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Abstract

Given a finite group G of even order, which graphs I" have a 1—factorization admit-
ting G as automorphism group with a sharply transitive action on the vertex-set?
Starting from this question, we prove some general results and develop an exhaustive
analysis when I is a complete multipartite graph and G is cyclic.

1 Introduction

A 1—factor of a graph is a collection of edges such that each vertex is incident with exactly
one edge. A 1—factorization of a regular graph is a partition of the edge-set of the graph
into disjoint 1—factors. If the graph has valency v, then a 1—factorization is equivalent
to a coloring of the edges in v colors (one color for each 1—factor). The problem of
establishing whether a finite simple regular graph I" is 1—factorizable or not may be an
hard task. In fact the 1—factorization problem is NP-complete in general. An obviously
necessary condition for the existence of a 1—factorization is that the number of vertices
must be even. So far, the best known sufficient condition is that regular graphs of order
2n and valency v > (/7 — 1)n are 1—factorizable, [6].

For graphs I with 1—factorization, then an automorphism group G of the 1— factor-
ization is a permutation group of the vertex-set of I" which maps 1—factors onto 1—factors.
The action of G is said to be sharply transitive on the vertex-set if for any given pair of
(not necessarily distinct) vertices x, y there exists a unique automorphism ¢ in G map-
ping x to y. Obviously the order of GG is equal to the number of vertices in this case.
It is well-known that complete graphs are 1—factorizable and in many recent papers the
following question was addressed.
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Given a finite group G of even order is it possible to construct a 1—factorization of a
complete graph in such a way that G is an automorphism group of the 1—factorization
with a sharply transitive action on the vertex set?

A complete answer is not yet available. Paper [8] was the first one presenting the problem
and giving a solution for the class of finite cyclic groups (of even order): the answer to
the question is negative when the order of the cyclic group is a power of 2 greater than 4,
while it is affirmative for all the other cases. Later on, exhaustive answers were given for
other specified classes of groups (for example abelian groups and dihedral groups). We
refer to the papers [1], [2], [3], [4], [5], [8], [11] for a complete state of art.

The previous question can be considered as a specified case of the following more
general one.

Given a finite group G of even order, which graphs I' have a 1—factorization admitting
G as an automorphism group with a sharply transitive action on the vertexr set?

First of all, the sharply transitive action of G on the vertex-set, together with the fact that
G is a permutation group on the edge-set, forces I" to be a Cayley graph: I' = Cay(G, ).
Of course Q must be a subset of G — {15} with the property that a=! € Q for every a € Q.
(1g denotes the identity of G, and we use in G the multiplicative notation).

If Q =G —{lg}, then I' is a complete graph and our new question coincides with
the original one. Moreover, the graph I is a complete multipartite graph if and only if
) = G — H, with H a non trivial subgroup of G. The proof of this last statement is quite
simple, see Lemma 2.1 of [7] or Proposition 2.2 of [10] for instance.

In this paper we focus our attention on complete multipartite graphs.

We denote a complete multipartite graph with s parts of size t by K,.;. Note that
Ky is the complete graph K, and Ko = Ky, — sKs, that is, the complete graph Ko,
minus the edges of a 1—factor.

We give an exhaustive answer to our question in the bipartite case. For all other cases,
we give an exhaustive answer when the group G is cyclic, except when st = 2d, t = 2d’,
d and d’ odd with d — d’ = 0 mod 4. In this case the problem is still open and strictly
connected with a conjecture presented in [9]. Following [5] we study the problem using
the technique of partial differences and the concept of starter.

For the sake of completeness, we observe that the problem of establishing whether a
Cayley graph is 1—factorizable or not is still open. It is conjecture that all Cayley graphs
Cay(G,QY) are 1—factorizable when 2 generates G. There are some partial results on
this conjecture, see for example [12], where the conjecture is proved to be true for some
classes of groups, in particular when G is cyclic. All graphs studied in this paper are
1—factorizable, but we look for 1—factorizations preserved by G.

2 Preliminary definitions and results

Let G be a finite group of even order 2n and let €2 be a subset of G — {1¢} with the
property that a=! € Q for every a € Q. Let I' = Cay(G,Q). Namely the graph with
vertex-set V(I') = G and edge-set E(I') = {[z,y] | yz~' € Q}. Obviously G acts on
V(I") by right multiplication. This action is sharply transitive on V' (I") and extends to
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edges and 1—factors. Hence if R is any subset of V(I") we write: Rg = {zg | z € R}, in
particular if e = [z,y] is an edge then [z,y|g = [zg, yg].

