we just proved that
i∗k(s, u1, u2) = 0 for u1 + 2u2 > s. In view of W∗

k(x, y, 1) = Ik(x, y) we have

∀ s, u1;

⌊
s−u1

2
⌋∑

u2=0

i∗k(s, u1, u2) = ik(s, u1).

Using these three properties, Lemma 3 implies

∀ s, u1, u2 > 0; i∗k(s, u1, u2) = ik(s, u1, u2),

whence the Claim and the proposition is proved.

In addition to C1 and C2, we consider next the classes C3 and C4. For this purpose
we have to identify two new recursions, see Lemma 4. Setting ~u = (u1, . . . , u4) we denote
by Ik(s, ~u) and ik(s, ~u), the set and number of colored Vk-shapes over s arcs, containing
ui elements of class Ci, where 1 6 i 6 4. The key result is

Lemma 4. For k > 2, the coefficients ik(s, ~u) satisfy

ik(s, u1, u2, u3, u4) = 0 for u1 + 2u2 + 2u3 + 3u4 > s (4.11)∑

u3,u4>0

ik(s, u1, u2, u3, u4) = ik(s, u1, u2). (4.12)

Furthermore we have the recursions

(u3 + 1)ik(s+ 1, u1, u2, u3 + 1, u4) =

2u1ik(s− 1, u1, u2, u3, u4)

+ 4(u2 + 1)ik(s− 1, u1, u2 + 1, u3, u4)

+ 4(u2 + 1)ik(s− 1, u1, u2 + 1, u3 − 1, u4)

+ 4(u2 + 1)ik(s− 2, u1, u2 + 1, u3 − 1, u4)

+ 2(u3 + 1)ik(s, u1, u2, u3 + 1, u4)

+ 2u3ik(s− 1, u1, u2, u3, u4)

+ 6(u3 + 1)ik(s− 1, u1, u2, u3 + 1, u4)

+ 2(u3 + 1)ik(s− 2, u1, u2, u3 + 1, u4)

+ 2u3ik(s− 2, u1, u2, u3, u4)

+ 4(u4 + 1)ik(s, u1, u2, u3 − 1, u4 + 1)

+ 4(u4 + 1)ik(s− 1, u1, u2, u3 − 1, u4 + 1)

+ 4u4ik(s− 1, u1, u2, u3, u4)

+ 4(u4 + 1)ik(s− 1, u1, u2, u3, u4 + 1)

+ 4u4ik(s− 2, u1, u2, u3, u4)

+ 2(u4 + 1)ik(s− 2, u1, u2, u3, u4 + 1)

+ (2s− 2u1 − 4u2 − 4u3 − 6u4)ik(s, u1, u2, u3, u4)

+ 2(2(s− 1) − 2u1 − 4u2 − 4u3 − 6u4)ik(s− 1, u1, u2, u3, u4)

+ (2(s− 2) − 4u2 − 4u3 − 6u4)ik(s− 2, u1, u2, u3, u4) (4.13)
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and

2(u4 + 1)ik(s+ 1, u1, u2, u3, u4 + 1) = (u3 + 1)ik(s, u1, u2, u3 + 1, u4)

+ 2(u2 + 1)k(s, u1, u2 + 1, u3, u4). (4.14)

The sequence satisfying eq. (4.11)–(4.14) is unique.

The proof of Lemma 4 is given in Section 6. It is obtained by removing a specific
arc in a labeled C3-element or a labeled C4-element and accounting of the resulting arc-
configurations.

Proposition 5 and Lemma 4 put us in position to compute the generating function of
colored Vk-shapes

Ik(x, y, z, w, t) =
∑

s,u1,u2,u3,u4

ik(s, ~u) x
syu1zu2wu3tu4 . (4.15)

Proposition 6. For k > 2, the generating function of colored Vk-shapes is given by

Ik(x, y, z, w, t) =
1 + x

θ
Fk

(
x(1 + (2w − 1)x+ (t− 1)x2)

θ2

)
, (4.16)

where θ = 1 − (y − 2)x+ (2w − z − 1)x2 + (2w − z − 1)x3.

Proof. The first recursion of Lemma 4 implies the partial differential equation

∂Ik

∂w
=
∂Ik

∂x
(2x2 + 4x3 + 2x4) −

∂Ik

∂y
(2xy + 2x2y)

+
∂Ik

∂z
(−4xz + 4x2w + 4x2 − 4x3z − 8x2z + 4x3w)

+
∂Ik

∂w
(−4xw + 2x− 6x2w + 6x2 − 2x3w + 2x3)

+
∂Ik

∂t
(−6xt+ 4xw − 8x2t+ 4x2w + 4x2 − 2x3t+ 2x3). (4.17)

Analogously, the second recursion of Lemma 4 gives rise to the partial differential equation

2
∂Ik

∂t
=
∂Ik

∂w
x+

∂Ik

∂z
2x. (4.18)

Aside from being a solution of eq. (4.17) and eq. (4.18), we take note of the fact that
eq. (4.12) of Lemma 4 is equivalent to

Ik(x, y, z, 1, 1) = Wk(x, y, z). (4.19)

We next show
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• The function

I∗k(x, y, z, w, t) =
1 + x

1 − (y − 2)x+ (2w − z − 1)x2 + (2w − z − 1)x3
×

Fk

(
x(1 + (2w − 1)x+ (t− 1)x2)

(1 − (y − 2)x+ (2w − z − 1)x2 + (2w − z − 1)x3)2

)

is a solution of eq. (4.17) and eq. (4.18),

• its coefficients, i∗k(s, u1, u2, u3, u4) = [xsyu1zu2wu3tu4 ]I∗k(x, y, z, w, t), satisfy

i∗k(s, u1, u2, u3, u4) = 0 for u1 + 2u2 + 2u3 + 3u4 > s,

• I∗k(x, y, z, 1, 1) = Wk(x, y, z).

