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Abstract

Beck et al. characterized the grid graphs whose perfect matching polytopes are

Gorenstein and they also showed that for some parameters, perfect matching poly-

topes of torus graphs are Gorenstein. In this paper, we complement their result,

that is, we characterize the torus graphs whose perfect matching polytopes are

Gorenstein. Beck et al. also gave a method to construct an infinite family of Goren-

stein polytopes. In this paper, we introduce a new class of polytopes obtained from

graphs and we extend their method to construct many more Gorenstein polytopes.

Keywords: Gorenstein polytopes; Perfect matching polytopes; Torus graphs; Bi-

partite graphs.

1 Introduction

Lattice polytopes are polytopes whose vertices all are lattice points. N denotes the set
of positive integers. For S ⊂ R

n and t ∈ N, we put tS = {tx | x ∈ S} and LS(t) =
♯(tS ∩ Z

n). Ehrhart [6] proved that for a d-dimensional lattice polytope P , LP (t) is
always a polynomial of degree d in t. LP (t) is called the Ehrhart polynomial of P . Also
the formal power series EhrP (z) = 1 +

∑

t∈N
LP (t)zt is called the Ehrhart series of P .

Since LP (t) is a polynomial of degree d, the Ehrhart series of P can be written as the
rational function:

EhrP (z) =

∑s

i=0 hiz
i

(1 − z)d+1
,

where s 6 d. s and r = d + 1 − s are called the degree and codegree of P , respectively.
The polynomial of the numerator is called the h∗-polynomial of P . It is well-known that
h0 = 1, and the codegree r is equal to the minimal integer t for which tP ◦ contains a
lattice point, and hs = ♯(rP ◦ ∩ Zn). Here, for S ⊂ R

n, S◦ denotes the relative interior
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of S. As a general reference on the Ehrhart theory of lattice polytopes we refer to the
recent book of Matthias Beck and Sinai Robins [3] and the references within.

Ehrhart polynomials have also an algebraic meaning in the sense that the Ehrhart
polynomial of a polytope P can be interpreted as the Hilbert function of the Ehrhart
ring of P . We say P is Gorenstein when the Ehrhart ring is Gorenstein(see [8, 11] for
Ehrhart rings and Gorenstein property). P is Gorenstein if and only if the coefficients
of the h∗-polynomial are symmetric, that is, hi = hs−i for any i. In terms of Ehrhart
polynomials, this is equivalent to LP ◦(r) = 1 and LP (t − r) = LP ◦(t) for any t > r.

Let G = (V, E) be an undirected graph without multiple edges and loops. In fact,
even if there are multiple edges, the argument below also holds after a little change. Here
V and E denote the vertex set and the edge set, respectively. M ⊂ E is a matching if
any two distinct edges do not intersect. If every vertex lies on some edge in M , we call M
a perfect matching for G. For a perfect matching M , we define the characteristic vector
χM ∈ R

E as follows: for e ∈ E,

(χM)e :=

{

1 : if e ∈ M,

0 : otherwise.

Definition 1.1 (Perfect matching polytope). The perfect matching polytope of G, PG is
defined to be the convex hull in R

E of the characteristic vectors of all perfect matchings:

PG := conv{χM | M : a perfect matching of G} ⊂ R
E.

In general, PG is not full-dimensional. We note that interior lattice points of PG mean
lattice points in the relative interior of PG. By Edmond’s famous theorem we know a
hyperplane description for perfect matching polytopes:

Theorem 1 (Edmond [5]). Let G = (V, E) be a graph with |V | even. Then x = (xe)e∈E ∈
R

E lies in PG if and only if the following conditions hold:

(1) xe > 0 (∀e ∈ E),

(2)
∑

v∈e xe = 1 (∀v ∈ V ),

(3)
∑

e∈C(S,S′) xe > 1 (∀S ⊂ V , |S| is odd),

where v ∈ e means that v is incident to e, and S ′ denotes the complement set of S in V ,
and for subsets S and T of V , C(S, T ) := {(u, v) ∈ E | u ∈ S, v ∈ T}.