The set €2 is the disjoint union of three sets: 23 U {25 U2 ! where ©; contains all the
involutions of , while Qy is defined by the property h € Qy iff h=* € Q5. The graph I’
is given by the orbits under G of the set of edges {[1g,h] | h € Q} U{[la,j] | 7 € O}
In particular Orbg[lg, j] with j € € has length n and it is a 1—factor of I'. The orbit
Orbg(lg, h] with h € Q9 has length 2n and it is a union of cycles. Namely: if the order
of h in G is t, then the cycles are given by (x, hx, hx,... ht7'x), as x varies in the set
of distinct representatives for the right cosets of the subgroup < A > in G. All edges
contained in J,cq, Orba([la, h]) will be called long edges, while all edges contained in

Ujeq, Orba([la, j]) will be called short edges. Observe that if [z, y] is a short edge of I,

! is necessarily an involution in Q and Stabg[z,y] = {1g,z 'y}. We say that

1

then yx~
271y is the involution of G associated with [x,y]. If [x,y] is a long edge of I, then yx~
is not an involution in © and Stabg[z,y] = {1¢}.

A 1—factorization of I” which is preserved by the action of G will be called a G—regular
1—factorization. In what follows we ask for the minimum amount of information on the
group G and on the set €2 which is necessary to construct a G—regular 1—factorization
of I'. Obviously if Q is a set of involutions, i.e. Qy = ), the graph I is a set of 1—factors
which constitute all together a G—regular 1—factorization. In this case each 1—factor is
fixed by G. For example this happens in each elementary abelian group of even order.

Let e = [z, y] be an edge of I', we define:

{zy~hyz™'}  if [z,y] is long
I([z,y]) =
{zy~'} if [x,y] is short

{z,y} if [z, y] is long
¢([z,y]) =
{z} if [x,y] is short

If S is a set of edges of I" we define

as)=Jae) o9 =Jsle
eeS eesS

where, in either case, the union may contain repeated elements and so, in general, will
return a multiset.

In the following Definition 1 we generalize the concept of a starter given in [5]. Our
definition coincides with the original one if Q = G — {14}, i.e., if I" is a complete graph.

If H is a subgroup of G then a system of distinct representatives for the left (right)
cosets of H in G will be called a left transversal (right transversal) for H in G.

Definition 1 A starter for the pair (G,2) is a set X = {S1,..., Sk} of subsets of E(I")
together with subgroups Hy, ..., H, of G which satisfy the following conditions:

e 0S5, U---UJdSy is a repetition free cover of €1;
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o fori=1,... k, the set ¢(S;) is a left transversal for H; in G;

o fori=1,... k, H; must contain the involution associated with any short edge in

S;.
In the same vein of [5, Theorem 2.2], the following Proposition can be proved.

Proposition 1 There exists a G—regular 1—factorization of I' = Cay(G, Q) if and only
if there exists a starter for the pair (G,<).

We do not write down the proof which is a simple adaptation of that given in [5]. We just
recall that it is constructive and the first bullet in Definition 1 assures that every edge
of I' will occur in exactly one G-orbit of and edge from S; U ... U S,. The second bullet
insures that the union of the H;-orbits of edges from S; will form a 1-factor. Namely, for
each index i, we form a 1—factor as U.eg,Orbpy,(e), whose stabilizer in G is the subgroup
H;; the G-orbit of this 1—factor, which has length |G : H;|, is then included in the
1—factorization.

Example.

Let G = Zg be the cyclic group in additive notation and let 2 = {1,—1}. The graph
I' = Cay(Zs, ) is the orbit under Zg of the edge [0, 1]. A starter is given by ¥ = {5}
with S; = {[0,1]} and associated subgroup H; = {0,2,4}. We have a Zg—regular 1-
factorization of I" with two 1—factors: Fy = {[0,1],2,3],[4,5]}, Fo = {[1,2],[3,4], [5,0]}.

Example.

Let us denote by Dg the dihedral group of order 6, i.e., the group with defining relations
D¢ =< a,b|a®=0%=1;ba =a'b>.Let H={l1,a0b,ba*} and let Q = Dy — H and
consider

Sy =1{[1,ad%,[a,ba®}, H = H

Sy ={[1,a]}, Hy = {1,a? a*, b, ba? ba*}
S3 = {[1,ba?]}, H3 = D,

Sy ={[1, ba4]}, H, = D,

Ss = {[1,ba®]}, Hs = Ds.

The set ¥ = {57,52,53,S54, 55} together with the subgroups Hy, Hy, Hs, Hy, Hj, is a
starter for the pair (G, Q). It realizes a Dg—regular 1—factorization of K34 = Cay(Ds, (2).

There are some situations in which the existence of a starter is easily assured. Namely
we have the following:

Proposition 2 Let G be a finite group possessing a subgroup A of index 2 and let J be

the set of involutions of G. Let Q be a subset of (G — A)U J with the property that h € €2
iff =t € Q. Then, there exists a starter for the pair (G, ).

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R77 4



Proof. Let Q= QU U Qz_l, where €); contains all the involutions of €2, while €25
is defined by the property h € € iff h™' € Q;'. The starter is given by ¥ = {S, =
{[1g,h]} | h € Q1 UQ}. If h ¢ Q, then ¢(Sy) is a left transversal for A in G, while it is
a left transversal for the cosets of G itself whenever h € €. O

Proposition 3 Let G be a finite group possessing a subgroup A of index 2 and let 3/ =
{S1,...,S5:} be a set of subsets of E(I") together with subgroups Hy, ..., H, which satisfy
the second and third condition of Definition 1. If 0S;U---U9S; D AN and it does not
contain repeated elements, then X' can be completed to a starter for the pair (G,€).