We verify by direct computation that I∗k(x, y, z, w, t) satisfies eq. (4.17) as well as eq. (4.18).
Next we prove i∗k(s, u1, u2, u3, u4) = 0 for u1 +2u2 +2u3 +3u4 > s. Since I∗k(x, y, z, w, t) is
analytic in (0, 0, 0, 0, 0), it is a power series. As the indeterminants y, z, w and t appear
only in form of products xy, x2z or x3z, x2w or x3w, and x3t, respectively, the assertion
follows.
Claim.

I∗k(x, y, z, w, t) = Ik(x, y, z, w, t).

By construction, i∗k(s, ~u) satisfies the recursions eq. (4.13) and eq. (4.14) as well as
i∗k(s, u1, u2, u3, u4) = 0 for u1 + 2u2 + 2u3 + 3u4 > s. Eq. (4.19) implies

∑

u3,u4>0

i∗k(s, u1, u2, u3, u4) = ik(s, u1, u2).

Using these properties we can show via Lemma 4,

∀ s, u1, u2, u3, u4 > 0; i∗k(s, u1, u2, u3, u4) = ik(s, u1, u2, u3, u4)

and the proposition is proved.

5 The main theorem

We are now in position to compute Qk(z). All technicalities aside, we already introduced
the main the strategy in the proof of Proposition 4: as in the case k = 2 we shall take
care of all “critical” arcs by specific inflations.

Theorem 3. Suppose k > 2, then

Qk(z) =
1 − z2 + z4

q(z)
Fk (ϑ(z)) , (5.1)
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where

q(z) = 1 − z − z2 + z3 + 2z4 + z6 − z8 + z10 − z12

ϑ(z) =
z4(1 − z2 − z4 + 2z6 − z8)

q(z)2
. (5.2)

Furthermore, for 3 6 k 6 9, Qk(n) satisfies

Qk(n) ∼ ck n
−((k−1)2+(k−1)/2) γ−n

k , for some ck > 0, (5.3)

where γk is the minimal, positive real solution of ϑ(z) = ρ2
k, see Table 2.

k 3 4 5 6 7 8 9

θ(n) n−5 n− 21

2 n−18 n− 55

2 n−39 n− 105

2 n−68

γ−1
k 2.5410 3.0132 3.3974 3.7319 4.0327 4.3087 4.5654

Table 2: Exponential growth rates γ−1
k and subexponential factors θ(n), for modular, k-

noncrossing diagrams.

Proof. Let Qk denote the set of modular, k-noncrossing diagrams and let Ik and Ik(s, ~u)
denote the set of all Vk-shapes and those having s arcs and ui elements belonging to class
Ci, where 1 6 i 6 4. Then we have the surjective map,

ϕk : Qk → Ik,

inducing the partition Qk = ∪̇γϕ
−1
k (γ), where ϕ−1

k (γ) is the preimage set of shape γ under
the map ϕk. This partition allows us to organize Qk(z) with respect to colored Vk-shapes,
γ, as follows:

Qk(z) =
∑

s,~u

∑

γ∈Ik(s,~u)

Qγ(z). (5.4)

We proceed by computing the generating function Qγ(z) following the strategy of Propo-
sition 4, also using the notation therein. The key point is that the inflation-procedures
are specific to the Ci-classes. We next inflate all “critical” arcs, i.e. arcs that require
the insertion of additional isolated vertices in order to satisfy the minimum arc length
condition.
Claim 1. For a shape γ ∈ Ik(s, ~u) we have

Qγ(z) = C1(z)
u1 · C2(z)

u2 · C3(z)
u3 ·C4(z)

u4 · S(z)

=
1

1 − z
ς0(z)

sς1(z)
u1ς2(z)

u2ς3(z)
u3ς4(z)

u4 ,

the electronic journal of combinatorics 17 (2010), #R76 17



where

ς0(z) =
z4

1 − 2z + 2z3 − z4 − 2z5 + z6
, ς1(z) = z3

ς2(z) =
z(1 − 4z3 + 2z4 + 8z5 − 6z6 − 7z7 + 8z8 + 2z9 − 4z10 + z11)

1 − z

ς3(z) = z(2 − 2z2 + z3 + 2z4 − z5)

ς4(z) = z2(5 − 4z − 3z2 + 6z3 + 2z4 − 4z5 + z6).

We show how to inflate a shape into a modular k-noncrossing diagram, distinguishing
specific classes of shape-arcs. For this purpose we refer to a stem different from a 2-stack
as a †-stem. Accordingly, the combinatorial class of †-stems is given by (M − R2).

• C1-class: here we insert isolated vertices, see Fig. 7, and obtain immediately

C1(z) =
z3

1 − z
. (5.5)

Fig. 7: C1-class: insertion of at least three vertices (red)

• C2-class: any such element is a pair ((i, i+2), (i+1, i+3)) and we shall distinguish
the following scenarios:

– both arcs are inflated to stacks of length two, see Fig. 8. Ruling out the cases
where no isolated vertex is inserted and the two scenarios, where there is no
insertion into the interval [i+1, i+2] and only in either [i, i+1] or [i+2, i+3],
see Fig. 8, we arrive at

C
(a)
2 = R

4 × [(Seq(Z))3 − E − 2(Z × Seq(Z))].

This combinatorial class has the generating function

C
(a)
2 (z) = z8

((
1

1 − z

)3

− 1 −
2z

1 − z

)
.

