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Abstract

A connected k-chromatic graph G is double-critical if for all edges uv of G the
graph G − u − v is (k − 2)-colourable. The only known double-critical k-chromatic
graph is the complete k-graph Kk. The conjecture that there are no other double-
critical graphs is a special case of a conjecture from 1966, due to Erdős and Lovász.
The conjecture has been verified for k at most 5. We prove for k = 6 and k = 7 that
any non-complete double-critical k-chromatic graph is 6-connected and contains a
complete k-graph as a minor.

1 Introduction

A long-standing conjecture, due to Erdős and Lovász [5], states that the complete graphs
are the only double-critical graphs. We refer to this conjecture as the Double-Critical
Graph Conjecture. A more elaborate statement of the conjecture is given in Section 2,
where several other fundamental concepts used in the present paper are defined. The
Double-Critical Graph Conjecture is easily seen to be true for double-critical k-chromatic
graphs with k at most 4. Mozhan [16] and Stiebitz [19, 20] independently proved the
conjecture to hold for k = 5, but it still remains open for all integers k greater than 5.
The Double-Critical Graph Conjecture is a special case of a more general conjecture, the
so-called Erdős-Lovász Tihany Conjecture [5], which states that for any graph G with
χ(G) > ω(G) and any two integers a, b > 2 with a + b = χ(G) + 1, there is a partition
(A,B) of the vertex set V (G) such that χ(G[A]) > a and χ(G[B]) > b. The Erdős-Lovász
Tihany Conjecture holds for every pair (a, b) ∈ {(2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5)} (see
[3, 16, 19, 20]). Kostochka and Stiebitz [13] proved it to be true for line graphs of
multigraphs, while Balogh et al. [1] proved it to be true for quasi-line graphs and for
graphs with independence number 2.
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In addition, Stiebitz (private communication) has proved a weakening of the Erdős-
Lovász Tihany conjecture, namely that for any graph G with χ(G) > ω(G) and any two
integers a, b > 2 with a + b = χ(G) + 1, there are two disjoint subsets A and B of the
vertex set V (G) such that δ(G[A]) > a − 1 and δ(G[B]) > b − 1. (Note that for this
conclusion to hold it is not enough to assume that G + Ka+b−1 and δ(G) > a+ b−2, that
is, the Erdős-Lovász Tihany conjecture does not hold in general for the so-called colouring
number. The 6-cycle with all shortest diagonals added is a counterexample with a = 2
and b = 4.) For a = 2, the truth of this weaker version of the Erdős-Lovász Tihany
conjecture follows easily from Theorem 3.1 of the present paper.

Given the difficulty in settling the Double-Critical Graph Conjecture we pose the
following weaker conjecture:

Conjecture 1.1. Every double-critical k-chromatic graph is contractible to the complete
k-graph.

Conjecture 1.1 is a weaker version of Hadwiger’s Conjecture [9], which states that
every k-chromatic graph is contractible to the complete k-graph. Hadwiger’s Conjecture
is one of the most fundamental conjectures of Graph Theory, much effort has gone into
settling it, but it remains open for k > 7. For more information on Hadwiger’s Conjecture
and related problems we refer the reader to [11, 22].

In this paper we mainly devote attention to the double-critical 7-chromatic graphs. It
seems that relatively little is known about 7-chromatic graphs. Jakobsen [10] proved that
every 7-chromatic graph has a K7 with two edges missing as a minor. It is apparently
not known whether every 7-chromatic graph is contractible to K7 with one edge missing.
Kawarabayashi and Toft [12] proved that every 7-chromatic graph is contractible to K7

or K4,4.
The main result of this paper is that any double-critical 6- or 7-chromatic graph is

contractible to the complete graph on six or seven vertices, respectively. These results
are proved in Sections 6 and 7 using results of Győri [8] and Mader [15], but not the Four
Colour Theorem. Krusenstjerna-Hafstrøm and Toft [14] proved that any double-critical
k-chromatic non-complete graph is 5-connected and (k+1)-edge-connected. In Section 5,
we extend that result by proving that any double-critical k-chromatic non-complete graph
is 6-connected. In Section 3, we exhibit a number of basic properties of double-critical
non-complete graphs. In particular, we observe that the minimum degree of any double-
critical non-complete k-chromatic graph G is at least k + 1 and that no two vertices of
degree k + 1 are adjacent in G, cf. Proposition 3.9 and Theorem 3.1. Gallai [7] also used
the concept of decomposable graphs in the study of critical graphs. In Section 4, we use
double-critical decomposable graphs to study the maximum ratio between the number
of double-critical edges in a non-complete critical graph and the size of the graph, in
particular, we prove that, for every non-complete 4-critical graph G, this ratio is at most
1/2 and the maximum is attained if and only if G is a wheel. Finally, in Section 8, we
study two variations of the concept of double-criticalness, which we have termed double-
edge-criticalness and mixed-double-criticalness. It turns out to be straightforward to
show that the only double-edge-critical graphs and mixed-double-critical graphs are the
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complete graphs.

