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Abstract

In 2009, Cooper presented an infinite family of pairs of graphs which were con-

jectured to have the same Ihara zeta function. We give a proof of this result by

using generating functions to establish a one-to-one correspondence between cycles

of the same length without backtracking or tails in the graphs Cooper proposed.

Our method is flexible enough that we are able to generalize Cooper’s graphs, and

we demonstrate additional families of pairs of graphs which share the same zeta

function.

1. Introduction

In 2009, Cooper described an infinite family of non-isomorphic pairs of graphs which she
conjectured had the same Ihara zeta function [2]. In this note, we provide a proof of
Cooper’s conjecture. We do so by using the definition of the Ihara zeta function directly,
as opposed to using determinant expressions for the zeta function. We will use bivariate
generating functions to establish a one-to-one degree preserving correspondence between
the sets used to build the Ihara zeta function. We refer the reader to [8] for a reference
on generating functions.

In the remainder of this section, we introduce the Ihara zeta function, define Cooper’s
graphs, and state our main result. In Section 2, we develop the necessary tools and provide
a proof of our main result. We conclude that section with some remarks on generalizing
the family of graphs which have the same Ihara zeta function.

A graph X = (V, E) is a finite nonempty set V of vertices and a finite multiset E of
unordered pairs of vertices, called edges. We allow edges of the form {u, u}, called loops.
We also allow an edge {u, v} to be repeated more than once as an element of E, and refer
to this as a multiple edge.
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A cycle in X is a sequence of the form c = {u1, e1, u2, e2, . . . , un, en, u1} where ui ∈ V

and ei ∈ E. A cycle has backtracking if ej = ej+1 for some j where ej is not a loop. To
define backtracking when a loop is involved, we think of the loop as having a choice of
directions to traverse so that backtracking occurs when a loop is used in one direction
and then immediately in the opposing direction. A cycle has a tail if e1 = en (in the
event e1 is a loop, we have a tail if en is the same loop being viewed in the opposite
direction). We will refer to a cycle which has no backtracking and no tail as a circuit. A
circuit c is primitive if it cannot be obtained by going around some other circuit b two
or more times. The length of a circuit c, denoted ℓ(c), is the number of edges n in the
associated sequence. We impose an equivalence relation on two circuits c and c′ via cyclic
permutation.

Remark 1. The distinction between cycles and circuits (circuits are cycles which do not
have backtracking or tails) is important. Both terms will be used later with this in mind.

The framework behind the Ihara zeta function was set forth by Ihara in 1966 [4, 5].
We provide a combinatorial definition here in terms of circuits of a graph X.

Definition 2 (Ihara zeta function). The Ihara zeta function of a graph X is defined by

ZX(u) =
∏

[c]

(

1 − uℓ(c)
)−1

,

where the product is taken over all equivalence classes of primitive circuits. The product
converges for u ∈ C with |u| sufficiently small.

Remark 3. We will not make use of any properties of the zeta function beyond the def-
inition just given. There is a rich theory for this function, some of which the interested
reader might find in [1, 3, 6, 7]. Notably, ZX(u) is the reciprocal of a polynomial and can
be expressed in terms of determinants.

Now that we have defined the zeta function, we define the families of graphs which
Cooper conjectured have the same zeta function.

Definition 4 (Rn). For n > 4, we define a graph Rn via

1. V = {a1, . . . , an}.

2. For j = 1, . . . , n − 3 and j = n − 1, there is a double edge of the form {aj , aj+1}.

3. There is a single edge en−2 = {an−2, an−1}. We will refer to this edge as the “bridge
edge” later.

4. For j = 2, . . . , n − 2 and j = n, there is a loop {aj, aj}.

Definition 5 (Ln). For n > 4, we define a graph Ln via

1. V = {b1, . . . , bn}.
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Figure 1: R5
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Figure 2: L5

2. For j = 1, . . . , n − 3 and j = n − 1, there is a double edge of the form {bj , bj+1}.

3. There is a single edge fn−2 = {bn−2, bn−1}. We will refer to this edge as the “bridge
edge” later.

4. For j = 1, . . . , n − 3 and j = n − 1, there is a loop {bj , bj}.

We note that with the exception of the loops, Rn and Ln are identical. The graphs
R5 and L5 are depicted in Figures 1 and 2 respectively. Our main result is as follows:

Theorem 6. For n > 4, we have

ZRn
= ZLn

.