– one arc, (i+ 1, i+ 3) or (i, i+ 2) is inflated to a 2-stack, while its counterpart
is inflated to an arbitrary †-stem, see Fig. 9. Ruling out the cases where no
vertex is inserted in [i+ 1, i+ 2] and [i+ 2, i+ 3] or [i, i+ 1] and [i+ 2, i+ 3],
we obtain

C
(b)
2 = 2 ·

[
R

2 × (M − R
2) × ((Seq(Z))2 − E) × Seq(Z)

]
,
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A B C

Fig. 8: C2-class: inflation of both arcs to 2-stacks. Inflated arcs are colored red while the
original arcs of the shape are colored black. We set A = [i + 1, i + 2], B = [i + 2, i + 3] and
C = [i + 2, i + 3] and illustrate the “bad” insertion scenarios as follows: an insertion of some
isolated vertices is represented by a yellow segment and no insertion by a black segment. See
the text for details.

having the generating function

C
(b)
2 (z) = 2z4




z4

1−z2

1 − z4

1−z2

(
2z

1−z
+
(

z
1−z

)2) − z4



((

1

1 − z

)2

− 1

)
1

1 − z
.

Fig. 9: C2-class: inflation of only one arc to a 2-stack. Arc-coloring and labels as in Fig. 8

– both arcs are inflated to an arbitrary †-stem, respectively, see Fig. 10. In this
case the insertion of isolated vertices is arbitrary, whence

C
(c)
2 = (M − R

2)2 × (Seq(Z))3,

with generating function

C
(c)
2 (z) =




z4

1−z2

1 − z4

1−z2

(
2z

1−z
+
(

z
1−z

)2) − z4




2(

1

1 − z

)3

.

A B C

Fig. 10: C2-class: inflation of both arcs to an arbitrary †-stem. Arc-coloring and labels as in
Fig. 8

As the above scenarios are mutually exclusive, the generating function of the C2-class
is given by

C2(z) = C
(a)
2 (z) + C

(b)
2 (z) + C

(c)
2 (z). (5.6)

Furthermore note that both arcs of an C2-element are inflated in the cases (a), (b)
and (c).
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• C3-class: this class consists of arc-pairs (α, β) where α is the unique 2-arc crossing
β and β has length at least three. Without loss of generality we can restrict our
analysis to the case ((i, i+ 2), (i+ 1, j)), (j > i+ 3).

– the arc (i + 1, j) is inflated to a 2-stack. Then we have to insert at least one
isolated vertex in either [i, i+1] or [i+1, i+2], see Fig. 11. Therefore we have

C
(a)
3 = R

2 × (Seq(Z)2 − E),

with generating function

C
(a)
3 (z) = z4

((
1

1 − z

)2

− 1

)
.

Note that the arc (i, i + 2) is not considered here, it can be inflated without
any restrictions.

– the arc (i+ 1, j) is inflated to an arbitrary †-stem, see Fig. 11). Then

C
(b)
3 = (M − R

2) × Seq(Z)2,

with generating function

C
(b)
3 (z) =




z4

1−z2

1 − z4

1−z2

(
2z

1−z
+
(

z
1−z

)2) − z4


 ·

(
1

1 − z

)2

.

A B

A B

Fig. 11: C3-class: only one arc is inflated here and its inflation distinguishes two subcases.
Arc-coloring as in Fig. 8

Consequently, this inflation process leads to a generating function

C3(z) = C
(a)
3 (z) + C

(b)
3 (z). (5.7)

Note that during inflation (a) and (b) only one of the two arcs of an C3-class element
is being inflated.

• C4-class: this class consists of arc-triples (α1, β, α2), where α1 and α2 are 2-arcs,
respectively, that cross β.

the electronic journal of combinatorics 17 (2010), #R76 20



– β is inflated to a 2-stack, see Fig. 12. Using similar arguments as in the case
of C3-class, we arrive at

C
(a)
4 = R

2 × (Seq(Z)2 − E) × (Seq(Z)2 − E),

with generating function

C
(a)
4 (z) = z4

((
1

1 − z

)2

− 1

)2

.

– the arc β is inflated to an arbitrary †-stem, see Fig. 12,

C
(b)
4 = (M − R

2) × Seq(Z)4,

with generating function

C
(b)
4 (z) =




z4

1−z2

1 − z4

1−z2

(
2z

1−z
+
(

z
1−z

)2) − z4


 ·

(
1

1 − z

)4

.

A B C D

A B C D

Fig. 12: C4-class: as for the inflation of C3 only the non 2-arc is inflated, distinguishing two
subcases. Arc-coloring as in Fig. 8

Accordingly we arrive at

C4(z) = C
(a)
4 (z) + C

(b)
4 (z). (5.8)

The inflation of any arc of γ not considered in the previous steps follows the logic of
Proposition 4. We observe that (s − 2u2 − u3 − u4) arcs of the shape γ have not been
considered. Furthermore, (2s+1−u1−3u2 −2u3 −4u4) intervals were not considered for
the insertion of isolated vertices. The inflation of these along the lines of Proposition 4
gives rise to the class

S = M
s−2u2−u3−u4 × (Seq(Z))2s+1−u1−3u2−2u3−4u4 ,

having the generating function

S(z) =




z4

1−z2

1 − z4

1−z2

(
2z

1−z
+
(

z
1−z

)2)




s−2u2−u3−u4 (

1

1 − z

)2s+1−u1−3u2−2u3−4u4

.
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Combining these observations Claim 1 follows.
Observing that Qγ1

(z) = Qγ2
(z) for any γ1, γ2 ∈ Ik(s, ~u), we have, according to eq. (5.4),

Qk(z) =
∑

s,~u>0

ik(s, ~u) Qγ(z),

where ~u > 0 denotes ui > 0 for 1 6 i 6 4. Proposition 6 guarantees
∑

s,~u>0

ik(s, ~u) x
syu1ru2wu3tu4

=
1 + x

1 − (y − 2)x+ (2w − r − 1)x2 + (2w − r − 1)x3
×

Fk

(
x(1 + (2w − 1)x+ (t− 1)x2)

(1 − (y − 2)x+ (2w − r − 1)x2 + (2w − r − 1)x3)2

)
.