Proof. For each h € Q with h ¢ 05, U ---U0S; we construct the set S, = {[1g, h|}
together with either the subgroup G or A according to whether h is an involution or not,
then we adjoin S, to the set ¥'. In this manner we complete ¥’ to a starter for (G, ). O

3 Sharply transitive 1-factorizations of bipartite
complete graphs

We know that the existence of a G—regular 1—factorization of K,.; necessarily implies
the existence of a subgroup of G of order ¢ (see the Introduction and [7], [10]). It will be
clear in the next section that this condition is not sufficient to guarantee the existence of
a 1—factorization with this property, see Proposition 5. An exception is when the graph
is bipartite complete. It is known that bipartite complete graphs are 1—factorizable and
we also have the following result.

Proposition 4 There exists a G—reqular 1—factorization of Koy if and only if the group
G contains a subgroup of index 2.

Proof. The first part of the proof follows from [7] and [10]. For the second part, let A
be a subgroup of index 2 in G and let 2 = G — A. The Cayley graph Cay(G, Q) is Koy
and the existence of a G—regular 1—factorization follows from Proposition 2. O

4 Cyclic 1-factorizations of multipartite
complete graphs

In this section we focus our attention on the cyclic case. The cyclic group of order 2n will
be considered in additive notation and its elements will be the integers between 0 and
2n — 1, with addition modulo 2n. Moreover, when we write down a partial difference +a,
we will always understand a between 0 and the involution n in the natural order of the
integers. We will consider multipartite graphs, namely the set ) will be of type Zs, — H
with H a suitable proper subgroup of Zy,. To exclude the complete graph, already studied
in [8], we will not consider the case H =< 0 >.
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4.1 A non-existence result

Proposition 5 Let G = Zymg, with d odd and let st = 2™d. A G—reqular 1—factorization
of Kgx; does not exist whenever t = 2*d' (d' odd) satisfies one of the following conditions:

eu=m=1andd—d = 2 mod 4;
e u=1andm > 2.

Proof. Let G =< 1 > and let Zom = (d) be its subgroup of order 2. An element
x € Zym will be said to be even (respectively odd) if z = hd, h even (resp. odd). Moreover,
each element in G' can be written uniquely as the sum of an element of < d > with an
element of < 2™ > namely G =< d > ® < 2™ >. Suppose the existence of a G—regular
1—factorization of Ky, with t = 2“d’, d’ odd, and u > 1. Let H be the subgroup of G of
order t and let QQ = G — H. Let ¥ = {S4,...,S,} be a starter for the pair (G,€). Since
0S1U---U0S, = G — H, the unique involution of G' does not appear in this list and then
each edge in Sy U---US, is long. This implies also ¢(S;) to be of even order for each
i. Moreover, the set ¢(S;) is a left transversal for a subgroup H; of G and 2™ does not
divide the order of H;, otherwise its index in G would be odd. Therefore we can write
uniquely each element of H; as the sum of an element of K! together with an element
of K?, with K} a suitable subgroup of < d > and K? a suitable subgroup of < 2™ >,
ie., H; = K} ® K?. Let e = [a; + by, as + by] be an edge in S; with a;,a, €< d > and
by, by €< 2™ >. We say that e is of type 00 if both a; and as are even, e is of type 11 if
both a; and a, are odd and finally, e is of type 01 if a; and ay are not of the same type.
Denote by x;, y; and z; the number of edges in 5; which are respectively of type 00, 11
and 01. We obtain |05;| = 2x; + 2y; + 22;.

Denote by T} (resp. T?) a left transversal for K} in < d > (resp. of K? in < 2™ >).
The number of even elements in 77! is equal to the number of odd elements of T}, say ;.
The set ¢(S;) is a set R} & R? which can be obtained by adding elements of the subgroup
K! ® K? to some elements of the set T}' & T?. As K} #< d >, no odd element is in K},
moreover, the number of even elements of R} is ¢; and it is equal to the number of odd
elements in R}. Therefore, ¢(S;) contains ;| R?| even elements and ¢;| R?| odd elements. If
S; contains s > 0 edges of type 01, then the remaining ¢;| R?| — s even elements are paired
off to form edges of type 00 in 5;, as well as the remaining odd elements. We conclude
that z; = y; and the number of even elements in 0S; is divisible by 4. If u = m, then
G — H contains 2™ (d — d') even elements. If m = 1 and d — d’ = 2 mod 4, then this
number is not divisible by 4: we get a contradiction and the first point follows. If u < m,
then < 2™7"d > is a proper subgroup of < d > and it does not contain odd elements.
The set G — H contains exactly 27 'd — 2“d’ even elements in this case. If u = 1 and
m > 2, then this number is not divisible by 4: we get a contradiction and the second
point follows. O
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4.2 An existence result

Proposition 6 Let G = Zymg, with d odd and let st = 2™d, with t = 2“d’, d' odd. If
either wu # 1 or u =1 and m = 2, then a G—reqular 1—factorization of Ky exists.