A graph G = (V, E) is bipartite if there exists some partition V = V1 ∪ V2 such that
C(Vi, Vi) = ∅ for i = 1, 2. It is well-known that, if a graph is bipartite, then we can omit
the third condition, that is, x ∈ PG if and only if the conditions (1) and (2) hold. For a
subset S of V , we call edges in C(S, S ′) bridges from S. We refer to Grötschel-Lovász-
Schrijver [7] about perfect matching polytopes.

The m × n grid graph G(m, n) = (V, E) is defined as follows: V := {(i, j) | 0 6 i 6

m − 1, 0 6 j 6 n − 1}, and ((i, j), (k, l)) ∈ E if and only if |i − k| + |j − l| = 1. The
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m× n torus graph GT (m, n) consists of the same vertex and edge set as G(m, n) with the
additional edges {((0, j), (m−1, j)) | 0 6 j 6 n−1} and {((i, 0), (i, n−1)) | 0 6 i 6 m−1}.

Using Edmond’s theorem, Beck et al. [2] characterized the grid graphs whose perfect
matching polytopes are Gorenstein. They also showed that the perfect matching polytopes
of torus graphs for some parameters are Gorenstein. We denote by P(m, n) and PT (m, n)
the perfect matching polytopes of G(m, n) and GT (m, n), respectively. That is to say that,
they showed the following:

Theorem 2 (Beck-Haase-Sam[2]). If m = 1 or m is even, and n is even, then PT (m, n)
is Gorenstein.

In section 2, we complement Theorem 2 by showing:

Theorem 3. If mn is even and m 6 n, then PT (m, n) is Gorenstein if and only if m = 1
or even, and n is even, or (m, n) = (2, 3), (2, 5).

We remark that Beck et al. [2] claimed Theorem 2 is a corollary of the more general
result:

Theorem 4 (B-H-S [2]). Let G be a k-regular bipartite graph with even vertices. Then
the perfect matching polytope PG is Gorenstein.

Here a graph G is k-regular if any vertex is incident to exactly k edges. Theorem 4
constructs an infinite family of Gorenstein polytopes. In section 3 we introduce a new
class of polytopes obtained from graphs which are a natural extension of perfect matching
polytopes. For these polytopes we show an analogous result to Edmond’s theorem. Also
using these polytopes, we extend Theorem 4 in order to construct many more Gorenstein
polytopes. For an another method to construct Gorenstein polytopes from graphs, we
refer to Ohsugi-Hibi [10].

2 Torus graphs and perfect matching polytopes

In this section, we complement the characterization for torus graphs whose perfect match-
ing polytope is Gorenstein.

Lemma 2.1. Let GT (m, n) = (V, E) be an m × n torus graph and m, n > 3. Then for
any subset S ⊂ V (2 6 |S| 6 |V | − 2), there are at least 6 bridges.

Proof. We call points of S black points and points of S ′ white points, respectively. If, for
any column all points on the column are black or all points are white, then the Lemma
follows since, in that case, there are at lease 2 bridges on each row and m > 3. Therefore
we may assume that there exists some column on which there are both black points and
white points. Without loss of generality we may assume that such a column is the first
column and that (1, 1) is white. Already there are at least 2 bridges on the first column.
We divide the cases into (I) the case when there is a black point on the first row, and (II)
the other case.

the electronic journal of combinatorics 17 (2010), #R8 3



(I) In this case, there are at least 2 bridges on the first row. So we have 4 bridges
already. Since 2 6 |S| 6 |V |−2, there is a white point except for (1, 1). Put such a point
to be (i, j). Without loss of generality, we may assume i 6= 1. If there exists a black point
on the i-th row, then the number of bridges increases by at least 2, and so the Lemma
follows. Next we assume that all points on the i-th row are white. We let a black point on
the first row be (1, k), then there exist at least 2 bridges on the k-th column. Therefore
in this case, we have at least 6 bridges.