Setting x = ς0(z), y = ς1(z), r = ς2(z), w = ς3(z), t = ς4(z), we arrive at

Qk(z) =
1 − z2 + z4

1 − z − z2 + z3 + 2z4 + z6 − z8 + z10 − z12
×

Fk

(
z4(1 − z2 − z4 + 2z6 − z8)

(1 − z − z2 + z3 + 2z4 + z6 − z8 + z10 − z12)2

)
.

By Lemma 1, Qk(z) is D-finite. Pringsheim’s Theorem [19] guarantees that Qk(z) has
a dominant real positive singularity γk. We verify that for 3 6 k 6 9, γk which is the
unique solution of minimum modulus of the equation ϑ(z) = ρ2

k is the unique dominant
singularity of Qk(z), and ϑ′(z) 6= 0. According to Proposition 2 we therefore have

Qk(n) ∼ ck n
−((k−1)2+(k−1)/2) (γ−1

k )n, for some ck > 0,

and the proof of Theorem 3 is complete.

Remark 1. We remark that Theorem 3 does not hold for k = 2, i.e. we cannot compute
the generating function Q2(z) via eq. (5.1). The reason is that Lemma 4 only holds for
k > 2 and indeed we find

Q2(z) 6=
1 − z2 + z4

q(z)
F2

(
z4(1 − z2 − z4 + 2z6 − z8)

q(z)2

)
. (5.9)

However, the computation of the generating function Q2(z) in Proposition 4 is based on
Lemma 2, which does hold for k = 2.

6 Proof of Lemma 3 and Lemma 4

6.1 Proof of Lemma 3

Proof. By construction, eq. (4.1) and eq. (4.2) hold. We next prove eq. (4.3). Choose
a shape δ ∈ Ik(s + 1, u1, u2 + 1) and label exactly one of the (u2 + 1) C2-elements. We
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denote the leftmost C2-arc (being a 2-arc) by α. Let L be the set of these labeled shapes,
λ, then

|L| = (u2 + 1) ik(s+ 1, u1, u2 + 1).

We next observe that the removal of α results in either a shape or a matching. Let the
elements of the former set be L1 and those of the latter L2. By construction,

L = L1∪̇L2.

Claim 1.
|L1| = (u1 + 1) ik(s, u1 + 1, u2).

To prove Claim 1, we consider the labeled C2-element (α, β). Let Lα
1 be the set of shapes

induced by removing α. It is straightforward to verify that the removal of α can lead to
only one additional C1-element, β. Therefore L1-shapes induce unique Ik(s, u1 + 1, u2)-
shapes, having a labeled 1-arc, β, see Fig. 13. This proves Claim 1.

a b b b

Fig. 13: The term (u1 + 1) ik(s, u1 + 1, u2).

Claim 2.
|L2| = (u1 + 1) ik(s− 1, u1 + 1, u2).

To prove Claim 2, we consider Mα
2 , the set of matchings, µα

2 , obtained by removing α.
Such a matching contains exactly one stack of length two, (β1, β2), where β2 is nested in
β1. Let Lα

2 be the set of shapes induced by collapsing (β1, β2) into β2. We observe that α
crosses β2 and that β2 becomes a 1-arc. Therefore, L2 is the set of labeled shapes, that
induce unique Ik(s − 1, u1 + 1, u2)-shapes having a labeled 1-arc, β2, see Fig. 14. This
proves Claim 2.
Combining Claim 1 and Claim 2 we derive eq. (4.3).

a

b1

b2

b1

b2
b2 b2

Fig. 14: The term (u1 + 1) ik(s− 1, u1 + 1, u2).

It remains to show (by induction on s) that the numbers ik(s, u1, u2) can be uniquely
derived from eq. (4.1), eq. (4.2) and eq. (4.3), whence the lemma.
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6.2 Proof of Lemma 4

Proof. By construction, eq. (4.11) and eq. (4.12) hold. We next prove eq. (4.13).
Choose a shape δ ∈ Ik(s + 1, u1, u2, u3 + 1, u4) and label exactly one of the (u3 + 1) C3-
elements containing a unique 2-arc, α. We denote the set of these labeled shapes, λ, by
L. Clearly

|L| = (u3 + 1)ik(s+ 1, u1, u2, u3 + 1, u4).

We observe that the removal of α results in either a shape (L1) or a matching (L2), i.e. we
have

L = L1 ∪̇L2.

Claim 1.

|L1| = 2(u3 + 1) ik(s, u1, u2, u3 + 1, u4) + (6.1)

4(u4 + 1) ik(s, u1, u2, u3 − 1, u4 + 1) + (6.2)

(2(s− u1 − 2u2 − 2u3 − 3u4)) ik(s, u1, u2, u3, u4).

To prove Claim 1, we consider the labeled C3-element of a L1-shape, (α, β). We set Lα
1

to be the set of shapes induced by removing α and denote the resulting shapes by λα
1 . By

construction a λα
1 -shape cannot contain any additional C1- or C2-elements, see Fig. 16.

Clearly, the removal of α can lead to at most one additional Ci-element, whence

L1 = L
C3

1 ∪̇L
C4

1 ∪̇L
0
1,

where L
Ci

1 , i = 3, 4 denotes the set of labeled shapes, λ ∈ L1, that induce a unique shape
having a labeled Ci-element containing β and L0

1 the set of those shapes, in which there
exists no such Ci-element.
We first prove

(1.I) |LC3

1 | = 2(u3 + 1) ik(s, u1, u2, u3 + 1, u4).