Proof. To cover all the possibilities, the proof is divided into 11 cases. The subgroup
of G generated by 2 has index 2 and all its elements will be called the even elements of
G, the other elements of G will be called odd. We will denote by H the subgroup of G
of order 2“d" and we have Ky, = Cay(G,Q2), with Q = G — H. For each case we will
construct a set ' which satisfies the condition of Proposition 3, namely which covers all
the even elements of (2, and then can be completed to a starter. In the first case the
construction is explained in details. For the sake of brevity all the other constructions are
given, but explanations in details are left to the reader. Pictures and examples will help
the reader following the constructions.

eu=0m=2,d#d,d =1mod 4.

We have G = Zyg and H = Zy =< h > with h = 4d. Set,u———land)\——:%—l.
The integer A is even, while y is odd. To obtain a starter we construct the following sets
of edges:

B = {[t2d—2—t]|t—() A—1}

For each k = 0,..., %52, set Ak {A+t+ku,2d—t—(A+4)—k(p+2)] | t=0,...,u—1}.
The set 0B U (UkaAk) covers all the even elements of G — H except for the involution 2d.
Moreover, the set ¢(B)U (Up¢d(Ax)) covers all the integers from 0 to 2d — 1 except for the
with k =0,..., %3,

2
We rearrange these vertices thus obtaining the following edge sets:

= {[2d — L,uol}, D = {[vo, A + tul}, E = {luk, v s gy [ k= 1,...,%3} In
thls manner the set ¢(B) U (ngb(Ak)) »(C)U p(D) U gb( ) is a set of representatives
for the cosets of Zy in G. Moreover 0C = +{\ + 1}, 0D = £{d — 1 — % + dlz_l},
OF = {1+ (24 + 1)(&2 )| k=1,....,42} The set 9E UIC UID contains
pairwise distinct odd differences. They are obviously odd, and we prove that they are
pairwise distinct. First of all we prove that 0E N 9C = (). In fact suppose 0E N ocC 7& (Z)
and suppose the existence of k€ {1,..., 97 — 1} such that 1+ (2 + 1)(42 — 2k) =
Since 1+ (2 + 1)( —2k) is between 0 and 2d in this case, the previous equahty ylelds
1+ 24(d —2)+ 42 = k(2 +42) < (£ — 1)(2 + 4%) which gives the contradiction:
3 < % — 4%. Now suppose k = % which gives an element of OF which is in 0D. We
necessarily obtain +£1 = +%5 d and again a contradiction.
Finally, if we suppose k € { Lp1,, 458 with 14 (2 1) (452 — 2k) = — 4 starting
with this equality we obtain:
1—|—d+% = k(2+42) > (‘1/4_1 )(24+44) which yields the contradiction: —1+d > d+34.
Now we prove that 9CNOD = (). In fact at the contrary we should have: d—1— %+ d,; 1 -
% this yields: 2% +1-— % = d which is false, in fact: d’ is at least 5 and then 2% <d
and also 1 — % < 0.
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Now we prove that the elements in OF are pairwise distinct. Let ki, ke € {1,... %},
with k1 # ko. The corresponding elements of OF obtained from k; and ko are respectively
+(1+ (2 + 1)(d'2_1 —2ky)) and £(1+4 (2 + 1)(d'2_1 —2ks)). These values are between —2d
and 2d. To prove that they are different, it is sufficient to see that both their sum and
difference give a non zero element. For the sum we obtain: 2+ (24 +1)(d’ — 1 — 2k; — 2k»).
If the sum is zero, then (2¢ +1)(d' — 1 —2k; —2ks) = —2 and this contradicts the following
inequality: |(2 +1)(d' — 1 — 2ky — 2ks)| > 3|d’ — 1 — 2k; — 2ko| > 3. For the difference
we obtain: 2(24 + 1)(ky — k;) which is certainly different from 0. Finally we prove that
0D NOE = . In fact, we can observe that the elements in OF are upper bounded by
1+ (22 +1)(%52) which is certainly less than the positive value d — 1 — 4 + =1 of 9D.
The set ¥/ = {S}, S = (UxAx) UBUC U DU E, can be completed to a starter.

In what follows we show an example and the correlated picture:

G=1lgp, H=75=<12>,d=15,d =5, m=2, u=0, u=5 A=2.

B ={]0,28],[1,27]}, Ao = {[2,24], [3, 23], [4, 22], [5, 21], [6, 20]},

Ay =A{[7,17],[8, 16],[9, 15],[10, 14], [11,13]}, A = Ay U Ay,

E ={[18,19]}, C = {[26,29]}, D = {[12, 25]},

S5 =AUBUCUDUE.

(o (0 (2 (3@ (9 (e ???@
@@@@@@

eu=0m=2,d+#d,d =3mod 4.

We have G = Zyy and H = Zy =< h > with h = Ac‘l—,.
Set,u:%—land)\:‘%lzg—l.