2 Notation

All graphs considered in this paper are simple and finite. We let n(G) and m(G) denote
the order and size of a graph G, respectively. The path, the cycle and the complete graph
on n vertices is denoted Pn, Cn and Kn, respectively. The length of a path or a cycle
is its number of edges. The set of integers {1, 2, . . . , k} will be denoted [k]. Given two
isomorphic graphs G and H , we may (with a slight but common abuse of notation) write
G = H . A k-colouring of a graph G is a function ϕ from the vertex set V (G) of G into
a set C of cardinality k so that ϕ(u) 6= ϕ(v) for every edge uv ∈ E(G), and a graph is
k-colourable if it has a k-colouring. The elements of the set C are referred to as colours,
and a vertex v ∈ V (G) is said to be assigned the colour ϕ(v) by ϕ. The set of vertices
S assigned the same colour c ∈ C is said to constitute the colour class c. The minimum
integer k for which a graph G is k-colourable is called its chromatic number of G and it
is denoted χ(G). An independent set S of G is a set such that the induced graph G[S]
is edge-empty. The maximum integer k for which there exists an independent set S of G
of cardinality k is the independence number of G and is denoted α(G). A graph H is a
minor of a graph G if H can be obtained from G by deleting edges and/or vertices and
contracting edges. An H-minor of G is a minor of G isomorphic to H . Given a graph
G and a subset U of V (G) such that the induced graph G[U ] is connected, the graph
obtained from G by contracting U into one vertex is denoted G/U , and the vertex of G/U
corresponding to the set U of G is denoted vU . Let δ(G) denote the minimum degree of G.
For a vertex v of a graph G, the (open) neighbourhood of v in G is denoted NG(v) while
NG[v] denotes the closed neighbourhood NG(v) ∪ {v}. Given two subsets X and Y of
V (G), we denote by E[X, Y ] the set of edges of G with one end-vertex in X and the other
end-vertex in Y , and by e(X, Y ) their number. If X = Y , then we simply write E(X)
and e(X) for E[X,X] and e(X,X), respectively. The induced graph G[N(v)] is refered
to as the neighbourhood graph of v (w.r.t. G) and it is denoted Gv. The independence
number α(Gv) is denoted αv. The degree of a vertex v in G is denoted degG(v) or deg(v).
A graph G is called vertex-critical or, simply, critical if χ(G− v) < χ(G) for every vertex
v ∈ V (G). A connected graph G is called double-critical if

χ(G− x− y) 6 χ(G) − 2 for all edges xy ∈ E(G) (1)

Of course, χ(G − x − y) can never be strictly less than χ(G) − 2, so we could require
χ(G− x− y) = χ(G) − 2 in (1). It is also clear that any double-critical graph is vertex-
critical. The concept of vertex-critical graphs was first introduced by Dirac [4] and have
since been studied extensively, see, for instance, [11]. As noted by Dirac [4], every critical
k-chromatic graph G has minimum degree δ(G) > k − 1. An edge xy ∈ E(G) such that
χ(G − x − y) = χ(G) − 2 is referred to as a double-critical edge. For graph-theoretic
terminology not explained in this paper, we refer the reader to [2].

the electronic journal of combinatorics 17 (2010), #R87 3



3 Basic properties of double-critical graphs

In this section we let G denote a non-complete double-critical k-chromatic graph. Thus,
by the aforementioned results, k is at least 6.

Proposition 3.1. The graph G does not contain a complete (k− 1)-graph as a subgraph.

Proof. Suppose G contains Kk−1 as a subgraph. Since G is k-chromatic and double-
critical, it follows that G − V (Kk−1) is edge-empty, but not vertex-empty. Since G is
also vertex-critical, δ(G) > k − 1, and therefore every v ∈ V (G − Kk−1) is adjacent to
every vertex of V (Kk−1) in G, in particular, G contains Kk as a subgraph. Since G is
vertex-critical, G = Kk, a contradiction.