Indeed, in order to generate a labeled C3-element by α-removal from L1-shape, β has to
become a 2-arc in a labeled C3-element of a Ik(s, u1, u2, u3 + 1, u4)-shape, see Fig. 17.
Next we prove

(1.II) |LC4

1 | = 4(u4 + 1) ik(s, u1, u2, u3 − 1, u4 + 1).

Indeed in order to generate a labeled C4-element by α-removal from L1-shape, β has to
become a 2-arc in a labeled C4-element of a Ik(s, u1, u2, u3 − 1, u4 + 1)-shape. We display
all possible scenarios in Fig. 18.
Otherwise β becomes simply a labeled arc in a Ik(s, u1, u2, u3, u4)-shape, which is not
contained in any Ci-element, whence

(1.III) |L0
1| = 2(s− u1 − 2u2 − 2u3 − 3u4) ik(s, u1, u2, u3, u4)
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labeled shape

1

1.I

1.II

1.III

2

2.1

2.2

2.3

2.1.I

2.1.II

2.1.III

2.1.III.i

2.1.III.ii

2.2.I

2.2.II

2.2.III

2.2.IV

2.2.IV.i

2.2.IV.ii

2.2.III.i

2.2.III.ii

2.3.I

2.3.II

2.3.III

2.3.IV

2.3.IV.i

2.3.IV.ii

2.3.III.i

2.3.III.ii

2.1.IV

2.2.V

2.3.V

Fig. 15: Accounting: the scenarious arising from the removal of α from a labeled C3-
element of a Ik(s+ 1, u1, u2, u3 + 1, u4)-shape.
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a

a

b

b

b

b

NO

NO
b

b

Fig. 16: The removal of α cannot give rise to additional C1- or C2-elements.

a
b

b

1.I

b

bb

b
a bb }

Fig. 17: We illustrate the effect of the removal of α when inducing a labeled C3-element.

}

}
Fig. 18: We illustrate the effect of the removal of α with when inducing a labeled C4-element.
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and Claim 1 follows.
We next consider L2. Let Mα

2 be the set of matchings, µα
2 , obtained by removing α.

Claim 2. Let (β1, . . . , βℓ) denote a µα
2 -stack ((β1, . . . , βℓ) ≺ µα

2 ). Then we have

L2 = L2,1∪̇L2,2∪̇L2,3, (6.3)

where

L2,1 ={λ ∈ L2 | α, βi ∈ λ, i = 1, 2; (β1, β2) ≺ µα
2 ; α crosses β2},

L2,2 ={λ ∈ L2 | α, βi ∈ λ, i = 1, 2; (β1, β2) ≺ µα
2 ; α crosses β1},

L2,3 ={λ ∈ L2 | α, βi ∈ λ, i = 1, 2, 3; (β1, β2, β3) ≺ µα
2 ; α crosses β2}.

To prove Claim 2, it suffices to observe that a Mα
2 -matching contains exactly one stack of

length either two or three. Now, eq. (6.3) immediately follows by inspection of Figure 19.
Claim 2.1

a

b

a a

1

b2

b1

b2b2

b1

b3

2.1 2.2 2.3

Fig. 19: L2 and Mα
2 : how stacks arise by the removal of α.

|L2,1| = 4(u2 + 1) ik(s− 1, u1, u2 + 1, u3, u4)

+ 4(u3 + 1) ik(s− 1, u1, u2, u3 + 1, u4)

+ [4(u4 + 1) ik(s− 1, u1, u2, u3 − 1, u4 + 1)

+ 2(u4 + 1) ik(s− 1, u1, u2, u3, u4 + 1)]

+ 2((s− 1) − u1 − 2u2 − 2u3 − 3u4)) ik(s− 1, u1, u2, u3, u4).

To prove Claim 2.1, let Mα
2,1 be the set of matchings induced by removing α from a L2,1-

shape. We set Lα
2,1 to be the set of shapes induced by collapsing the unique Mα

2,1-stack
of length two into the arc β2. Clearly, such a shape cannot exhibit any additional C1-
elements, see Fig. 20.

a

b1

b2

b1

b2

b2

NO
b2

Fig. 20: λα
2,1 cannot exhibit any additional C1-elements.

Since the removal of α and subsequent stack-collapse can lead to at most one new Ci

element, we have
L2,1 = L

C2

2,1∪̇L
C3

2,1∪̇L
C4

2,1∪̇L
0
2,1,
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where L
Ci

2,1, i = 2, 3, 4 denotes the set of labeled shapes, λ ∈ L2,1, that induce unique
shapes having a labeled Ci-element containing β2 and L0

2,1 denotes those in which there
exists no Ci-element containing β2.
We first prove

(2.1.I). |LC2

2,1| = 4(u2 + 1) ik(s− 1, u1, u2 + 1, u3, u4).

Indeed, in order to generate a labeled C2-element via α-removal and subsequent stack-

a

b1

b2

b
1

b2

b2

2.1.I

a

b1

b2

b1

b2 b2

b1

b2

b
1

b2

b2

a

b1

b2 a

b1

b2 b2

b2

b2

}

}
Fig. 21: In L2,1: the removal of α and subsequent collapse of the unique stack of length two in
Mα

2,1, generating a labeled C2-element (pink).

collapse from a L2,1-shape, β2 has to become a 2-arc in a C2-element of a Ik(s−1, u1, u2 +
1, u3, u4)-shape. We display all possible scenarios in Fig. 21.
Next we prove

(2.1.II) |LC3

2,1| = 4(u3 + 1) ik(s− 1, u1, u2, u3 + 1, u4).

