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Abstract

Let Γ be a finite, additive group, S ⊆ Γ, 0 6∈ S, − S = {−s : s ∈ S} = S. The
undirected Cayley graph Cay(Γ, S) has vertex set Γ and edge set {{a, b} : a, b ∈ Γ,
a − b ∈ S}. A graph is called integral, if all of its eigenvalues are integers. For
an abelian group Γ we show that Cay(Γ, S) is integral, if S belongs to the Boolean
algebra B(Γ) generated by the subgroups of Γ. The converse is proven for cyclic
groups. A finite group Γ is called Cayley integral, if every undirected Cayley graph
over Γ is integral. We determine all abelian Cayley integral groups.

1 Introduction

Eigenvalues of an undirected graph G are the eigenvalues of an arbitrary adjacency matrix
of G. Harary and Schwenk [9] defined G to be integral, if all of its eigenvalues are integers.
Since then many integral graphs have been discovered, for a survey see [4]. Nevertheless,
as is shown in [2], the probability of a labeled graph on n vertices to be integral is at most
2−n/400 for sufficiently large n. Known characterizations of integral graphs are restricted
to certain graph classes. Here we proceed towards a characterization of integral Cayley
graphs over abelian groups.

Let Γ be a finite, additive group, S ⊆ Γ, 0 6∈ S, − S = {−s : s ∈ S} = S. The
undirected Cayley graph Cay(Γ, S) has vertex set Γ. Vertices a, b ∈ Γ are adjacent if
a − b ∈ S. For general properties of Cayley graphs we refer to Godsil and Royle [8] or
Biggs [5]. Abdollahi and Vatandoost [1] show that there are exactly seven connected cubic
integral Cayley graphs. So [15] presents a characterization of integral circulant graphs,
which are Cayley graphs over cyclic groups. In this paper we prove for an abelian group
Γ that Cay(Γ, S) is integral, if S belongs to the Boolean algebra B(Γ) generated by the
subgroups of Γ. By the result of So the converse turns out to be true for cyclic groups.
We conjecture it to be true for abelian groups in general.
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A finite group Γ is called Cayley integral, if every undirected Cayley graph over Γ is
integral. We show that all nontrivial abelian Cayley integral groups are represented by

Zn
2 , Z

n
3 , Z

n
4 , Z

m
2 ⊗ Zn

3 , Z
m
2 ⊗ Zn

4 , m > 1, n > 1.

Here Zk = {0, 1, . . . , k − 1} denotes the (additive) cyclic group of integers modulo k.
The Hamming graph Ham(m1, ..., mr;D) has vertex set Zm1

⊗ · · · ⊗ Zmr
. Vertices

x 6= y are adjacent, if their Hamming distance is in a list D of possible distances. All
Hamming graphs are proven to be integral Cayley graphs, which extends a partial result
in [14]. Moreover, we show that certain graphs associated with the Sudoku puzzle and
with pandiagonal Latin squares are integral Cayley graphs.

We remark that every set S in the Boolean algebra B(Γ) satisfies S = −S. For the
construction of a Cayley graph Cay(Γ, S) we use only those S ∈ B(Γ) which do not
contain the additive identity 0 of Γ.

2 Integral subsets

Let Z be the set of all integers, M a finite, nonempty set, and f a complex valued function
on M, f : M → C. A subset A ⊆M is called f -integral, if

f(A) =
∑

a∈A

f(a) ∈ Z .

We agree upon f(∅) = 0. So the empty set is always f -integral. The complement of
A ⊆M is Ā = M\A. The following simple Lemma is due to f(Ā) = f(M) − f(A).

Lemma 1. Let M be f -integral and A ⊆ M . Then A is f -integral, if and only if Ā is
f -integral.

A family Ω = {A1, . . . , An} of subsets of M is called intersection stable, if Ai ∩Aj ∈ Ω
for every i, j ∈ {1, . . . , n}.