Proposition 3.2. If H is a connected subgraph of G with n(H) > 2, then the graph
G/V (H) obtained from G by contracting H is (k − 1)-colourable.

Proof. The graph H contains at least one edge uv, and the graph G − u − v is (k − 2)-
colourable, which, in particular, implies that the graph G−H is (k−2)-colourable. Now,
any (k − 2)-colouring of G − H may be extended to a (k − 1)-colouring of G/V (H) by
assigning a new colour to the vertex vV (H).

Given any edge xy ∈ E(G), define

A(xy) := N(x)\N [y]

B(xy) := N(x) ∩N(y)

C(xy) := N(y)\N [x]

D(xy) := V (G)\(N(x) ∪N(y))

= V (G)\ (A(xy) ∪B(xy) ∪ C(xy) ∪ {x, y})

We refer to B(xy) as the common neighbourhood of x and y (in G).
In the proof of Proposition 3.3 we use what has become known as generalized Kempe

chains, cf. [17, 21]. Given a k-colouring ϕ of a graph H , a vertex x ∈ H and a permutation
π of the colours 1, 2, . . . , k. Let N1 denote the set of neighbours of x of colour π(ϕ(x)),
let N2 denote the set of neighbours of N1 of colour π(π(ϕ(x))), let N3 denote the set of
neighbours of N2 of colour π3(ϕ(x)), etc. We call N(x, ϕ, π) = {x} ∪ N1 ∪ N2 ∪ · · · a
generalized Kempe chain from x w.r.t. ϕ and π. Changing the colour ϕ(y) for all vertices
y ∈ N(x, ϕ, π) from ϕ(y) to π(ϕ(y)) gives a new k-colouring of H .

Proposition 3.3. For all edges xy ∈ E(G), (k − 2)-colourings of G − x − y and any
non-empty sequence j1, j2, . . . , ji of i different colours from [k−2], there is a path of order
i + 2 starting at x, ending at y and with the t’th vertex after x having colour jt for all
t ∈ [i]. In particular, xy is contained in at least (k−2)!/(k−2− i)! cycles of length i+2.

Proof. Let xy denote an arbitrary edge of G and let ϕ denote a (k − 2)-colouring of
G−x−y which uses the colours of [k−2]. The function ϕ is extended to a proper (k−1)-
colouring of G−xy by defining ϕ(x) = ϕ(y) = k−1. Let π denote the cyclic permutation
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(k−1, j1, j2, . . . , ji). If the generalized Kempe chain N(x, ϕ, π) does not contain the vertex
y, then by reassigning colours on the vertices of N(x, ϕ, π) as described above, a (k − 1)-
colouring ψ of G− xy with ψ(x) 6= k − 1 = ψ(y) is obtained, contradicting the fact that
G is k-chromatic. Thus, the generalized Kempe chain N(x, ϕ, π) must contain the vertex
y. Since x and y are the only vertices which are assigned the colour k− 1 by ϕ, it follows
that the induced graph G[N(x, ϕ, π)] contains an (x, y)-path of order i+ 2 with vertices
coloured consecutively k− 1, j1, j2, . . . , ji, k− 1. The last claim of the proposition follows
from the fact there are (k−2)!/(k−2− i)! ways of selecting and ordering i elements from
the set [k − 2].

Note that the number of cycles of a given length obtained in Proposition 3.3 is exactly
the number of such cycles in the complete k-graph. Moreover, Proposition 3.3 immediately
implies the following result.

Corollary 3.1. For all edges xy ∈ E(G) and (k − 2)-colourings of G − x − y, the set
B(xy) of common neighbours of x and y in G contains vertices from every colour class
i ∈ [k−2], in particular, |B(xy)| > k−2, and xy is contained in at least k−2 triangles.

Proposition 3.4. For all vertices x ∈ V (G), the minimum degree in the induced graph
of the neighbourhood of x in G is at least k − 2, that is, δ(Gx) > k − 2.

Proof. According to Corollary 3.1, |B(xy)| > k−2 for any vertex y ∈ N(x), which implies
that y has at least k − 2 neighbours in Gx.

Proposition 3.5. For any vertex x ∈ V (G), there exists a vertex y ∈ N(x) such that the
set A(xy) is not empty.

Proof. Let x denote any vertex of G, and let z in N(x). The common neighbourhood
B(xz) contains at least k − 2 vertices, and so, since Kk−1 is not a subgraph of G, not
every pair of vertices of B(xy) are adjacent, say y, y′ ∈ B(xz) are non-adjacent. Now
y′ ∈ A(xy), in particular, A(xy) is not empty.