In order to generate a labeled C3-element by α-removal and collapsing the unique stack of
length two from a L2,1-shape, β2 has to become a 2-arc or an arc uniquely crossing a 2-arc
in a C3-element of a Ik(s − 1, u1, u2, u3 + 1, u4)-shape. We display all possible scenarios
in Fig. 22.

Third we prove

(2.1.III) |LC4

2,1| = 4(u4+1) ik(s−1, u1, u2, u3−1, u4+1)+2(u4+1) ik(s−1, u1, u2, u3, u4+1).

In order to generate a labeled C4-element by α-removal and collapsing the unique stack
of length two from a L2,1-shape, β2 has to become either a 2-arc in a labeled C4-element
of a Ik(s − 1, u1, u2, u3 − 1, u4 + 1)-shape or an arc that crosses two 2-arcs in a labeled
C4-element of a Ik(s − 1, u1, u2, u3, u4 + 1)-shape. We display all possible scenarios in
Fig. 23 and Fig. 24.
Otherwise, β2 becomes a labeled arc in a Ik(s− 1, u1, u2, u3, u4)-shape, which is not con-
tained in any Ci-element. Thus

(2.1.IV) |L0
2,1| = 2((s− 1) − u1 − 2u2 − 2u3 − 3u4)) ik(s− 1, u1, u2, u3, u4),
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a

b1

b2

b1

b2 b2

b1

b2 b2
a

b1

b2

b1

b2 b2
a

a

b1

b2

b1
b2

b2

b1
b2

b2

b2

}

}

2.1.II

Fig. 22: In L2,1: the removal of α and collapsing the unique stack of length two in Mα
2,1,

generating a labeled C3-element (pink).

2.1.III.i

Fig. 23: How to derive a labeled C4-element: first scenario.

a

b1

b2

b2

b1

b2

2.1.III.ii

b1

b2

b2

b1

b2
a

b2

}
Fig. 24: How to derive a labeled C4-element:second scenario.
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from which Claim 2.1 follows.
Claim 2.2.

|L2,2| = 2u1 ik(s− 1, u1, u2, u3, u4)

+ 4(u2 + 1) ik(s− 1, u1, u2 + 1, u3 − 1, u4)

+ [2u3 ik(s− 1, u1, u2, u3, u4)

+ 2(u3 + 1) ik(s− 1, u1, u2, u3 + 1, u4)]

+ [4u4 ik(s− 1, u1, u2, u3, u4)

+ 2(u4 + 1) ik(s− 1, u1, u2, u3, u4 + 1)]

+ 2((s− 1) − u1 − 2u2 − 2u3 − 3u4))ik(s− 1, u1, u2, u3, u4).

In order to prove Claim 2.2, we consider Mα
2,2, the set of matchings induced by removing

α from a L2,2-shape. We set Lα
2,2 to be the set of shapes induced by collapsing the unique

Mα
2,2-stack of length two into β2. The removal of α and subsequent collapse can only lead

to at most one additional Ci-element, whence

L2,2 = L
C1

2,2 ∪̇L
C2

2,2 ∪̇L
C3

2,2 ∪̇L
C4

2,2 ∪̇L
0
2,2,

using analogous notation and reasoning as in the proof of Claim 2.1.
We first prove

(2.2.I) |LC1

2,2| = 2u1 ik(s− 1, u1, u2, u3, u4).

In order to generate a labeled C1-element by α-removal from a L2,2-shape and collapsing

2.2.I

a

b1

b2

b1

b2

b2

a

b1

b2

b1

b2

b2

b2

}

Fig. 25: Removal of α in Lα
2,2 and subsequent collapsing of the unique stack in Mα

2,2, generating
a labeled C1-element.

the unique stack of length two, we need β2 to be a 1-arc in a Ik(s−1, u1, u2, u3, u4)-shape,
see Figure 25. Note that this operation only transfers labels but generates no new 1-arcs.
Next we prove

(2.2.II) |LC2

2,2| = 4(u2 + 1) ik(s− 1, u1, u2 + 1, u3 − 1, u4).

In order to generate a labeled C2-element by α-removal from a L2,1-shape and collapsing
the unique stack of length two, β2 has to become a 2-arc in a labeled C2-element of
Ik(s− 1, u1, u2 + 1, u3 − 1, u4). We display all possible scenarios in Fig. 26.
Third we prove

(2.2.III) |LC3

2,2| = 2u3 ik(s− 1, u1, u2, u3, u4) + 2(u3 + 1) ik(s− 1, u1, u2, u3 + 1, u4).
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b1

b2

b1

b2

b2

2.2.II

b1

b2
b2

b1

b2

b1

b2

b2

a

a

b2

}
b1

b2
a

b1

b2
a

b1

b2
b2

b2

}
Fig. 26: Removal of α (red arc) in Lα

2,2 and collapsing the unique stack of length two in Mα
2,2,

generating a labeled C2-element.

a

b1

b2

b1

b2 b2

2.2.III.i

b1

b2

b1

b2 b2
a

b2

}
Fig. 27: The term 2u3 ik(s − 1, u1, u2, u3, u4): removal of α in Lα

2,2 and collapsing the unique
stack of length two in Mα

2,2, generating a labeled C3-element.

b1

b2

b1

b2

b2a

a

b1

b2

b1

b2

b2

b2

}

2.2.III.ii

Fig. 28: The term 2(u3 + 1) ik(s − 1, u1, u2, u3 + 1, u4).
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In order to generate a labeled C3-element by α-removal from a L2,2-shape and collapse
of the resulting unique stack, β2 has to become either a 2-arc in a labeled C3-element of a
Ik(s−1, u1, u2, u3, u4)-shape or an arc uniquely crossing the 2-arc in a labeled C3-element
of a Ik(s − 1, u1, u2, u3 + 1, u4)-shape. We display all possible scenarios in Fig. 27 and
Fig.28.
Fourth we prove

(2.2.IV) |LC4

2,2| = 4u4 ik(s− 1, u1, u2, u3, u4) + 2(u4 + 1) ik(s− 1, u1, u2, u3, u4 + 1).