When n = 4, the graphs R4 and L4 are isomorphic. Cooper confirmed Theorem 6 for
n = 5, . . . , 12 through direct computation of the zeta functions. In the next section, we
prove that the theorem is true in general by showing that for all natural numbers k, there
are the same number of circuits of length k in Rn and Ln.

2. Proof of Main Result

In this section, we establish Theorem 6. We begin by noting that two graphs X and Y

have the same zeta function if and only if they have the same number of primitive circuits
of identical lengths.

Proposition 7. Let X and Y be graphs. For all natural numbers k, there is the same

number of primitive circuits of length k in X as there are primitive circuits of length k in

Y if and only if

ZX(u) = ZY (u).
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Proof. That X and Y have the same number of primitive circuits of length k for all k

implies equality of the zeta functions of X and Y follows directly from Definition 2.
The other direction is also well known: u times the logarithmic derivative of ZX(u)

is a generating function for the number of circuits. See for instance [7]. Knowing the
number of circuits of each length is sufficient to conclude the number of primitive circuits
of each length.

Fix a natural number n. To establish Theorem 6, we will show that for each k the
number of length k circuits (and thus the number of length k primitive circuits) of Rn

and Ln are the same. First note that circuits can be divided into two sets: those that
use the bridge edge — edge en−2 in Rn and edge fn−2 in Ln — and those which do not.
Removing the bridge edges from Rn and from Ln leaves isomorphic graphs, so we need
only concern ourselves with the circuits which do make use of the bridge edges.

We establish some notation to treat the separate components of Rn and Ln upon
removal of the bridge edges.

Definition 8 (Connected Components upon removal of Bridge). Let n > 5. We first
consider the graph Rn upon removal of the bridge edge en−2. This leaves two connected
components: one with n − 2 vertices and one with 2 vertices. We denote by Rn the
component with n − 2 vertices and by Zl the component with 2 vertices.

Similarly, upon removal of the bridge edge fn−2 in the graph Ln, we are left with two
connected components. We denote by Ln the component with n − 2 vertices and by Zr

the component with 2 vertices.
Both Zl and Zr are isomorphic to the graph Z, shown in figure 3. We make the

distinction between Zl and Zr based upon which vertex in Z connects to the bridge edge.
We will refer to the vertices later as they are labeled in the figure.

Definition 9 (Generating Functions). Let n > 5. We define the following bivariate
generating functions:

FRn
(x, y) =

∑

j,k>0

c(j, k)xjyk

where c(j, k) is the number of backtrackless cycles in Rn, beginning at vertex an−2, which
are comprised of j edges (excluding loops) and k loops.
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FLn
(x, y) =

∑

j,k>0

c(j, k)xjyk

where c(j, k) is the number of backtrackless cycles in Ln, beginning at vertex bn−2, which
are comprised of j edges (excluding loops) and k loops.

FZr
(x, y) =

∑

j,k>0

c(j, k)xjyk

where c(j, k) is the number of backtrackless cycles in Zr, beginning and ending at vertex
v2, which are comprised of j edges (excluding loops) and k loops.

FZl
(x, y) =

∑

j,k>0

c(j, k)xjyk

where c(j, k) is the number of backtrackless cycles in Zl, beginning and ending at vertex
v1, which are comprised of j edges (excluding loops) and k loops.

The cycles counted here could have tails. This will be resolved later by addition
of the bridge edge where a possible tail might occur, thus removing the tail when we
count circuits in Rn and Ln. We note that in the previous four instances, the coefficient
c(0, 0) = 0, as we choose to exclude the trivial cycle (the cycle which starts at the
appropriate vertex and includes no edges or loops) from our count.

Finally, we define two more generating functions which keep track of backtrackless
walks on Z which begin at one vertex and end at the other:

F 1→2
Z (x, y) =

∑

j,k>0

c(j, k)xjyk

where c(j, k) is the number of backtrackless walks in Z, beginning at vertex v1 and con-
cluding at vertex v2, which are comprised of j edges (excluding loops) and k loops.

F 2→1
Z (x, y) =

∑

j,k>0

c(j, k)xjyk

where c(j, k) is the number of backtrackless walks in Z, beginning at vertex v2 and con-
cluding at vertex v1, which are comprised of j edges (excluding loops) and k loops.

Theorem 10 (Main Generating Function Relation). Let n > 5. Then

FRn
(x, y)FZl

(x, y) = FLn
(x, y)FZr

(x, y).