Proposition 3.6. There exists at least one edge xy ∈ E(G) such that the set D(xy) is
not empty.

Proof. According to Proposition 3.5, there exists at least one edge uv ∈ E(G) such that
A(uv) is not empty. Fix a vertex a ∈ A(uv). This vertex a cannot be adjacent to every
vertex of B(uv), since that, according to Corollary 3.1, would leave no colour available
for a in a (k − 2)-colouring of G− u − v. Suppose a is not adjacent to z ∈ B(uv). Now
a ∈ D(vz), in particular, D(vz) is not empty.

Proposition 3.7. If A(xy) is not empty for some xy ∈ E(G), then δ(G[A(xy)]) > 1, that
is, G[A(xy)] contains no isolated vertices. By symmetry, δ(G[C(xy)]) > 1, if C(xy) is
not empty.
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Proof. Suppose G[A(xy)] contains some isolated vertex, say a. Now, since G is double-
critical, |B(xa)| > k−2, and, since a is isolated in A(xy), the common neighbours of x and
a must lie in B(xy), in particular, any (k−2)-colouring of G−a−x must assign all colours
of the set [k− 2] to common neighbours of a and x in B(xy). But this leaves no colour in
the set [k−2] available for y, which contradicts the fact that G−a−x is (k−2)-colourable.
This contradiction implies that G[A(xy)] contains no isolated vertices.

Proposition 3.8. If some vertex y ∈ N(x) is not adjacent to some vertex z ∈ N(x)\{y},
then there exists another vertex w ∈ N(x)\{y, z}, which is also not adjacent to y. Equiv-
alently, no vertex of the complement Gx has degree 1 in Gx.

Proof. The statement follows directly from Proposition 3.7. If y ∈ N(x) is not adjacent
to z ∈ N(x)\{y}, then z ∈ A(xy) and, since G[A(xy)] contains no isolated vertices, the
set A(xy)\{z} cannot be empty.

Proposition 3.9. Every vertex of G has at least k + 1 neighbours.

Proof. According to Proposition 3.5, for any vertex x ∈ V (G), there exists a vertex
y ∈ N(x) such that A(xy) 6= ∅, and, according to Proposition 3.7, δ(G[A(xy)]) > 1, in
particular, |A(xy)| > 2. Since N(x) is the union of the disjoint sets A(xy), B(xy) and
{y}, we obtain

degG(x) = |N(x)| > |A(xy)| + |B(xy)| + 1 > 2 + (k − 2) + 1 = k + 1

where we used the fact that |B(xy)| > k − 2, according to Corollary 3.1.

Proposition 3.10. For any vertex x ∈ V (G),

degG(x) − αx > |B(xy)| + 1 > k − 1 (2)

where y ∈ N(x) is any vertex contained in an independent set in N [x] of size αx. More-
over, αx > 2.

Proof. Let S denote an independent set in N(x) of size αx. Obviously, αx > 2, otherwise
G would contain a Kk. Choose some vertex y ∈ S. Now the non-empty set S\{y} is
a subset of A(xy), and, according to Proposition 3.7, δ(G[A(xy)]) > 1. Let a1 and a2

denote two neighbouring vertices of A(xy). The independet set S of Gx contains at most
one of the vertices a1 and a2, say a1 /∈ S. Therefore S is a subset of {y} ∪ A(xy)\{a1},
and so we obtain

αx 6 |A(xy)| = |N(x)| − |B(xy)| − 1 6 degG(x) − (k − 2) − 1

from which (2) follows.

Proposition 3.11. For any vertex x not adjacent to all other vertices of G, χ(Gx) 6 k−3.
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Proof. Since G is connected there must be some vertex, say z, in V (G)\N [x], which is
adjacent to some vertex, say y, in N(x). Now, clearly, z is a vertex of C(xy), in particular,
C(xy) is not empty, which, according to Proposition 3.7, implies that C(xy) contains at
least one edge, say e = zv. Since G is double-critical, it follows that χ(G−z−v) 6 k−2,
in particular, the subgraph G[N [x]] of G − z − v is (k − 2)-colourable, and so Gx is
(k − 3)-colourable.

Proposition 3.12. If degG(x) = k + 1, then the complement Gx consists of isolated
vertices (possibly none) and cycles (at least one), where the length of the cycles are at
least five.