In order to generate a labeled C4-element, β2 has to become either a 2-arc in a labeled

a

b1

b2

b1

b2 b2

2.2.IV.i

b
1

b2 b2

b1

b2

b1

b2 b2
a

a

b1

b2

b1

b2
a

b
1

b2 b2

b2

}

b2

}

Fig. 29: The term 4u4 ik(s − 1, u1, u2, u3, u4).

a

b1

b2

b2

b1

b2

2.2.IV.ii

b1

b2

b2

b1

b2a

b2

}
Fig. 30: The term 2(u4 + 1) ik(s − 1, u1, u2, u3, u4 + 1).

C4-element of a Ik(s − 1, u1, u2, u3, u4)-shape or an arc uniquely crossing two 2-arcs in a
labeled C4-element of a Ik(s−1, u1, u2, u3, u4 +1)-shape. We display all possible scenarios
in Fig. 29 and Fig. 30.
It remains to observe that β2 otherwise becomes a labeled arc in a Ik(s− 1, u1, u2, u3, u4)-
shape, which is not contained in any Ci-element. Thus

(2.2.V) |L0
2,2| = 2((s− 1) − u1 − 2u2 − 2u3 − 3u4)) ik(s− 1, u1, u2, u3, u4)

and Claim 2.2 follows.

the electronic journal of combinatorics 17 (2010), #R76 32



Claim 2.3

|L2,3| = 2u1 ik(s− 2, u1, u2, u3, u4)

+ 4(u2 + 1) ik(s− 2, u1, u2 + 1, u3 − 1, u4)

+ [2u3 ik(s− 2, u1, u2, u3, u4)

+ 2(u3 + 1)ik(s− 2, u1, u2, u3 + 1, u4)]

+ [4u4ik(s− 2, u1, u2, u3, u4)

+ 2(u4 + 1)ik(s− 2, u1, u2, u3, u4 + 1)]

+ 2((s− 2) − u1 − 2u2 − 2u3 − 3u4))ik(s− 2, u1, u2, u3, u4).

Let Mα
2,3 be the set of matchings induced by removing α from a L2,3-shape. Let Lα

2,3

denote the set of shapes induced by collapsing the unique Mα
2,3-stack of length three into

the arc β3. The removal of α and subsequent stack-collapse can only lead to at most one
additional Ci (i = 1, 2, 3, 4) element, whence

L2,3 = L
C1

2,3 ∪̇L
C2

2,3 ∪̇L
C3

2,3 ∪̇L
C4

2,3 ∪̇L
0
2,3,

where L
Ci

2,3 denotes the set of labeled shapes, λ ∈ L2,3, that induce unique shapes having
a labeled Ci-element containing β3 and L0

2,3 denotes those shapes in which there exists
no such Ci-element.
We first note

(2.3.I) |LC1

2,3| = 2u1 ik(s− 2, u1, u2, u3, u4),

see Fig. 31.
Next we observe

a

b1

b2

b1

b2b3 b3
b3

2.3.I

b1

b2 b3
b3a

b1

b2b3

b3

}
Fig. 31: The term 2u1 ik(s − 2, u1, u2, u3, u4).

(2.3.II) |LC2

2,3| = 4(u2 + 1) ik(s− 2, u1, u2 + 1, u3 − 1, u4),

see Fig. 32.
Third we verify

(2.3.III) |LC3

2,3| = 2u3 ik(s− 2, u1, u2, u3, u4) + 2(u3 + 1) ik(s− 2, u1, u2, u3 + 1, u4),

see Fig. 33 and Fig. 34.
Fourth we note
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b2
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2.3.II

a

b1

b2

b1

b2

b3

b3

b1

b2
b3 a

b1

b2

b3

b3

b3

}

b3

}

b3

b3

Fig. 32: The term 4(u2 + 1) ik(s − 2, u1, u2 + 1, u3 − 1, u4).

a

b1

b2

b1

b2 b3
b3 3b

2.3.III.i

b1 b2
b1

b2 b3
b3 3ba

b3

}
Fig. 33: The term 2u3 ik(s − 2, u1, u2, u3, u4).

a

b1b2
b3b3

b1b2
b3

2.3.III.ii

b1b2
b3b3

b1b2
b3a

b3

}
Fig. 34: The term 2(u3 + 1) ik(s − 2, u1, u2, u3 + 1, u4).
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b1b2
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b2
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b3b3
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b2
b3

b3

b3

b3

}

}
Fig. 35: The term 4u4 ik(s − 2, u1, u2, u3, u4).

a

b1b2
b3b3

b1b2
b3

2.3.IV.ii

a

b1b2

b3 b3

b1b2
b3

b3

}
Fig. 36: The term 2(u4 + 1) ik(s − 2, u1, u2, u3, u4 + 1).