Lemma 2. Let Ω = {A1, . . . , An} be an intersection stable family of f -integral subsets of
M . If M is f -integral, then:

1. Āi ∩ Aj is f -integral for every i, j ∈ {1, . . . , n}.

2. Ai0 ∩ Āi1 ∩ . . . ∩ Āik is f -integral for every k > 1 and {i0, i1, . . . , ik} ⊆ {1, . . . , n}.
This remains true, if Ai0 is missing, respectively Ai0 = M .

Proof. 1. For i 6= j the set Ai ∩ Aj ∈ Ω is f -integral and so

f(Āi ∩ Aj) = f(Aj) − f(Ai ∩Aj) ∈ Z.

2. Without loss of generality let ij = j for j = 0, . . . , k, A0 ∈ Ω or A0 = M ,

A = A0 ∩ Ā1 ∩ . . . ∩ Āk . (1)
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In view of Lemma 1 it is sufficient to show that Ā is f -integral. By de Morgan’s rule we
have

Ā = Ā0 ∪A1 ∪ . . . ∪ Ak .

We apply the principle of inclusion and exclusion (see [11]) to determine f(Ā).

f(Ā) =
k+1
∑

p=1

(−1)p−1 sp ,

sp =
∑

06j1<...<jp6k

f(Bj1 ∩ . . . ∩ Bjp
) , (2)

where B0 = Ā0 and Bj = Aj for every j ∈ {1, . . . , k}. We show that all terms in the sum
(2) represent integers. For j1 > 0 we have

f(Bj1 ∩ . . . ∩ Bjp
) = f(Aj1 ∩ . . . ∩Ajp

) ∈ Z ,

because Aj1 ∩ . . . ∩Ajp
∈ Ω is f -integral. If j1 = 0 then Bj1 ∩ . . . ∩Bjp

reduces to

Ā0 ∩Aj2 ∩ . . . ∩Ajp
= Ā0 ∩ Aj for some Aj ∈ Ω ,

because Ω is intersection stable. If A0 = M then f(Ā0 ∩ Aj) = f(∅) = 0. If A0 ∈ Ω then
f(Ā0 ∩ Aj) ∈ Z follows from part 1 of this lemma.

Let A1, . . . , An be subsets of M . We denote the Boolean algebra generated by A1, . . .,
An in M by B(A1, . . . , An;M). It is the smallest system of subsets of M that contains
A1, . . . , An and is invariant under the set operations union, intersection, and forming the
complement. It is well known (see e.g Cohn [6]) that B(A1, . . . , An;M) consists exactly
of those sets A ⊆M which can be represented in disjunctive normal form by A1, . . . , An :

A =

k
⋃

j=1

Dj , Dj =

nj
⋂

l=1

Wj,l ,

Wj,l ∈ {A1, . . . , An, Ā1, . . . , Ān} for every j, l.

(3)

If the set system Ω = {A1, . . . , An} is intersection stable, then the sets Dj in (3) can be
reduced to

Dj = Aj,0 ∩ Āj,1 ∩ . . . ∩ Āj,mj
, (4)

where every Aj,l ∈ Ω. We may have mj = 0 and the term Aj,0 may be missing.

Lemma 3. Let Ω = {A1, . . . , An} be an intersection stable family of subsets of M . If
M and all sets A1, . . . , An are f -integral, then every set A ∈ B(A1, . . . , An;M) is also
f -integral.

the electronic journal of combinatorics 17 (2010), #R81 3



Proof. Every set A ∈ B(A1, . . . , An;M) can be written in disjunctive normal form accord-
ing to (3). Once more we apply the inclusion-exclusion principle, this time to determine
f(A).

f(A) =
k

∑

p=1

(−1)p−1 sp

sp =
∑

16i1<...<ip6k

f(Di1 ∩ . . . ∩Dip) (5)

We show that all terms in the sum (5) represent integers. By the intersection stability of Ω
and the form (4) of the sets Dj we see that T = Di1 ∩ . . .∩Dip takes a form corresponding
to (4).