Proof. Given degG(x) = k + 1, suppose that some vertex y ∈ Gx has three edges miss-
ing in Gx, say yz1, yz2, yz3. Now B(xy) is a subset of N(x)\{y, z1, z2, z3}. However,
|N(x)\{y, z1, z2, z3}| = (k + 1) − 4, which implies |B(xy)| 6 k − 3, contrary to Corol-
lary 3.1. Thus no vertex of Gx is missing more than two edges. According to Propo-
sition 3.7, if a vertex of Gx is missing one edge, then it is missing at least two edges.
Thus, it follows that Gx consists of isolated vertices and cycles. If Gx consists of only
isolated vertices, then Gx would be a complete graph, and G would contain a complete
(k + 1)-graph, contrary to our assumptions. Thus, Gx contains at least one cycle C. Let
s denote a vertex of C, and let r and t denote the two distinct vertices of A(xs). Now
G−x−s is (k−2)-colourable and, according to Corollary 3.1, each of the k−2 colours is
assigned to at least one vertex of the common neighbourhood B(xs). Thus, both r and t
must have at least one non-neighbour in B(xs), and, since r and t are adjacent, it follows
that r and t must have distinct non-neighbours, say q and u, in B(xs). Now, q, r, s, t and
u induce a path of length four in Gx and so the cycle C containing P has length at least
five.

Theorem 3.1. No two vertices of degree k + 1 are adjacent in G.

Proof. Firstly, suppose x and y are two adjacent vertices of degree k + 1 in G. Suppose
that the one of the sets A(xy) and C(xy) is empty, say A(xy) = ∅. Then |B(xy)| = k
and C(xy) = ∅. Obviously, αx > 2, and it follows from Proposition 3.10 that αx is equal
to two. Let ϕ denote a (k − 2)-colouring of G − x − y. Now |B(xy)| = k, αx = 2 and
the fact that ϕ applies each colour c ∈ [k − 2] to at least one vertex of B(xy) implies
that exactly two colours i, j ∈ [k − 2] are applied twice among the vertices of B(xy), say
ϕ(u1) = ϕ(u2) = k − 3 and ϕ(v1) = ϕ(v2) = k − 2, where u1, u2, v1 and v2 denotes four
distinct vertices of B(xy). Now each of the colours 1, . . . , k − 4 appears exactly once in
the colouring of the vertices of W := B(xy)\{u1, u2, v1, v2}, say W = {w1, . . . , wk−4} and
ϕ(wi) = i for each i ∈ [k − 4]. Now it follows from Proposition 3.3 that there exists a
path xwiwjy for each pair of distinct colours i, j ∈ [k − 4]. Therefore G[W ] = Kk−4.
If one of the vertices u1, u2, v1 or v2, say u1, is adjacent to every vertex of W , then
G[W ∪ {u1, x, y}] = Kk−1, which contradicts Proposition 3.1. Hence each of the vertices
u1, u2, v1 and v2 is missing at least one neighbour in W . It follows from Proposition 3.12,
that the complement G[B(xy)] consists of isolated vertices and cycles of length at least five.
Now it is easy to see that G[B(xy)] contains exactly one cycle, and we may w.l.o.g. assume
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that u1w1v1v2w2u2 are the vertices of that cycle. Now G[{u1, v1}∪W\{w1}] = Kk−1, and
we have again obtained a contradiction.

Secondly, suppose that one of the sets A(xy) and C(xy) is not empty, say A(xy) 6= ∅.
Since, according to Corollary 3.1, the common neighbourhood B(xy) contains at least
k − 2 vertices, it follows from Proposition 3.7 that |A(xy)| = 2 and so |B(xy)| = k − 2,
which implies |C(xy)| = 2. Suppose A(xy) = {a1, a2}, C(xy) = {c1, c2}, and let CA

denote the cycle of the complement Gx which contains the vertices a1, y and a2, say
CA = a1ya2u1 . . . ui, where u1, . . . , ui ∈ B(xy) and i > 2. Similarly, let CC denote the cycle
of the complement Gy which contains the vertices c1, x and c2, say CA = c1xc2v1 . . . vj ,
where v1, . . . , vj ∈ B(xy) and j > 2. Since both Gx and Gy consists of only isolated
vertices (possibly none) and cycles, it follows that we must have (u1, . . . , ui) = (v1, . . . , vj)
or (u1, . . . , ui) = (vj , . . . , vj). We assume w.l.o.g. that the former holds.