(2.3.IV) |LC4

2,3| = 4u4 ik(s− 2, u1, u2, u3, u4) + 2(u4 + 1) ik(s− 2, u1, u2, u3, u4 + 1),

see Fig. 35 and Fig. 36.
It remains to observe that β3 becomes otherwise a labeled arc in a Ik(s−1, u1, u2, u3, u4)-

shape, which is not contained in any Ci-element. Thus

(2.3.V) |L0
2,3| = 2((s− 2) − u1 − 2u2 − 2u3 − 3u4)) ik(s− 2, u1, u2, u3, u4)

and Claim 2.3 follows.
Eq. (4.13) now follows from Claim 1, 2.1, 2.2, and Claim 2.3.
Next we prove eq. (4.14). We choose some η ∈ Ik(s + 1, u1, u2, u3, u4 + 1) and label one
C4-element denoting one of its two 2-arcs by α. We denote the set of these labeled shapes,
λ, by L∗. Clearly,

|L∗| = 2(u4 + 1) ik(s + 1, u1, u2, u3, u4 + 1).

Let γ be the arc crossing α. The removal of α can lead to either an additional C2- or an
additional C3-element in a shape, whence

L∗ = L
C2

∗ ∪̇L
C3

∗ , (6.4)

where LCi
∗ denotes the set of labeled shapes, λ ∈ L∗, that induce shapes having a labeled

Ci-element containing γ.
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First,
|LC2

∗ | = 2(u2 + 1) ik(s, u1, u2 + 1, u3, u4),

follows by inspection of Fig. 37.
We next observe

ag
g

ga
g }

Fig. 37: The term 2(u2 + 1) ik(s, u1, u2 + 1, u3, u4).

|LC3

∗ | = (u3 + 1) ik(s, u1, u2, u3 + 1, u4).

see Fig. 38, from which eq. 4.14 immediately follows.
It remains to show that the numbers ik(s, u1, u2, u3, u4) can be uniquely derived from

a
g g g

Fig. 38: The term (u3 + 1) ik(s, u1, u2, u3 + 1, u4).

eq. (4.11), eq. (4.12), eq. (4.13) and eq. (4.14). This follows by induction on s.

Acknowledgments. This work was supported by the 973 Project, the PCSIRT
Project of the Ministry of Education, the Ministry of Science and Technology, and the
National Science Foundation of China.

References

[1] Chen, W.Y.C., Deng, E.Y.P., Du, R.R.X., Stanley, R.P., Yan, C.H. 2007. Crossings
and nestings of matchings and partitions, Trans. Amer. Math. Soc. 359, 1555–1575.

[2] Flajolet, P. and Sedgewick, R. 2009. Analytic combinatorics, Cambridge University
Press, New York.

[3] Grabiner, D.J. and Magyar, P. 1993. Random walks in Weyl chambers and the de-
composition of tensor powers, J. Algebr. Comb. 2, 239–260.

[4] Han, H. S. W. and Reidys, C. M. 2008. Pseudoknot RNA structures with arc-lenght
> 4. J. Comp. bio., 9, 1195–1208.

[5] Haslinger, C. and Stadler, P.F., 1999. RNA structures with pseudo-knots. Bull. Math.
Biol. 61, 437–467.

[6] Henrici, P. 1974. Applied and Computational Complex Analysis volumn 2, John Wiley.

[7] Hofacker, I.L., Schuster, P. and Stadler, P.F. 1998. Combinatorics of RNA secondary
structures., Discr. Appl. Math. 88, 207–237.

the electronic journal of combinatorics 17 (2010), #R76 36



[8] Howell, J.A., Smith, T.F., and Waterman, M.S. 1980. Computation of generating
functions for biological molecules, SIAM J. Appl. Math. 39, 119–133.

[9] Jin, E.Y., Qin, J. and Reidys, C.M. 2008. Combinatorics of RNA structures with
pseudoknots, Bull. Math. Biol. 70, 45–67.

[10] Jin, E.Y. and Reidys, C.M. 2008. Asymptotic enumeration of RNA structures with
pseudoknots, Bull. Math. Biol. 70, 951–970.

[11] Jin, E.Y. and Reidys, C.M. 2009. Combinatorial design of pseudoknot RNA, Adv.
Appl. Math. 42, 135–151.

[12] Jin, E.Y., Reidys, C.M. and Wang, R.R. 2008. Asympotic analysis of k-noncrossing
matchings, arXiv:0803.0848.

[13] Ma, G. and Reidys, C.M. 2008. Canonical RNA pseudoknot structures, J. Comput.
Biol. 15, 1257–1273.

[14] Penner, R.C. and Waterman, M.S. 1993. Spaces of RNA secondary structures Adv.
Math. 101, 31–49.

[15] Reidys, C.M. and Wang, R.R. 2009. Shapes of RNA pseudoknot structures,
arXiv:0906.3999.

[16] Reidys, C.M. and Stadler, P.F. 2002. Combinatorial Landscapes, SIAM Reviews, 44,
3–54.

[17] Rietveld, K., Van Poelgeest, R., Pleij, C.W., Van Boom, J.H., and Bosch, L. 1982.
The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA.
Differences and similarities with canonical tRNA. Nucleic Acids Res, 10,1929–1946.

[18] Stanley, R. 1980. Differentiably finite power series, Europ. J. Combinatorics 1, 175–
188.

[19] Titchmarsh, E.C. 1939.The theory of functions, Oxford Uninversity Press, Oxford,
UK.

[20] Wasow, W. 1987. Asymptotic expansions for ordinary differential equations, Dover,
New York.

[21] Waterman, M.S. and Smith, T.F. 1978. RNA Secondary Structure: A Complete
Mathematical Analysis, Mathematical Bioscience, 42, 257–266.

[22] Waterman, M.S. 1979. Combinatorics of RNA hairpins and cloverleafs, Stud. Appl.
Math. 60, 91–96.

[23] Waterman, M.S. and Schmitt, W.R. 1994. Linear trees and RNA secondary structure,
Discr. Appl. Math. 51, 317–323.

the electronic journal of combinatorics 17 (2010), #R76 37