T = Ai0 ∩ Āi1 ∩ . . . ∩ Āir (6)

Every set Aij that occurs in (6) belongs to Ω with the possible exception Ai0 = M . Now
we conclude by Lemma 2 that f(T ) is integral.

3 Group characters and Cayley graphs

Lovász [12] (see also Babai [3]) developed a method to express the eigenvalues of a graph
in terms of the characters of a transitive subgroup of its automorphism group. This theory
simplifies considerably for Cayley graphs over abelian groups. To improve the readability
of our paper we include Lovász’s arguments reduced to our purposes (Lemma 4, 6, and
7). For more algebraic background we refer to Cohn [6].

Let Γ be a finite additive group with n elements, |Γ| = n. For a positive integer k and
a ∈ Γ we denote as usual by ka the k-fold sum of a to itself, (−k)a = k(−a), 0a = 0.
A character ψ of Γ is a homomorphism from Γ into the multiplicative group of complex
numbers, ψ : Γ → C\{0},

ψ(µa+ νb) = (ψ(a))µ (ψ(b))ν for every a, b ∈ Γ and µ, ν ∈ Z.

Fermat’s little theorem yields

(ψ(a))n = ψ(na) = ψ(0) = 1.

Therefore, ψ(a) is an n-th root of unity for every a ∈ Γ.

Lemma 4. Let H be a subgroup of Γ and ψ a character of Γ. If H contains an element
g with ψ(g) 6= 1, then ψ(H) = 0 else ψ(H) = |H|.

Proof. If g ∈ H and ψ(g) 6= 1 then we have

ψ(H) =
∑

h∈H

ψ(h+ g) = ψ(g)ψ(H) , (1 − ψ(g))ψ(H) = 0,

which implies ψ(H) = 0. If ψ(g) = 1 for every g ∈ H then ψ(H) = |H|.
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We denote by B(Γ) the Boolean algebra generated by the subgroups of Γ.

Lemma 5. For an arbitrary character ψ of Γ every set S ∈ B(Γ) is ψ-integral.

Proof. According to Lemma 4 every subgroup H of Γ is ψ-integral. The subgroups of
Γ constitute an intersection stable set system including Γ itself. Lemma 3 implies that
every set S ∈ B(Γ) is ψ-integral.

Lemma 6. Let ψ be a character of the additive group Γ = {v1, . . . , vn}, S ⊆ Γ, 0 6∈
S, −S = S. Assume that A = (ai,j) is the adjacency matrix of G = Cay(Γ, S) with respect
to the given ordering of the vertex set V (G) = Γ. Then the column vector (ψ(vj))j=1,...,n

is an eigenvector of A with eigenvalue ψ(S).

Proof. We evaluate the product of the i-th row of A and (ψ(vj))j=1,...,n.

n
∑

j=1

ai,jψ(vj) =
∑

16j6n, vj−vi∈S

ψ(vj) =
∑

s∈S

ψ(s+ vi)

= ψ(vi)
∑

s∈S

ψ(s) = ψ(vi)ψ(S)

From now on we assume that the finite additive group Γ is abelian. Then Γ can be
represented as the direct product of cyclic groups of prime power order (see Cohn [6]).

Γ = Zn1
⊗ · · · ⊗ Znk

, |Γ| = n = n1 · · ·nk (7)

We consider the elements x ∈ Γ as elements of the cartesian product Zn1
× · · · × Znk

,

x = (xi), xi ∈ Zni
= {0, 1, . . . , ni − 1}, 1 6 i 6 k.