Let ϕ denote some (k − 2)-colouring of G − x − y using the colours of [k − 2], and
suppose w.l.o.g. φ(a1) = k − 2 and ϕ(a2) = k − 3. Again, the structure of Gx and Gy

implies ϕ(u1) = k−3 and ϕ(ui) = k−2, which also implies ϕ(c1) = k−2 and ϕ(c2) = k−3.
Let U = B(xy)\{u1, ui}. Now U has size k−4 and precisely one vertex of U is assigned

the colour i for each i ∈ [k − 4]. Since no other vertices of (N(x) ∪N(y))\U is assigned
a colour from the set [k − 4], it follows from Proposition 3.3 that for each pair of distinct
colours s, t ∈ [k− 4] there exists a path xusuty where us and ut are vertices of U assigned
the colours s and t, respectively. This implies G[U ] = Kk−4. No vertex of Gx has more
than two edges missing in Gx and so, in particular, each of the adjacent vertices a1 and
a2 are adjacent to every vertex of U . Now G[U ∪ {a1, a2, x}] = Kk−1, which contradicts
Proposition 3.1. Thus, no two vertices of degree k + 1 are adjacent in G.

4 Decomposable graphs and the ratio of double-

critical edges in graphs

A graph G is called decomposable if it consists of two disjoint non-empty subgraphs G1

and G2 together with all edges joining a vertex of G1 and a vertex of G2.

Proposition 4.1. Let G be a graph decomposable into G1 and G2. Then G is double-
critical if and only if G1 and G2 are both double-critical.

Proof. Let G be double-critical. Then χ(G) = χ(G1) +χ(G2). Moreover, for xy ∈ E(G1)
we have

χ(G) − 2 = χ(G− x− y) = χ(G1 − x− y) + χ(G2)

which implies χ(G1 − x − y) = χ(G1) − 2. Hence G1 is double-critical, and similarly G2

is.
Conversely, assume that G1 and G2 are both double-critical. Then for xy ∈ E(G1) we

have

χ(G− x− y) = χ(G1 − x− y) + χ(G2) = χ(G1) − 2 + χ(G2) = χ(G) − 2
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For xy ∈ E(G2) we have similarly that χ(G − x − y) = χ(G) − 2. For x ∈ V (G1) and
y ∈ V (G2) we have

χ(G− x− y) = χ(G1 − x) + χ(G2 − y) = χ(G1) − 1 + χ(G2) − 1 = χ(G) − 2

Hence G is double-critical.

Gallai proved the theorem that a k-critical graph with at most 2k−2 vertices is always
decomposable [6]. It follows easily from Gallai’s Theorem, Proposition 4.1 and the fact
that no double-critical non-complete graph with χ 6 5 exist, that a double-critical 6-
chromatic graph G 6= K6 has at least 11 vertices. In fact, such a graph must have at least
12 vertices. Suppose |V (G)| = 11. Then G cannot be decomposable by Proposition 4.1;
moreover, no vertex of a k-critical graph can have a vertex of degree |V (G)| − 2; hence
∆(G) = 8 by Theorem 3.1, say deg(x) = 8. Let y and z denote the two vertices of
G − N [x]. The vertices y and z have to be adjacent. Hence χ(G − y − z) = 4 and
χ(Gx) = 3, which implies χ(G) = 5, a contradiction.

It also follows from Gallai’s theorem and our results on double-critical 6- and 7-
chromatic graphs that any double-critical 8-chromatic graph without K8 as a minor,
if it exists, must have at least 15 vertices.

In the second part of the proof of Proposition 4.1, to prove that an edge xy with
x ∈ V (G1) and y ∈ V (G2) is double-critical in G, we only need that x is critical in G1

and y is critical in G2. Hence it is easy to find examples of critical graphs with many
double-critical edges. Take for example two disjoint odd cycles of equal length > 5 and
join them completely by edges. The result is a family of 6-critical graphs in which the
proportion of double-critical edges is as high as we want, say more than 99.99 percent
of all edges may be double-critical. In general, for any integer k > 6, let Hk,ℓ denote
the graph constructed by taking the complete (k − 6)-graph and two copies of an odd
cycle Cℓ with ℓ > 5 and joining these three graphs completely. Then the non-complete
graph Hk,ℓ is k-critical, and the ratio of double-critical edges to the size of Hk,ℓ can be
made arbitrarily close to 1 by choosing the integer ℓ sufficiently large. These observations
perhaps indicate the difficulty in proving the Double-Critical Graph Conjecture: it is not
enough to use just a few double-critical edges in a proof of the conjecture.