Let k1 € {0,. .., %} and k, € {0,..., %} (this second set is empty while d’ = 3) and
let Ay, ={(A+t+k(2u+2),2d—4—-XN—t—k2u+2)]|t=0,...0—1}.

A, ={ At +2+t+k@2u+2),2d-4—-XN—p—t—k2u+2)]|t=0,...u—1}.
To obtain a starter, we construct the following sets:

B=A{[t,2d—2—-1t] |t=0,...,A—1}.

A= (UklAkl) U (Uk2A§i‘2> - {[d - 37d - 1]}

Observe that ¢(A)U¢(B) covers all vertices from 0 to 2d — 1 except for the following ones:
d—3,d—2,d—1,2d—1, up, =2d—2—-A—k1(2u+2), v, =2d—2—-A— k1 (2u+2)—1,
W, = N+ p+ ka(2u +2), v, = A+ p+ ka(2u+2) + 1, with &y € {0,..., 42} and
ko € {0,..., 47},

Set d—1=u 41 and d — 2 = Vit - Rearrange these vertices to construct the following

edge sets:
E ={[2d - 1, u].[d =3, v0]}, C = {[ur, v, ] |1 =1,..., 52}

D = {[’UJ;CQ,U;/%_IQ] | ]{,’2 = 0, cey d’_7}.

4

Set S1 = AUCUDUEUB. The set ¢(S1) is a complete system of representatives for the
left cosets of Zs in G. The set 0A UJB contains distinct elements and covers all the even
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elements of G — H except for the involution 2d and +2. The set 0C' U 0D U OFE covers
some odd distinct elements of G — H, the largest of which is d — \.

Finally we construct the set S; = {[0,2d], [4d — 1,1],[2+¢,3d —2 —t] | t = 0,..., 43}
The set ¢(52) is a set of representatives for the left cosets of Z4 in G and 0Sy = {£2,2d}U
{£(d+4),£(d+6),...,£(2d — 1)}. It is possible to verify that the elements of 95, =
{£2,2d} U {£(d+4),£(d+6),...,£(2d — 1)} are distinct and since the odd differences
of 0S5 are greatest or equal to d + 4, we have 5] N 9Ss = (). The set X' = {S;, S2} can
be completed to a starter.

In what follows we show an example and the correlated picture:

G="Tgu, H=77=<12>,d=21,d =T, m=2,u=0, p=5 \=2.

B = {]0,40], [1,39]}, Ay = {[2, 36], [3, 35], [4, 34], [5, 33], [6, 32|},

Al = {[9,31], [10,30], [11,29], [12, 28], [13, 27]},

Ay = {[14,24], [15,23], [16,22], [17,21], [18,20]}, A = Ay U A, U A, — {[18,20]},

E ={[41,38],[18,37]}, C = {[26,19],[20,25]}, D = {[7, 8]},

S;=AUCUDUEFEUB.

S, = {[0,42],[83,1], [2,61],[3, 60], [4,59], [5, 58], [6, 57], [7, 56], [8, 55], [9, 54], [10, 53]}

S O

TLedLELLLLL”

0S) = {40, £38, £34, £32, £30, £28, £26, £22, £20, £18, £16, £14, £10, £8, 6,
44,43, 419, +7, £5, +1}.

Sy = {42, £2,4£25, 27, £29, +31, £33, £35, £37, £39, £41}.

eu=0 m=2andd=d.

We have G = Zyy and H = Z; =< 4 >. Consider the set S; = {[2s,2d — 2s] | s =
0,..., %} and the subgroup Hy =< d >= Z,. The set 5; contains the short edge [0, 2d]
and ¢(S1) = {0,2s,d —1+2s | s =1,..., %1} is a set of representatives for the cosets
of Hy in G. Furthermore, the set 057 = {2d,2d —4s,2d +4s | s =1,..., %} covers the
involution together with all the even elements of G — H (namely all the even elements
which are equivalent to 2 modulo 4). We conclude that the set {S;} can be completed to
a starter.

eu=0m=1and d=d.

H has index 2 in GG and the existence of a starter is assured by Proposition 4.
eu=0,m=1and d#d.

We have G = Zyg and H = Zy =< h > with h = fl—‘,i. Set = g—l and A = g To obtain
a starter, we construct the following sets:
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B={[t,d—1—t]|t=0,...,A— 1}, which contains X\ edges.

For each k = 0,...,%, set Ay = {[A\+ku+t,d=—A—=3—ku—2k—t]|t=0,...,u—1}.
Each set Ak contains ,u edges

C={M+ %Lu, N+ L p+d]}. The set C contains exactly one short edge.

D = {[d - A—l—uu+%A+d“u+1+Mu+mHk_Owaf.

Set S| = (UkAk) UBUCUD.

We can prove that 05; contains all the distinct even elements of G — H, together with
some distinct odd elements and the involution (since 0C' = {d}). Moreover ¢(S;) is a set
of representatives for Zo =< d > in G. We conclude that the set {S;} can be completed
to a starter.

In what follows we write down an example:
G:Z;1,0,H:Z5:<6>,h:6,,u:2,)\:1.