Addition is coordinatewise modulo ni. Denote by ei the unit vector with entry 1 in
position i and entry 0 in all positions j 6= i. A character ψ of Γ is uniquely determined
by its values ψ(ei), 1 6 i 6 k.

x = (xi) =

k
∑

i=1

xiei, ψ(x) =

k
∏

i=1

(ψ(ei))
xi (8)

As ei ∈ Γ has order ni, the value ψ(ei) must be a complex ni-th root of unity. So there
are ni possible choices for the value of ψ(ei). Let ζi be a primitive ni-th root of unity for
every i, 1 6 i 6 k. For every α = (αi) ∈ Γ a character ψα can be uniquely defined by

ψα(ei) = ζαi

i , 1 6 i 6 k. (9)

Thus all |Γ| = n characters of the abelian group Γ can be obtained.
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Lemma 7. Let ψ1, . . . , ψn be the distinct characters of the additive abelian group Γ =
{v1, . . . , vn}, S ⊆ Γ, 0 6∈ S, − S = S. Assume that A = (ai,j) is the adjacency matrix of
G = Cay(Γ, S) with respect to the given ordering of the vertex set V (G) = Γ. Then the
column vectors (ψi(vj))j=1,...,n, 1 6 i 6 n, constitute an orthogonal basis of Cn consisting
of eigenvectors of A. To the eigenvector (ψi(vj))j=1,...,n belongs the eigenvalue ψi(S).

Proof. By Lemma 6 and the considerations above it remains to prove that for α = (αi) ∈
Γ, β = (βi) ∈ Γ, α 6= β, the eigenvectors (ψα(vj))j=1,...,n and (ψβ(vj))j=1,...,n are orthogo-
nal (with respect to the standard inner product of Cn). We represent Γ by (7) and define
ψα and ψβ according to (8) and (9). Observe that the complex conjugate ζ̄ of a root of
unity ζ satisfies ζ̄ = ζ−1.

σ =

n
∑

j=1

ψα(vj)ψβ(vj) =
∑

x=(xi)∈Γ

k
∏

i=1

(ζi)
αixi

k
∏

i=1

(ζ̄i)
βixi

=
∑

06x1<n1

. . .
∑

06xk<nk

k
∏

i=1

ζ
(αi−βi)xi

i =

k
∏

i=1

∑

06xi<ni

ζ
(αi−βi)xi

i

(10)

As α 6= β we may assume e.g. α1 6= β1. Then

∑

06x1<n1

ζ
(α1−β1)x1

1 =
ζ

(α1−β1)n1

1 − 1

ζ
(α1−β1)
1 − 1

= 0

implies σ = 0 by (10).

Our main result is stated in the next theorem.

Theorem 8. Let Γ be a finite abelian group and B(Γ) the Boolean algebra generated by
the subgroups of Γ. For every set S ∈ B(Γ), 0 6∈ S, the Cayley graph Cay(Γ, S) is integral.

Proof. According to Lemma 7 all eigenvalues of Cay(Γ, S) have the form ψ(S) with a
character ψ of Γ. By Lemma 5 we know that ψ(S) is integral for every S ∈ B(Γ).

For an integer n > 2 and a proper divisor d of n we define

Gn(d) = {k ∈ Zn : gcd(k, n) = d}.

The following result of So [15] leads to the converse of Theorem 8 for cyclic groups.

Lemma 9. Let n be an integer, n > 2, S ⊆ Zn, 0 6∈ S, − S = S. The Cayley graph
Cay(Zn, S) is integral, if and only if there are proper divisors d1, . . . , dr of n such that

S =

r
⋃

j=1

Gn(dj) . (11)
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Theorem 10. Let n be an integer, n > 2, S ⊆ Zn, 0 6∈ S, − S = S. The Cayley graph
Cay(Zn, S) is integral, if and only if S ∈ B(Zn).

Proof. If S ∈ B(Zn) then Cay(Zn, S) is integral by Theorem 8. To prove the converse let
Cay(Zn, S) be integral. By Lemma 9 there are proper divisors d1, . . . , dr of n such that
S satisfies (11). To prove S ∈ B(Zn) it is sufficient to show that Gn(d) ∈ B(Zn) for every
proper divisor d of n. To every proper divisor d of n the cyclic group Zn has exactly one
subgroup of order (n/d) > 1, namely the cyclic group [d] generated by d. If we define

Mn(d) = [d]\{0} = {qd : 1 6 q <
n

d
}

then Mn(d) ∈ B(Zn). Now we obtain

Gn(d) = {qd : 1 6 q <
n

d
, gcd(q,

n

d
) = 1}

= Mn(d) \
⋃

{Mn(δd) : 1 < δ <
n

d
, δ divides

n

d
} ,

which implies Gn(d) ∈ B(Zn).