Proof. We argue by induction on n. The base case occurs when n = 4, in which case
FR4

(x, y) = FZr
(x, y) and FL4

(x, y) = FZl
(x, y), and the desired equation follows imme-

diately.
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We fix a natural number n and assume the relation holds for n − 1. Namely that

FRn−1
(x, y)FZl

(x, y) = FLn−1
(x, y)FZr

(x, y). (1)

We can now compute FRn
(x, y) in terms of our generating functions. We break cycles

in Rn into two different sets: those which only involve an isomorphic copy of Z (beginning
and ending at the vertex with a loop) and those which utilize more of Rn. The cycles
involving only Z can be computed as FZr

(x, y).
Treating the remaining cycles requires more care. Any such cycle must begin at the

vertex an−2 and go to the vertex an−3 without backtracking. This gives a contribution
of F 2→1

Z (x, y). Recall that F 2→1
Z (x, y) counts all possible ways to get from an−2 to an−3,

so the next thing a cycle does must be to proceed to the additional part of the graph,
Rn \ Z, not contained within the isomorphic copy of Z. This can be accomplished with
the expression FRn−1

(x, y). Upon returning to an−3, the cycle can proceed to the right,
into Z, and then back into Rn \ Z as many times as it likes. If a cycle does this m times
where m > 0, we get a contribution of

(

FZl
(x, y)FRn−1

(x, y)
)m

.

Finally, the cycle must terminate by going from an−3 to an−2. This last part is accom-
plished with F 1→2

Z (x, y). Putting this together, and noting that we have to sum over all
natural numbers m, gives the equation:

FRn
(x, y) = FZr

(x, y)+

F 2→1
Z (x, y)FRn−1

(x, y)

[

∞
∑

m=0

(

FZl
(x, y)FRn−1

(x, y)
)m

]

F 1→2
Z (x, y).

Similarly, for FLn
(x, y), we obtain:

FLn
(x, y) = FZl

(x, y)+

F 1→2
Z (x, y)FLn−1

(x, y)

[

∞
∑

m=0

(

FZr
(x, y)FLn−1

(x, y)
)m

]

F 2→1
Z (x, y).

To conclude the proof, we multiply the expression for FRn
(x, y) by FZl

(x, y) and apply
the inductive hypothesis, as stated in equation (1), to realize FLn

(x, y)FZr
(x, y).

We can use Theorem 10 to provide a direct proof of our main theorem, Theorem 6, as
follows.

Proof of Theorem 6. We fix a natural number n > 4. Consider the graphs Rn and Ln.
We will show that Rn and Ln have the same number of circuits of each length k. As
previously noted, there is a direct correspondence between circuits which do not use the
bridge edge, so we need only show that the number of circuits that make use of the bridge
edge is the same in each graph. Now, we note that any circuit in Rn (similarly in Ln)

the electronic journal of combinatorics 17 (2010), #R82 6



must use the bridge edge an even number of times. Suppose we are considering circuits
which use the bridge edge 2k times. In this case, the number of such circuits in Rn can
be computed as

[FRn
(x, y)]k (x2k) [FZl

(x, y)]k .

Similarly, the number of such circuits in Ln can be computed as

[FLn
(x, y)]k (x2k) [FZr

(x, y)]k .

We note that there are no backtracking or tail issues in our counting once the bridge
edge has been added between Rn and Zl and between Ln and Zr.

By Theorem 10, these two expressions are equal, and so the number of circuits in Rn

which use the bridge 2k times is the same as the number of circuits in Ln which use the
bridge 2k times. From this, we conclude that the number of primitive circuits satisfying
this property are the same in each graph. As a consequence of Proposition 7, we conclude
that

ZRn
(u) = ZLn

(u).

We make several remarks in conclusion. This proof technique is particularly satisfying
as it allows for great flexibility in expanding Cooper’s initial conjecture. For instance,
we could modify Rn and Ln by subdividing each edge into j edges and each loop into k

edges. This would correspond to replacing x with xj and y with yk, an easy adjustment
to make in the generating functions. Utilizing this option allows us to change Cooper’s
family of graphs into a family of simple, connected graphs with the same zeta function.
Instead of adjusting the generating function, we could instead look for graphs for which
this same argument works. For instance, we could replace all of the double edges in the
graph Rn and Ln by m edges, and the argument would apply as given. We look forward
to exploring other graphs for which this argument works in the future.
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