B = {[Ov 14]}7 A = {[17 11]7 [27 10]}7 Ay = {[37 7]7 [476]}7

C ={[5,20]}, D ={[8,13],]9,12]}.

0S) = {£14, £10, £8, £4, £2, 15, £5, £3}. $(S1) = {0, 1,..., 14},

eu=0,m2>3 d=3mod 4.

Let G Zomg and H = Zy. Set h = de, and then H =< h >, and set u = % — 1 and

— k=1

. To obtain a starter, we construct the following sets:

B = {[t,Qm 'd—2—1t] | t=0,...,A — 1}, which contains A edges.

Set A, = {(N+ku+t,2"'d—N—kp—4—-2k—1t]|¢t=0,...,u—1}. For each
k=0,..., %. The set Ay contains p edges.

C={\+Stu,2m1d - 1]}.
D={2""d—2-XA—k(p+2),A\+ T u+1+k(p+2)] | k=0,..., 42}

Set Sy = (UpAx) UBUCUD.

We can prove that 95, contains all the distinct even elements of G — H except the involu-
tion, together with some distinct odd elements. Moreover ¢(S1) is a set of representatives
for Zy in G. We conclude that the set {S;} can be completed to a starter.

In what follows we show an example and the correlated picture:
G:Z56,H:Z7:<8>,h:8,M:3,>\:1.

B ={[0,26]}, Ao = {[1, 23], [2,22], [3,21]}, A; = {[4, 18], [5, 17], [6, 16]},

Ay = {[7,13],[8,12],[9,11]}, C = {[10,27]}, D = {[19, 20], [14, 25], [15, 24]}.

0S; = {£26,£22, £20, £18, £14, £12, £10, £6, £4, £2} U {£17, £1, £11, £9}.

o(S1) =40,1,...,27}.

eu=0m2>3 d=1mod 4.

Since d’ > 1, then it is also d > 1. Furthermore, we suppose that H is not the trivial
group and then d’ > 5.

We have G = Zymg and H = Zy =< h > with h = 2:—,d.

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R77 10



Set,u:g—land)\:‘%lzﬁ—l.

Let k € {0,..., 42} and let

Ay ={ D +t+k@2u+2),2"d—4—-XN—t—kQRu+2)]|t=0,...u—1}.

Al ={ DA +p+2+t+k@2u+2),2"d—4—-XN—p—t—kQRu+2)]|t=0,...u—1}.
To obtain a starter, we construct the following sets:
B=A{[t,2"'d—2—+¢]|t=0,...,A—1}.

A = (UpAr) U (ULAY) — {[2m72d, 2™~ 2d — 2]}.

Observe that ¢(A) U ¢(B) covers all vertices from 0 to 2™ 'd — 1 except for the following
ones: 2™ 1d — 1, 2m72d — 1, 2m72d — 2, 2™72d, up =2""1d—2 -\ —k(2u+2),

v =2""1 -2 AN—kQ2u+2) -1 u, = A+ pu+kQ2u+2), v, =X+ u+k2n+2)+1,
with k € {0,..., <2}

Rearrange these vertices to construct the following edge sets:

C = {2"d ~ 1,2"72d), [ug,vws ] | k=0, 152
D = {[ul),2™%d — 1], [v}, 2™ 2d — 2], [u%,v’d,%_ k=1,..., 42}

ol

Set S = AUC U DU B. The set ¢(S) is a complete system of representatives for the
left cosets of Zy in G. The set 0AU OB contains distinct elements and covers all the even
elements of G — H except for the involution 2" d and £2. The set 9C' UOD covers some
odd distinct elements of G — H.

Finally we construct the set Sy = {[0,2™!d], [2™d — 1,1],[2+ t,2" ' d+d' —2 —t] | t =

0,..., dlz_ 21, The set ¢(S;) is a set of representatives for the left cosets of Zym in G' and

0Sy = {2, 2" L} u{£(2™ td+d —4-2t) |t =0,..., d’2_5} = {£2, 2"ty u{+ (2™ 1d+
14+2t) [t =0,...,%52}. It is possible to verify that the elements of 95, are distinct and
051 N 0S5 = (. Therefore the set {51, S2} can be completed to a starter.

In what follows we write down an example:

G:Z72,H:Z9:<8>,,u:3,)\:1.

B ={]0,34]}, Ao = {[1,31],[2,30], [3,29]}, A} = {[6, 28], [7,27], [8, 26]},

Ay ={[9,23],[10,22], [11, 21]}, A} = {[14, 20], [15, 19], [16, 18]}

A=Ay UAyUA UA| —{[16,18]},

C = {[18,35], [24, 33], [25, 32]}, D = {[17,4],[16, 5], [12, 13]},

S =AuUCUD. H =1Zs.

Sy ={[0,36],[71,1], [2,43], [3,42], [4, 41] }

0S1 = {£34,+30,428, £26,+22, 420, £18,+14, +£12, +£10, +6, £4, +17, 49, £7, £13,
+11, £1}. 95, = {36, £2, +41, 439, £37}.

eyu=>2andm>uoru=1and m=2.