In the introductory section we defined a finite additive group Γ to be Cayley integral,
if for every S ⊆ Γ, 0 6∈ S, − S = S, the Cayley graph Cay(Γ, S) is integral. Observe
that for this definition Γ may be nonabelian. By ord(a) we denote the order of a ∈ Γ.

Lemma 11. If the finite group Γ is Cayley integral then

ord(a) ∈ {2, 3, 4, 6} for every a ∈ Γ, a 6= 0.

Proof. The eigenvalues of a circuit Cn of length n > 3 are (see [5])

λj = 2 cos(
2π

n
j), j = 0, 1, . . . , n− 1 .

This implies that Cn is integral only for n = 3, 4, or 6. Assume that Γ is Cayley integral
and contains an element a 6= 0, ord(a) 6∈ {2, 3, 4, 6}. Let U = [a] and S = {a,−a}. Then
|S| = 2 and the subgroup generated by S is [S] = U . The Cayley graph G = Cay(Γ, S)
is regular of degree |S| = 2. Its connected components are generated by the right cosets
of U . They are circuits of length |U | = ord(a) 6∈ {3, 4, 6}. Therefore, G is not integral,
contradicting our assumption on Γ.

Lemma 12. Let Γ be a finite additive group, S ⊆ Γ, − S = S. If ord(a) ∈ {2, 3, 4, 6}
for every a ∈ S then S ∈ B(Γ).

Proof. We show {a,−a} ∈ B(Γ) for every a ∈ S. This leads to

S =
⋃

a∈S

{a,−a} ∈ B(Γ) .

According to the four possible orders of a ∈ S we consider four cases.
1) ord(a) = 2 : {a,−a} = {a} = [a]\{0} ∈ B(Γ).
2) ord(a) = 3 : {a,−a} = [a]\{0} ∈ B(Γ).
3) ord(a) = 4 : {a,−a} = [a]\{0, 2a} = [a]\[2a] ∈ B(Γ).
4) ord(a) = 6 : {a,−a} = [a]\{0, 2a, 3a, 4a} = [a]\([2a] ∪ [3a]) ∈ B(Γ).
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Denote by Zn
k the n-fold direct product of Zk with itself. It was already noticed by

Lovász [12] that all Cayley graphs over Zn
2 (“cubelike graphs”) are integral. The following

theorem extends this result.

Theorem 13. All nontrivial abelian Cayley integral groups are represented by

Zn
2 , Z

n
3 , Z

n
4 , Z

m
2 ⊗ Zn

3 , Z
m
2 ⊗ Zn

4 , m > 1, n > 1. (12)

Proof. Lemma 11, Lemma 12, and Theorem 8 imply that the abelian group Γ is Cayley
integral, if and only if

ord(a) ∈ {2, 3, 4, 6} for every a ∈ Γ, a 6= 0. (13)

The abelian group Γ is the direct product of cyclic groups of prime power order. In (12)
we have listed all types of nontrivial abelian groups which satisfy (13).

4 Examples

4.1 Hamming graphs

Let m1, . . . , mr be positive integers, D = {d1, . . . dk} a set of integers di, 1 6 di 6 r. The
Hamming graph H = Ham(m1, . . . , mr;D) has as its vertex set the abelian group

Γ = Zm1
⊗ · · · ⊗ Zmr

. (14)

The Hamming distance of vertices x = (xi) ∈ Γ and y = (yi) ∈ Γ is

d(x, y) = |{i : 1 6 i 6 r, xi 6= yi}| .