(II) In this case, if there exists a black point on each column, then since there are at
least 2 bridges on each column and n > 3, the Lemma follows. Therefore we may assume
that there exists some column such that all points on the column are white. In this case
a black point on the first column has a white point on both the row and the column on
which the black point lies. So exchanging the position of black points and white points
we have the same situation as in (I).

Next we show a lemma about interior lattice points in perfect matching polytopes.

Lemma 2.2. Let P be a polytope defined by conditions (1), (2) and (3) in Edmond’s
theorem. Set

(1′) xe > 0 (∀e ∈ E),

(2′)
∑

v∈e xe = 1 (∀v ∈ V ),

(3′)
∑

e∈C(S,S′) xe > 1 (∀S ⊂ V, 3 6 |S| 6 |V | − 3 odd).

Assume that there exists a vector x satisfying (1′), (2′) and (3′). Then x ∈ P ◦ and the
relative interior of P is given by these conditions (1′), (2′) and (3′).

Proof. Take a vector x satisfying (1′), (2’) and (3’). Denote by W the linear subspace
defined by equations

∑

v∈e xe = 0 (∀v ∈ V ). Then P lies on the affine subspace x + W .
If the norm of y ∈ W is small enough, then x + y also satisfies (1’), (2’) and (3’). This
implies dim P = dim W and x ∈ P ◦ in the sense of the relative interior. After all, we see
that the relative interior of P , P ◦ is defined by (1’), (2’) and (3’).

Let conditions (1)t, (2)t and (3)t be

(1)t xe > 0 (∀e ∈ E),

(2)t

∑

v∈e xe = t (∀v ∈ V ),

(3)t

∑

e∈C(S,S′) xe > t (∀S ⊂ V, 3 6 |S| 6 |V | − 3 odd),

and conditions (1′)t, (2′)t and (3′)t be

(1′)t xe > 0 (∀e ∈ E),

(2′)t

∑

v∈e xe = t (∀v ∈ V ),
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(3′)t

∑

e∈C(S,S′) xe > t (∀S ⊂ V, 3 6 |S| 6 |V | − 3 odd).

Denote all-one vector (1, . . . , 1) by 1 and define ι : R
E −→ R

E by ι(x) = x + 1.

Lemma 2.3. Assume that 1 satisfies conditions (1′)k, (2′)k and (3′)k. Then ι gives an
injective map from lP ∩ Z

E to (l + k)P ◦ ∩ Z
E

Proof. Since 1 satisfies (1′)k, (2′)k and (3′)k, by Lemma 2.2, tP ◦ is defined by (1′)t, (2′)t

and (3′)t. Let x ∈ lP ∩ Z
E . Then x satisfies conditions (1′)l, (2′)l and (3′)l. Since 1

satisfies conditions (1′)k, (2′)k and (3′)k, by summing two corresponding inequalities for
x and 1, we see that ι(x) = x + 1 satisfies (1′)l+k, (2′)l+k and (3′)l+k. Clearly ι(x) ∈ Z

E .
Therefore ι(x) ∈ (l + k)P ◦ ∩ Z

E .

We know the dimension of perfect matching polytopes of grid graphs and torus graphs.

Proposition 2.1 (B-H-S [2]). If mn is even. Then

(i) dimP(m, n) = (m − 1)(n − 1),

(ii) if n > 2 is even, then dimPT (2, n) = n + 1,

(iii) if m > 2 and n > 2 are both even, then dimPT (m, n) = mn + 1,

(iv) if n > 1 is odd, then dimPT (2, n) = n,

(v) if m > 2 is even and n = 1, then dimPT (m, n) = 1,

(vi) if m > 2 is even and n > 1, then dimPT (m, n) = mn.

Now we can show Theorem 3.

Proof of Theorem 3. Let P = PT (m, n). First we show the sufficiency. The case when
m = 1 or m is even, and n is even has been shown in Theorem 2.