Taking an odd cycle Cℓ (ℓ > 5)and the complete 2-graph and joining them completely,
we obtain a non-complete 5-critical graph with at least 2/3 of all edges being double-
critical. Maybe these graphs are best possible:

Conjecture 4.1. If G denotes a 5-critical non-complete graph, then G contains at most
c := (2 + 1

3n(G)−5
)m(G)

3
double-critical edges. Moreover, G contains precisely c double-

critical edges if and only if G is decomposable into two graphs G1 and G2, where G1 is
the complete 2-graph and G2 is an odd cycle of length > 5.

The conjecture, if true, would be an interesting extension of a theorem by Mozhan [16]
and Stiebitz [20] which states that there is at least one non-double-critical edge. Computer
tests using the list of vertex-critical graphs made available by Royle [18] indicate that
Conjecture 4.1 holds for graphs of order less than 12. Moreover, the analogous statement
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holds for 4-critical graphs, cf. Theorem 4.1 below. In the proof of Theorem 4.1 we apply
the following lemma, which is of interest in its own right.

Lemma 4.1. No non-complete 4-critical graph contains two non-incident double-critical
edges.

Proof of Lemma 4.1. Suppose G contains two non-incident double-critical edges xy and
vw. Since χ(G − {v, w, x, y}) = 2, each component of G − {v, w, x, y} is a bipartite
graph. Let Ai and Bi (i ∈ [j]) denote the partition sets of each bipartite component of
G−{v, w, x, y}. (For each i ∈ [j], at least one of the sets Ai and Bi are non-empty.) Since
G is critical, it follows that no clique of G is a cut set of G [2, Th. 14.7], in particular,
both G−x−y and G−v−w are connected graphs. Hence, in G−v−w, there is at least
one edge between a vertex of {x, y} and a vertex of Ai∪Bi for each i ∈ [j]. Similarly, for v
and w in G−x−y. If, say x is adjacent to a vertex a1 ∈ Ai, then y cannot be adjacent to a
vertex a2 ∈ Ai, since then there would be a an even length (a1, a2)-path P in the induced
graph G[Ai ∪Bi] and so the induced graph G[V (P )∪ {x, y}] would contain an odd cycle,
which contradicts the fact that the supergraph G− v−w of G[V (P )∪{x, y}] is bipartite.
Similarly, if x is adjacent to a vertex of Ai, then x cannot be adjacent to a vertex of Bi.
Similar observations hold for v and w. Let A := A1 ∪ · · · ∪ Aj and B := B1 ∪ · · · ∪ Bj .
We may w.l.o.g. assume that the neighbours of x in G− v − w − y are in the set A and
the neighbours of y in G − v − w − x are in B. In the following we distinguish between
two cases.

(i) First, suppose that, in G − x − y, one of the vertices v and w is adjacent to only
vertices of A∪{v, w}, while the other is adjacent to only vertices of B ∪{v, w}. By
symmetry, we may assume that v in G−x−y is adjacent to only vertices of A∪{w},
while w in G− x− y is adjacent to only vertices of B ∪ {v}. In this case we assign
the colour 1 to the vertices of A ∪ {w}, the colour 2 to the vertices of B ∪ {v}.

Suppose that one of the edges xv or yw is not in G. By symmetry, it suffices to
consider the case that xv is not in G. In this case we assign the colour 2 to the vertex
x and the colour 3 to y. Since x is not adjacent to any vertices of B1 ∪ · · · ∪Bj, we
obtain a 3-colouring of G, which contradicts the assumption that G is 4-chromatic.

Thus, both of the edges xv and yw are present in G. Suppose that xw or yv are
missing from G. Again, by symmetry, it suffices to consider the case where yv is
missing from G. Now assign the colour 2 to the vertex x and the colour 3 to the
vertex y and a new colour to the vertex v. Again, we have a 3-colouring of G, a
contradiction. Thus each of the edges xw and yv are in G, and so the vertices x, y, v
and w induce a complete 4-graph in G. However, no 4-critical graph 6= K4 contains
K4 as a subgraph, and so we have a contradiction.

(ii) Suppose (i) is not the case. Then we may choose the notation such that there exist
some integer ℓ ∈ {2, . . . , j} such that for every integer s ∈ {1, . . . , ℓ} the vertex v is
not adjacent to a vertex of Bs and the vertex w is not adjacent to a vertex of As;
and for every integer t ∈ {ℓ, . . . , j} the vertex v is not adjacent to a vertex of At

and the vertex w is not adjacent to a vertex of Bt.
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Since G * K4, we may by symmetry assume that xv /∈ E(G). Now colour the
vertices v, x and all vertices of Bs (s = 1, . . . , ℓ− 1) with colour 1; colour the vertex
w, all vertices of As (s = 1, . . . , ℓ−1) and all vertices of Bt (t = ℓ, . . . , j) with colour
2; and colour the vertex y and all the vertices of At (t = ℓ, . . . , j) with colour 3.
The result is a 3-colouring of G. This contradicts G being 4-chromatic. Hence G
does not contain two non-incident double-critical edges.