Vertices x and y are adjacent in H , if d(x, y) ∈ D. We show H = Cay(Γ, S) with
S ∈ B(Γ). Then Theorem 8 implies that H is integral.

The weight of x = (xi) ∈ Γ is

w(x) = |{i : 1 6 i 6 r, xi 6= 0}| .

We achieve H = Cay(Γ, S) by

S = S1 ∪ . . . ∪ Sk , Sj = {x ∈ Γ : w(x) = dj} for 1 6 j 6 k .

It remains to show Sj ∈ B(Γ) for every j, 1 6 j 6 k, or generally

S(d) = {x ∈ Γ : w(x) = d} ∈ B(Γ) for every d, 1 6 d 6 r .

Define the support of x = (xi) ∈ Γ by supp(x) = {i : 1 6 i 6 r, xi 6= 0} .
Let {Aq : 1 6 q 6

(

r
d

)

} be the family of all d-element subsets of {1, . . . , r} and

Bq = {x ∈ S(d) : supp(x) = Aq} for 1 6 q 6

(

r

d

)

. (15)
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Then we have
S(d) =

⋃

16q6(r

d)

Bq .

So it is sufficient to show Bq ∈ B(Γ) for every q, 1 6 q 6
(

r
d

)

.
If for A ⊆ {1, . . . , r} we define

P (A) = {x = (xi) ∈ Γ : xi = 0 for every i 6∈ A}

then P (A) is a subgroup of Γ, which by (14) is isomorphic to
⊗

i∈A Zmi
. By (15) we now

conclude
Bq = P (Aq) \

⋃

A⊂
6=

Aq

P (A) ∈ B(Γ) .

Thus we arrive at the following result.

Proposition 14. Every Hamming graphHam(m1, . . . , mr;D) is an integral Cayley graph.

4.2 Sudoku graphs

For an integer n > 2 an n-Sudoku is an arrangement of n×n square blocks each consisting
of n × n cells. In Figure 1 we display an example for the commonly used format given
by n = 3. Each cell has to be filled with a number (color) ranging from 1 to n2 such
that every block, row or column contains all of the colors 1, . . . , n2. For a Sudoku puzzle
certain colored cells are stipulated (in Figure 1 in bold type). The aim is to color the
remaining cells according to the above conditions. This puzzle may be considered as the
task to complete a partial proper coloring of the underlying graph Sud(n) to a proper
coloring of this graph.

9 1 4 2 5 6 3 7 8

7 6 5 3 1 8 2 9 4
3 8 2 7 9 4 6 5 1

1 2 6 9 8 7 5 4 3
5 4 7 6 3 2 1 8 9

8 9 3 1 4 5 7 6 2

6 5 1 8 2 9 4 3 7
4 3 9 5 7 1 8 2 6
2 7 8 4 6 3 9 1 5

Figure 1

The Sudoku graph Sud(n) has as its vertices the n2 cells of an n-Sudoku. Vertices (cells)
are adjacent, if they are in the same block, row or column. Based on the representation
of Sud(n) as a certain product (NEPS) of complete graphs it has been shown in [13] that
Sud(n) is integral. Its eigenvalues (multiplicities in brackets) in descending order are:

3n2 − 2n− 1 [1], 2n2 − 2n− 1 [2(n− 1)], n2 − n− 1 [2n(n− 1)],
n2 − 2n− 1 [(n− 1)2], − 1 [n2(n− 1)2], − 1 − n [2n(n− 1)2] .
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Here we show Sud(n) = Cay(Γ, S) for an abelian group Γ and S ∈ B(Γ). So Sud(n) is
an integral Cayley graph according to Theorem 8. The above eigenvalues could also be
determined by Lovász’s method, Lemma 7.

We represent the vertices (cells) of Sud(n) by the elements

x = (x1, x2, x3, x4) ∈ Γ = Z4
n, Zn = {0, 1, . . . , n− 1} .