Let (m, n) = (2, 3). We show that LP ◦(3) = 0 and LP ◦(4) 6= 0. Define x ∈ R
E as

in Figure 1, then x satisfies conditions (1′)4, (2′)4 and (3′)4. So by Lemma 2.2, we see
that x ∈ 4P ◦ and tP ◦ is defined by (1′)t, (2′)t and (3′)t. Since the graph is 3-regular,
lattice points satisfying (1′)3 and (2′)3 must be assigned by 1 on each edge. But if we
take S = {(0, 0), (0, 1), (0, 2)}, then the condition (3′)3 does not hold. Hence 3P ◦ has no
lattice points.

1 1 1 1

1 1 1 1

2 2 2

Figure 1: x in (m, n) = (2, 3).
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Therefore we see LP ◦(4) 6= 0, and so that the polytope P has the codegree 4. By
Proposition 2.1, dimPT (2, 3) = 3. The degree of PT (2, 3) is 0 and PT (2, 3) is an unimod-
ular simplex, and so Gorenstein.

Let (m, n) = (2, 5). All-one vector 1 = (1, 1, . . . , 1) lies in 3P ◦. Actually, 1 satisfies
the conditions (1′)3 and (2′)3, and easily we also confirm that, even if we take 3 or 5 points
as S in any choice, the condition (3′)3 always holds. So by Lemma 2.2, 1 ∈ 3P ◦ and tP ◦

is defined by (1′)t, (2′)t and (3′)t. Therefore LP ◦(3) 6= 0. Since the graph is 3-regular,
conditions (1′)t and (2′)t in Edmond’s theorem imply that there are no lattice points in
P ◦ and 2P ◦. So the codegree of P is 3. Below we show that LP ◦(t) = LP (t − 3).

By Lemma 2.3, ι gives an injective map from lP ∩Z
E to (l +3)P ∩Z

E . We show that
the inverse map ι−1 also gives an injective map from (l + 3)P ◦ ∩ Z

E to lP ∩ Z
E . If we

could prove it, then we see that LP ◦(l + 3) = |(l + 3)P ◦ ∩ Z
E| = |lP ∩ Z

E| = LP (l).
Take x ∈ (l + 3)P ∩ Z

E , then y = ι−1(x) = x − 1 satisfies (1)l and (2)l. Take S so
that condition (3)l does not hold, then S contains no isolated points. Also by symmetry,
we have only to consider S with the cardinality at most half the total number of vertices.
Hence, as S not satisfying (3)l, we have only four possibilities shown in Figures 2 and
3 (by considering symmetry again). In these figures, big points denote points of S and
thick edges denote the induced subgraph by S, that is, the graph consisting of the vertex
set S and all edges among vertices of S.

Figure 2: (m, n) = (2, 5).

a1 a2 a3 a4 a5

b5 b1 b2 b3 b4 b5

Figure 3: y in (m, n) = (2, 5).

For the three cases in Figure 2, we see from Corollary 3.2 that the condition (3)l follows
from (1)l and (2)l. Next we consider Figure 3. Since x satisfies (3′)l+3,

∑

e∈C(S,S′) xe > l+4.
Therefore

∑

e∈C(S,S′)

ye =
∑

e∈C(S,S′)

(xe − 1) > l − 1.

If
∑

e∈C(S,S′) ye < l, then
∑

e∈C(S,S′) ye =
∑

16i65 ai = l − 1. From the condition (2)l for y
we get

5l =
∑

v∈S, v∈e

ye =
∑

16i65

ai + 2
∑

16i65

bi ≡ l − 1 (mod 2).
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This is a contradiction. So y always satisfies the condition (3)l. This implies that ι−1

gives an injective map from (l + 3)P ◦ ∩ Z
E to lP ∩ Z

E .
Next, in order to show the necessity, we prove the contraposition. First let m = 2 and

n > 7 be odd. Similar to the case when (m, n) = (2, 5), we see easily that 1 lies in 3P ◦

and tP ◦ is defined by (1′)t, (2′)t and (3′)t. So the codegree is 3. It is also similar that ι
gives an injective map from lP ∩Z

E to (l + 3)P ◦ ∩Z
E . If we could prove the existence of

y such that y 6∈ 2P and ι(y) ∈ 5P ◦, then we see LP (2) < LP ◦(5), and so the polytope is
not Gorenstein. Define a vector y as in Figure 4.