Let G = Zymg and H = Zyuy =< h >. We have h = Qm_“% and then H does not contain
odd elements, moreover the involution 2™ 'd is in H. Set u = % — 1. To obtain a starter,
we construct the following sets.

For each k = 0,...,2¢7'd' — 1, set Ay ={ef |t =0,...,u—1} with ef = [t + kp,2m 1d —
2 — k(u +2) —t]. Observe that del = £(2™7'd — 2 — 2t — 2k — 2k), i.e., it is even and,
since 2" 'd — 2kp — 2k is in < h >, we also have d¢} = +2(—t — 1) mod h. As t and k
varies, the set U (0Ay) covers all the even elements in G — H. The set Uy (¢(Ayg)) covers
all the integers from 0 to 2™ 'd — 1 except for the integers:
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up = 2" —1— (k= 1)(n+2), vp = 2"7'd — k(u + 2), with k = 1,...,2*7'd". We
rearrange these vertices thus obtaining the following edge set:

D = {[ug, vou—rgr_p11) | kK =1,...,2"71d'}, namely:

D = {[uy, vau-1rg], [tg, Vou—1gr 1], . - ., [thgu-14, v1] }.

In this manner Ug(p(Ax)) U @(D) is a set of distinct representatives for the subgroup
of order 2 in G. Observe also that 0D = £{1 +2(k — 1)(p +2) — 2" 'd'(u+2) | k =
1,...,2073d'}. Ifu > 2, then 0D = £{1+2[(k—1)(u+2)—2"2d'(u+2) | k = 1,..., 2" 1d'}
while if w = 1 and m = 2 then p is even and 0D = £{1 + 2(k — 1) = d'[(p +2) | k =
1,...,d'}. In both cases 0D = +{1+2(k —1)(p+2) — 2" 'd'(p+2) | k=1,...,2""'d'}
covers distinct odd elements of G. We conclude that the set S = (UpAx) U D can be
completed to a starter.

In what follows we write down an example: G = Zi99, H = Z15 =< 10 >, d = 15, d' = 3,
m=3, u=2 u=4.

Aoy = {[0, 58], [1,57], (2, 56],[3,55]}, Ay = {[4,52], [5, 51], [6, 50], [7,49]},

Ay = {[8,46],[9,45], [10, 44], [11,43]}, A3 = {[12,40], [13, 39], [14, 38], [15, 37|},

Ay = {[16, 34],[17, 33], [18, 32], [19, 31] }, A5 = {[20, 28], [21, 27], [22, 26], [23, 25]},

D = {[59, 24], [53, 30], [47, 36], [41, 42], [35, 48], [29, 54]}.

0S = {58, £56, £54, +52, +48, +46, £44, +42, +38, +36, £34, +32, +:28,

+26, 424, +22, £18, +16, +14, £12, £8, 46, £4, +2, £35, £23, +11, £1, +13, £25}.
em=u=2.

We have G = Zy; and H = Z,y =< h > with h = %. To obtain a starter, we construct
the following sets:

A ={2t,2d—2t—2] | t=0,..., 3},

By ={[2d— (2t +1),2d+ (2t +1)] [t =0,..., 52},

Ay ={[d—2sh—1,d+2sh—1] | s=1,..., 42},

By={[2d—h(2s—1),2d + h(2s — 1)] | s = 1,..., 41},

E={[h(2s—1),d—2sh—1] | s=1,..., 42},

D={[d+2sh—1,2d—h(2s+1)] | s=0,..., 41},

Observe that As = ) and By, = () whenever d' = 1. Let A = A; — Ay and B = B — Bs.
The elements of 0A are equivalent to 0 modulo 4, while the elements of 0B are equivalent
to 2 modulo 4. Moreover 0A U 0B covers all the even differences of G — H and 0E U 0D
cover distinct odd differences in G — H. In fact, we have OF = {+(d — 4sh + h —
1) | s:l,...,%} and 0D = {£(d—4sh—h+1) | s= 1,...,d'2_1}. Observe also that
O(E)U (D) = ¢(Be) U p(Az) U{d—1,d}. We conclude that ¢(AU BU E U D) is a set
of distinct representatives for the cosets of Z, in G and the set {S}, S=AUBUDUE,
can be completed to a starter.