For a given cell the first pair (x1, x2) of coordinates localizes the block of the cell. The
second pair (x3, x4) describes the position of the cell within its block. According to the
different types of edges in Sud(n) the set S is partitioned into three subsets,
S = S1 ∪ S2 ∪ S3,

S1 = {(0, 0, x3, x4) : x3, x4 ∈ Zn, (x3, x4) 6= (0, 0)},
S2 = {(0, x2, 0, x4) : x2, x4 ∈ Zn, x2 6= 0},
S3 = {(x1, 0, x3, 0) : x1, x3 ∈ Zn, x1 6= 0} .

Edges within a block are provided by S1. The remaining edges within a row or within a
column are provided by S2 and S3. Thus we achieve Sud(n) = Cay(Γ, S). Let Z1 = {0}.

S1 = Z1 ⊗ Z1 ⊗ Zn ⊗ Zn \ Z1 ⊗ Z1 ⊗ Z1 ⊗ Z1 implies S1 ∈ B(Γ) .
S2 = Z1 ⊗ Zn ⊗ Z1 ⊗ Zn \ Z1 ⊗ Z1 ⊗ Z1 ⊗ Zn implies S2 ∈ B(Γ) .
S3 = Zn ⊗ Z1 ⊗ Zn ⊗ Z1 \ Z1 ⊗ Z1 ⊗ Zn ⊗ Z1 implies S3 ∈ B(Γ) .

Therefore, S ∈ B(Γ) and Sud(n) = Cay(Γ, S) is an integral Cayley graph by Theorem 8.
In a variant of Sudoku, positional Sudoku, discussed by Elsholtz and Mütze [7] the

cells have to satisfy an additional condition. Distinct cells in the same position of their
respective blocks have to be colored differently. The underlying positional Sudoku graph
SudP (n) gets additional edges in comparison to Sud(n). In the Cayley graph represen-
tation these edges are established by S4 = {(x1, x2, 0, 0) : x1, x2 ∈ Zn, x1 6= 0, x2 6= 0}.

S4 = Zn ⊗ Zn ⊗ Z1 ⊗ Z1 \ (Z1 ⊗ Zn ⊗ Z1 ⊗ Z1 ∪ Zn ⊗ Z1 ⊗ Z1 ⊗ Z1) .

This implies S4 ∈ B(Γ) and S̃ = S1∪S2∪S3∪S4 ∈ B(Γ). Therefore, SudP (n) = Cay(Γ, S̃)
is an integral Cayley graph by Theorem 8. Its eigenvalues can be determined by Lovász’s
method, Lemma 7. We list them in descending order (multiplicities in brackets).

4n(n− 1) [1], 2n2 − 3n [4(n− 1)], n(n− 2) [4(n− 1)2],
0 [(n− 1)4], − n [4(n− 1)3] − 2n [2(n− 1)2]

We summarize the main results of this subsection.

Proposition 15. Every Sudoku graph Sud(n) and every positional Sudoku graph SudP (n)
is an integral Cayley graph.
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4.3 Pandiagonal Latin square graphs

A Latin square is an n × n-matrix with entries from {1, . . . , n} such that every number
1, . . . , n appears exactly once in every row and in every column. For a pandiagonal Latin
square two additional conditions have to be satisfied. Every number 1, . . . , n has to appear
exactly once in the main diagonal and its broken parallels as well as in the secondary
diagonal and its broken parallels. Hedayat [10] proved that an n × n-pandiagonal Latin
square exists, if and only if n ≡ ±1 modulo 6. Figure 2 presents a 7 × 7-pandiagonal
Latin square.

1 2 3 4 5 6 7
6 7 1 2 3 4 5
4 5 6 7 1 2 3
2 3 4 5 6 7 1
7 1 2 3 4 5 6
5 6 7 1 2 3 4
3 4 5 6 7 1 2

Figure 2

For n > 2 the pandiagonal Latin square graph PLSG(n) has as its vertex set the n2

positions of an n× n-matrix. Distinct vertices (positions) are adjacent, if they are in the
same row, in the same column, in the same (broken) parallel to the main diagonal or in
the same (broken) parallel to the secondary diagonal. The graph PLSG(n) is defined for
every integer n > 2. The existence of an n × n-pandiagonal Latin square is equivalent
to chromatic number χ(PLSG(n)) = n. Here we show that PLSG(n) = Cay(Γ, S) is an
integral Cayley graph.