1
· · · · · ·

· · · · · ·

1 11 1 1

0 0 0 0 0 0

11 11 1 1

Figure 4: y for (m, n) = (2, n), n > 7.

When we take all points on the upper row as S, y does not satisfy the condition (3)2.
So y 6∈ 2P . We show that x = ι(y) = y + 1 ∈ 5P ◦. If

∑

e∈C(S,S′) ye > t for S, then since 1

satisfies (3′)3,
∑

e∈C(S,S′) xe > t + 3. Thus, we have only to consider S such that |S| 6 n

is odd and that
∑

e∈C(S,S′) ye < 2. The inequality
∑

e∈C(S,S′) ye < 2 holds only when we
take all points on the upper row as S. In this case, since n edges goes from the upper row
to the lower row, so n =

∑

e∈C(S,S′) xe > t + 4 = 6. Therefore x ∈ 5P ◦.
Next we consider the case when n > 4 is even and m = 3. Since the graph is 4-regular,

1 satisfies (1′)4 and (2′)4. Also from Lemma 2.1 we see that 1 satisfies the condition (3′)4,
too. Therefore by Lemma 2.2, 1 ∈ 4P ◦ and tP ◦ is defined by (1′)t, (2′)t and (3′)t, and
so the codegree of P is 4. By Lemma 2.3, ι gives an injective map from lP ∩ Z

E to
(l + 4)P ◦ ∩ Z

E . Therefore, in order to prove that the polytope is not Gorenstein, it is
sufficient to prove the existence of y such that y 6∈ 3P and ι(y) ∈ 7P ◦. Define a vector y
as in Figure 5. Here we assign 0 to edges except for the thick ones.

2

1

1 1

1

1

1

1

1

1

2

1

1

3 3

3 3

3 33 3 3

3

3 3

3

3

1

c1

c2 c4

c5

c3 d1

d2

d3

d4

d5

1

Figure 5: y for (m, n) = (3, n), n > 4.

Take ci ’s (1 6 i 6 5) as S, then
∑

e∈C(S,S′) ye = 1 < 3. So y 6∈ 3P . Next, we show

that x = ι(y) ∈ 7P ◦. It is clear that (1′)7 and (2′)7 hold. We have to show that (3′)7 holds
for any S with the odd cardinality. In a similar way to the case when m = 2, n > 7, using
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Lemma 2.1, we see that it is sufficient to consider only S such that
∑

e∈C(S,S′) ye 6 1. To

choose points of S satisfying
∑

e∈C(S,S′) ye 6 1 we need to take all or none of ci’s. This is
also similar for di’s. Therefore, candidates for S consist of all ci’s, none of di’s and some
matchings assigned by 3. In this case, we show that |C(S, S ′)| > 8. If we could show
this fact, we see that

∑

e∈C(S,S′) xe =
∑

e∈C(S,S′)(ye + 1) > 1 +
∑

e∈C(S,S′) 1 > 9, and so
x ∈ 7P ◦. In this case, we see that each row has at least 2 bridges, and since the matching
in the third row is out of sync with the first and second ones, bridges traverse from the
third row to the first and second rows. So |C(S, S ′)| > 8.

Next we consider the case when m > 4 is even and n > 5 is odd. From Lemmas 2.1
and 2.2, we see that 1 ∈ 4P ◦ and tP ◦ is defined by (1′)t, (2′)t and (3′)t, and so that the
codegree of P is 4. By Lemma 2.3, ι gives an injective map from lP ∩Z

E to (l+4)P ◦∩Z
E .

So we also construct a vector y such that y 6∈ 2P and x = ι(y) ∈ 6P ◦. Define a vector
y so that each horizontal edge gets a 0, and each vertical edge gets 0. Take all points on
the first row as S,

∑

e∈C(S,S′) ye = 0 < 2. So y 6∈ 2P .