In what follows we write down an example:

G:ZGQ,H:ZQ():<3>,

Ay = {[0,28],[2,26], [4, 24], [6, 22], [8, 20], [10, 18], [12, 16] },

Ay = {[27 26]7 [87 20]}7

S'= (A1 — A)U (B, — B)UDUE,
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08 = {£2, +4, £8,£10, £14, £16, £20, £22, £26, £28, +1, £5, +7, +£11, +13}.
ou=m > 2.
We have G = Zymg and H = Zomg =< h > with h = %. Set 4 = h — 1. To obtain a
starter, we construct the following sets:
D' ={u. |r=0,...[27% -1}, D" ={u! | s=1,...,[277 4] — 1},
E={ |r=0,...,[27%] -1}, B" ={v" | s=0,...,[2"d'] — 2} with
w.o=[2"2d +r(2u+2),2" 7 d — 1 — r(2u + 2)],
u? =[2"72d — 1+ s(2u + 2),2™ 7 d — s(2u + 2)],
v=[un+r2u+2),2"2d — 1 — p—r(2u + 2)],
V=14 s2u+2),2m2d — 2 — p— s(2u + 2)].
For each k = 0,...,2m73d' — 1, set A, = {eF, fF | t=0,...,u— 1} with
ef =[2u+2)k +t,2"1d — 2 — k(2u + 2) — t] and
fF=lu+2+kQu+2)+t,2" -2 —pu—t—k(2u+2).
Set S7 = (UpAx) UE' UE”UD UD”. Recall that 2u + 2 = 2h and observe that
Ol = £2(2m72d — 1 — k2h — t) and OfF = £2(2™2d — h — k2h — t). These elements
are distinct, even and not contained in < 2h >. As t and k varies as prescribed, their
number is 4p2™m3d’ = 2™ 1d — 2™71d’ and then, they cover exactly all the even elements
in G — H. Moreover: du, = +(2m72d — 1 — 4hr), Ov. = £(2"2d — 2h + 1 — 4hr),
ou! = +£(2™2d + 1 — 4hs), ! = £(2™2d — 2h — 1 — 4hs). As r and s varies as
prescribed, these elements are distinct, odd and not contained in H.
Finally, ¢(S;) is a set of representatives for the subgroup Z, =< 2™ 1d > in G. We
conclude that the set {S1} can be completed to a starter.
In what follows we write down an example:
G:Z72,H:ZQ4:<3>,d:9, d’:3,m:3,,u:2.
Ao = {[0, 34], [1, 33], [4, 32], [5, 31]}, A1 = {]6,28],[7,27],[10,26], [11, 25]},
Ay = {[12,22],[13,21], [16,20], [17,19]}, D' = {[18, 35], [24,29]}, D" = {[23, 30]},
E' ={[2,15],[8,9]}, E" ={][3, 14]}.
0S; = {£34, £32, £28, £26, £22, £20, £16, £14, £10, £8, +4, £2, +17, £5, £7, £13, 1,
+11}. ¢(S;) ={0,1,...,35}.

O

4.3 Conclusions

The previous Propositions 5 and 6 cover all the possibilities except for the case of the
multipartite graph Ky, with st = 2d, t = 2d’, d and d’ odd with d —d’ = 0 mod 4. In
this case the question is still open. In particular if d = 1 we have both existence and non-
existence results. In fact, suppose d’ = 1, i.e., the subgroup H =< d > is generated by the
unique involution of G, and let d = 1 mod 4. If a G—regular 1—factorization of Cay(G,G—
H) = Ky exists, then all edges in Orbg[0, d] will form a 1—factor for the complete graph
Kyq. This 1—factor, together with those of the G—regular 1—factorization of Kyyo will
give rise to a G—regular 1—factorization of Ks; and Orbg[0, d] will be a 1—factor fixed by
G. In [9] the author conjectures the non-existence of such a 1—factorization. In [11] the
non-existence is proved when d is a prime, while an example is furnished when d = 21.
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The situation seems to be more complicated when d’ > 1 and to give a complete answer
may be a hard task.

References

1]

Bonisoli, A., Labbate, D., One-Factorizations of Complete Graphs with Vertex—
Regular Automorphism Groups, J. Combin. Des. 10, (2002), 1-16.

Bonisoli, A., Rinaldi, G., Quaternionic Starters, Graphs Combin. 21, (2005), 187-195.
Bonvicini, S., Starters:doubling constructions, Bull. ICA 46, (2006), 88-98.

Bonvicini, S., Frattini based starters in 2—groups, Discrete Math. 308, (2008), 380-
381.

Buratti, M., Abelian 1-Factorization of the Complete Graph, European J. Combin.
22, (2001), 291-295.

Chetwynd, A.G., Hilton, A.J.W., 1—factorizaing regular graphs of high degree-An
improved bound, Discrete Math. 75, (1989), 103-112.

Giudici, M., Li, C.H., Potocnik, P., Praeger, C.E., Homogeneous factorisations of
complete multipartite graphs, Discrete Math. 307, (2007), 415-431.

Hartman, A., Rosa, A., Cyclic One-Factorization of the Complete Graph, European
J. Combin. 6, (1985), 45-48.

Korchmaros, G., Sharply transitive one—factorizations of the complete graph with an
invariant one-factor, J. Combin. Des. 2 (4), (1995), 185-195.

Li, C.H., On isomorphisms of finite Cayley graphs-a survey, Discrete Math. 256,
(2002), 301-334.

Rinaldi, G., Nilpotent one—factorizations of the complete graph, J. Combin. Des. ,
13 (6), (2005), 393-405.

Stong, A.R., On 1—factorizability of Cayley graphs, J. Combin. Theory Ser. B, 39,
(1985), 298-307.

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R77 14