Naturally, we describe the vertex set of PLSG(n) by Γ = Zn ⊗ Zn. The set S is
partitioned into four parts, S = S1 ∪ S2 ∪ S3 ∪ S4, according to the four types of edges in
PLSG(n). The sets

S1 = {(0, x2) : x2 ∈ Zn, x2 6= 0}, S2 = {(x1, 0) : x1 ∈ Zn, x1 6= 0}

provide the edges between positions in the same row or column. With the notation
Z1 = {0} we see

S1 = Z1 ⊗ Zn \ Z1 ⊗ Z1 ∈ B(Γ), S2 = Zn ⊗ Z1 \ Z1 ⊗ Z1 ∈ B(Γ) .

The set S3 = {(x1, x1) : x1 ∈ Zn, x1 6= 0} provides the edges between positions in the
main diagonal or in one of its broken parallels. As U1 = {(x1, x1) : x1 ∈ Zn} is a subgroup
of Γ, we conclude S3 = U1 \ Z1 ⊗ Z1 ∈ B(Γ). The set

S4 = {(x1,−x1) : x1 ∈ Zn, x1 6= 0, x1 6=
n

2
for even n}

provides the remaining edges between positions in the secondary diagonal or one of its
broken parallels. If we define

U2 = {(x1,−x1) : x1 ∈ Zn}, U3 = {(0, 0), (
n

2
,
n

2
)} for even n and U3 = {(0, 0)} for odd n,
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then U2 and U3 are subgroups of Γ and S4 = U2\U3 ∈ B(Γ). Now we arrive at PLSG(n) =
Cay(Γ, S), S = S1∪S2∪S3 ∪S4 ∈ B(Γ). Theorem 8 implies that PLSG(n) is an integral
Cayley graph.

Proposition 16. Every pandiagonal Latin square graph PLSG(n) is an integral Cayley
graph.

We have determined the eigenvalues of PLSG(n) by Lovász’s method, Lemma 7.
The fact that there are exactly three different eigenvalues for odd n > 5 reflects that
PLSG(n) is strongly regular in this case (see [11]). We list the eigenvalues in descending
order (multiplicities in brackets).

Case n odd: 4n− 4 [1], n− 4 [4n− 4], − 4 [n2 − 4n+ 3] .

Case n even: 4n− 5 [1], 2n− 5 [1], n− 3 [n] ,

n− 5 [3n− 6], − 3 [n2

2
− n], − 5 [n2

2
− 3n+ 4] .

5 Problems and remarks

1. We think that the converse of Theorem 8 is not only true for cyclic groups (Theo-
rem 10), but for abelian groups in general. By a computer search we found no
counterexample to this conjecture among abelian groups up to order 71.

2. There are nonabelian groups, e.g. all dihedral groups Dn, |Dn| = 2n > 8, for which
Theorem 8 does not hold.

3. Up to order 12 we have found three nonabelian Cayley integral groups: the sym-
metric group S3 of order 6, the group Q8 of quaternions as a group of order 8, and
the semidirect product (see Cohn [6]) of Z3 and Z4 as a group of order 12. Determine
all nonabelian Cayley integral groups.

4. Let the finite abelian group Γ be represented as the direct product of cyclic groups,
Γ = Zm1

⊗ · · · ⊗ Zmr
. Describe an effective method to decide for a subset S ⊆ Γ, if

S belongs to the Boolean algebra B(Γ) generated by the subgroups of Γ.

5. From the existence theorem of Hedayat we know that χ(PLSG(n)) = n, if n ≡ ±1
modulo 6. Determine the chromatic number χ(PLSG(n)) in the remaining cases.
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