We show that x = ι(y) satisfies
∑

e∈C(S,S′) xe > 6 for any S with the cardinality odd.
By Lemma 2.1 and similar arguments as the above, we consider as candidates for S only
ones such that

∑

e∈C(S,S′) ye = 0. To choose S satisfying this condition, we need to take
all points or none of points on each row. Therefore in this case, there are 2n bridges. So
we have |C(S, S ′)| > 2n > 10, and so

∑

e∈C(S,S′) xe =
∑

e∈C(S,S′)(ye +1) > |C(S, S ′)| > 10.
So we get x ∈ 6P ◦.

Remark 1. By Theorem 3, P = PT (2, 5) is a Gorenstein polytope of codegree 3. We also
know dimPT (2, 5) = 5 by Proposition 2.1, and so the degree of P is 3. The vertices of
PT (2, 5) coincide with lattice points in PT (2, 5), and they are given by perfect matchings
of GT (2, 5). We can count easily the number of perfect matchings of GT (2, 5) which is
equal to 11. Since h1 = LP (1) − (d + 1) = 11 − 6 = 5, the Ehrhart series is

EhrP (z) =
1 + 5z + 5z2 + z3

(1 − z)6
.

3 S-matching polytope

In this section, we construct new polytopes from graphs.
Let G = (V, E) be a graph, and for a subset S ⊂ V , we denote by 〈S〉 the induced

subgraph by S in G, that is, the graph consisting of the vertex set S and all edges among
vertices of S. We also define a subgraph NG(S) = (VS, ES) of G as follows:

Γ(S) := {x ∈ S ′ | (x, y) ∈ E for some y ∈ S},

VS := S ∪ Γ(S), ES := C(S, V ).

We call NG(S) the neighbor graph of S in G. We call M ⊂ ES an S-matching if any two
distinct edges in M do not meet at points in S, and any point of S lies on some edge in
M .
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Definition 3.1 (S-matching polytope). Let NG(S) = (VS, ES) be the neighbor graph of
a subset S. Then we define the S-matching polytope PS of S to be the convex hull in R

ES

of the characteristic vectors of all S-matchings:

PS := conv{χM ∈ R
ES | M is an S-matching},

where χM ∈ R
ES denotes the characteristic vector of M as defined in Section 1.

Remark 2. When we take all points of V as S, PS coincides with the perfect matching
polytope of G.

Theorem 5. Let G = (V, E) be a graph, and for a subset S ⊂ V , let NG(S) = (VS, ES)
be the neighbor graph. Assume that 〈S〉 is bipartite. Then x ∈ R

ES is in PS if and only if
the following conditions hold:

(1) xe > 0 (∀e ∈ ES),

(2)
∑

v∈e xe = 1 (∀v ∈ S).

Proof. The proof is similar to Vempala [13]’s proof in his lecture note on Edmond’s the-
orem for bipartite graphs.

Denote by C the polytope defined by the above conditions (1) and (2). Let M be an
S-matching, then clearly χM satisfies (1) and (2). Therefore PS ⊂ C. Conversely if we
take a lattice point in C, then there is an S-matching corresponding to the lattice point.
So it is sufficient to show that all vertices of C are lattice points.

Assume that there exists a non-integral vertex x = (. . . , xe, . . .) of C. For such a x, we
define a subgraph NG(S)x of NG(S) as follows: the vertex set of NG(S)x is VS, and the
edge set consists of all e’s in ES such that xe is not integral. We divide the cases into (I)
the case when NG(S)x does not contain cycles, and (II) the case when NG(S)x contains
cycles.

(I) In this case, since a connected component of NG(S)x is a tree, there are at least
two points of degree 1 in a connected component. The points of degree 1 cannot be in S
by condition (2). Let e1, e2, . . . , em be a path connecting two such points of degree 1, and
let us define ǫ := min{xei

, 1 − xei
| 1 6 i 6 m}. Then we define x as follows: for e not in

the path, let xe = xe, and xe1
:= xe1

− ǫ, xe2
:= xe2

+ ǫ, . . ., that is, we alternately add
and subtract ǫ to the xei

’s in starting from the subtraction. Also define x in a similar way
except starting from the addition by ǫ. Then clearly both x and x still satisfy conditions
(1) and (2). Therefore x, x ∈ C. Since x = (x + x)/2, x cannot be a vertex of C. This is
a contradiction.

(II) In this case, there are cycles in NG(S)x. If there exists a cycle of even length, then
in a similar way to the case (I), we can define x and x in C, and x cannot be a vertex of
C.

If there exists a cycle of odd length, then since 〈S〉 is bipartite, the cycle must contain
a point of Γ(S). Let the cycle be e1, . . . , em and v ∈ Γ(S) be incident to e1 and em. Then
we define x as follows: for e not in the cycle, xe = xe and xe1

= xe1
+ ǫ, xe2

= xe2
− ǫ, . . .,

that is, we alternately add and subtract ǫ to xei
’s in starting from the addition. This is
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the same to the case (I). But finally we have xem
= xem

+ ǫ. Since the common point
between e1 and em is v ∈ Γ(S), the addition by ǫ does not violate condition (2). So x ∈ C.
We can define x ∈ C in a similar way to x except starting from acting the subtraction.
Since x, x ∈ C and x = (x + x)/2, x cannot be a vertex of C in this case, and again we
get a contradiction.

Next we give a formula for the dimension of PS in the case when 〈S〉 is bipartite.

Proposition 3.1. Let G = (V, E) be a graph, S ⊂ V , NG(S) = (VS, ES) be the neighbor
graph. Assume that 〈S〉 is connected and bipartite, and that any e ∈ ES lies in some
S-matching. Then

dim PS =

{

|ES| − |S| : if Γ(S) 6= ∅,

|ES| − |S| + 1 : otherwise.

Proof. Define an S × ES matrix R as follows: for v ∈ S and e ∈ ES,

Rv,e =

{

1 : if v ∈ e,

0 : otherwise.

By Theorem 5, PS coincides with the solution space of Rx = t1 and x ∈ R
ES

>0 , where
tx is the transpose of x. For a suitable {λM} such that

∑

λM = 1, λM > 0, we put
x =

∑

λMχM where the sum runs through all S-matchings. By the assumption that any
e ∈ ES lies in some S-matching, we have a solution x of Rx = t1 with xe > 0 (∀e ∈ ES).
So the dimension of PS is equal to the dimension of the solution space for Rx = 0. Below
we investigate the rank of R. Denote the v-th row vector and the e-th column vector of
R by Rv and R(e), respectively. The columns of R are divided into ones of C(S, S) and
C(S, S ′).

First consider the case when Γ(S) = ∅. Then there are no columns in C(S, S ′). Assume
that

∑

v avRv = 0. If e = (v, v′) ∈ ES, then R(e) has the entries with 1 at v and v′, and
with 0 at the other points of S. Therefore, since

∑

v avRv = 0, we have av = −av′ . So we
see that if (v, v′) ∈ ES, then av = −av′ . Since 〈S〉 is bipartite, there are disjoint subsets
S1 and S2 such that S = S1 ∪ S2 and C(Si, Si) = ∅. Since 〈S〉 is connected, if av = λ for
some v ∈ S1, then au = λ for any u ∈ S1 and aw = −λ for any w ∈ S2. This implies that
the dimension of the row space of R is |S| − 1. So the dimension of the solution space of
Rx = 0 is equal to |ES| − |S| + 1.

Next we consider the case when Γ(S) 6= ∅. Assume
∑

v avRv = 0. By the definition
of Γ(S), for v′ ∈ Γ(S), there exists some v ∈ S such that e = (v, v′) ∈ ES. Then the
entries of R(e) is 1 at v and 0 at the other positions. Therefore av = 0. While, if v, v′ ∈ S
are adjacent, then av = −a′

v. Since 〈S〉 is connected, we get, if
∑

v avRv = 0, then
av = 0 (∀v ∈ S), and so, the dimension of the row space of R is |S|. Therefore the
dimension of the solution space for Rx = 0 is |ES| − |S|.

Remark 3. Let us consider the case when 〈S〉 is unconnected. Then denote the connected
component of 〈S〉 by C1, . . . , Ck and put each S-matching polytope to be PCi

. Then we
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have PS = PC1
× PC2

× · · · × PCk
. So the dimension is

dim PS =
k

∑

i=1

dim PCi
.

Corollary 3.1. Assume that the induced subgraph 〈S〉 is bipartite, and that any v ∈ S
has a constant degree k. Then PS is a Gorenstein polytope of codegree k.

Proof. The proof is similar to the one of Beck et al. [2, Prop.1]. By Theorem 5, x ∈ tP ◦

S

if and only if the following conditions hold:

(1”) xe > 0 (∀e ∈ ES),

(2”)
∑

v∈e xe = t (∀v ∈ S).

By conditions (1”) and (2”), there are no lattice points in tP ◦

S for t < k, and 1 ∈ R
ES is

a unique lattice point of kP ◦

S . So LPS
(k) = 1.

Consider ι : R
ES −→ R

ES : ι(y) = y + 1. Since the degree for any point of S is a
constant k, the number of variables appearing in the conditions (2) and (2”) is always k.
Therefore for y ∈ tPS ∩ Z

ES ,
∑

v∈e

ι(y)e =
∑

v∈e

(ye + 1) = t + k,

and so ι(x) ∈ (t + k)PS ∩ Z
ES . Conversely, let x ∈ (t + k)P ◦

S ∩ Z
ES . Since xe > 1, we get

ι−1(x)e = xe − 1 > 0. Since

∑

v∈e

ι−1(x)e =
∑

v∈e

(xe − 1) = t + k − k = t,

we also have ι−1(x) ∈ tPS ∩ Z
ES .

After all, ι gives a one-to-one correspondence between tPS ∩Z
ES and (t + k)PS ∩Z

ES .
Therefore LPS

(t) = LP ◦

S
(t + k), and so PS is Gorenstein.

Remark 4. As mentioned in Beck et al. [2], combining the results of Ohsugi-Hibi [9],
Sullivant [12], Athanasiadis [1] and Bruns-Römer [4], we see that the S-matching polytopes
in Corollary 3.1 are compressed Gorenstein polytopes, and so the coefficients of the h∗-
polynomials are unimodal.

Example 1. By Beck et al. [2], we know that for sufficiently large m and n , P(m, n)
is not Gorenstein (or even for the case when mn is odd since in that case there are no
perfect matchings). For the m × n grid graph G = G(m, n) = (V, E), put

S := {(i, j) | 1 6 i 6 m − 2, 1 6 j 6 n − 2} ⊂ V,

then clearly 〈S〉 is bipartite and any point of S has the degree 4. Thus, by Corollary 3.1
the S-matching polytope PS is a Gorenstein polytope of codegree 4. Also by Proposition
3.1 dim PS = |ES| − |S| = mn − m − n.
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Corollary 3.2. Let G = (V, E) be a graph, and S ⊂ V with |S| odd and 〈S〉 bipartite.
Let t ∈ R>0 and x ∈ R

E
>0 such that

∑

v∈e xe = t (∀v ∈ S). Then
∑

e∈C(S,S′) xe > t.

Proof. By considering a projection we may assume x ∈ R
ES

>0 . Since
∑

v∈e xe = t (∀v ∈ S),
by Theorem 5, x ∈ tPS. The vertices of PS correspond to the characteristic vectors of S-
matchings. Since |S| is odd, for an S-matching M some edges of M necessarily go outside
S. Therefore the characteristic vector χM satisfies

∑

e∈C(S,S′)(χM)e > 1. Hence any vector

x ∈ PS satisfies
∑

e∈C(S,S′) xe > 1. In particular, for x ∈ tPS,
∑

e∈C(S,S′) xe > t.
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