Theorem 4.1. If G denotes a 4-critical non-complete graph, then G contains at most
m(G)/2 double-critical edges. Moreover, G contains preciselym(G)/2 double-critical edges
if and only if G contains a vertex v of degree n(G) − 1 such that the graph G − v is an
odd cycle of length > 5.

Proof. Let G denote a 4-critical non-complete graph. According to Lemma 4.1, G contains
no two non-incident double-critical edges, that is, every two double-critical edges of G are
incident. Then, either the double-critical edges of G all share a common end-vertex or
they induce a triangle. In the later case G contains strictly less that m(G)/2 double-
critical edges, since n(G) > 5 and m(G) > 3n(G)/2 > 6. In the former case, let v denote
the common endvertex of the double-critical edges.

Now, the number of double-critical edges is at most deg(v), which is at most n(G)−1.
Since G is 4-critical, it follows that G − v is connected and 3-chromatic. Hence G − v
is connected and contains an odd cycle, which implies m(G − v) > n(G − v). Hence
m(G) = deg(v) + m(G − v) > deg(v) + n(G) − 1 > 2 deg(v), which implies the desired
inequality. If the inequality is, in fact, an equality, then deg(v) = n(G) − 1 and G is
decomposable with G − v an odd cycle of length > 5. The reverse implication is just a
simple calculation.

5 Connectivity of double-critical graphs

Proposition 5.1. Suppose G is a non-complete double-critical k-chromatic graph with
k > 6. Then no minimal separating set of G can be partitioned into two disjoint sets
A and B such that the induced graphs G[A] and G[B] are edge-empty and complete,
respectively.

Proof. Suppose that some minimal separating set S of G can be partitioned into dis-
joint sets A and B such that G[A] and G[B] are edge-empty and complete, respectively.
We may assume that A is non-empty. Let H1 denote a component of G − S, and let
H2 := G− (S ∪ V (H1)). Since A is not empty, there is at least one vertex x ∈ A, and,
by the minimality of the separating set S, this vertex x has neighbours in both V (H1)
and V (H2), say x is adjacent to y1 ∈ V (H1) and y2 ∈ V (H2). Since G is double-critical,
the graph G− x− y2 is (k − 2)-colourable, in particular, there exists a (k − 2)-colouring
ϕ1 of the subgraph G1 := G[V (H1) ∪ B]. Similarly, there exists a (k − 2)-colouring ϕ2

of G2 := G[V (H2) ∪ B]. The two graphs have precisely the vertices of B in common,
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and the vertices of B induce a complete graph in both G1 and G2. Thus, both ϕ1 and
ϕ2 use exactly |B| colours to colour the vertices of B, assigning each vertex a unique
colour. By permuting the colours assigned by, say ϕ2, to the vertices of B, we may as-
sume ϕ1(b) = ϕ2(b) for every vertex b ∈ B. Now ϕ1 and ϕ2 can be combined into a
(k− 2)-colouring ϕ of G−A. This colouring ϕ may be extended to a (k− 1)-colouring of
G by assigning every vertex of the independent set A the some new colour. This contra-
dicts the fact that G is k-chromatic, and so no minimal separating set S as assumed can
exist.

Krusenstjerna-Hafstrøm and Toft [14] states that any double-critical k-chromatic non-
complete graph is 5-connected and (k+1)-edge-connected. In the following we prove that
any double-critical k-chromatic non-complete graph is 6-connected.

Theorem 5.1. Every double-critical k-chromatic non-complete graph is 6-connected.

Proof. Suppose G is a double-critical k-chromatic non-complete graph. Then, by the
results mentioned in Section 1, k is at least 6. Recall, that any double-critical graph, by
definition, is connected. Thus, since G is not complete, there exists some subset U ⊆ V (G)
such that G− U is disconnected. Let S denote a minimal separating set of G. We show
|S| > 6. If |S| 6 3, then S can be partitioned into two disjoint subset A and B such that
the induced graphs G[A] and G[B] are edge-empty and complete, respectively, and, thus,
we have a contradiction by Proposition 5.1. Suppose |S| > 4, and let H1 and H2 denote
disjoint non-empty subgraphs of G− S such that G− S = H1 ∪H2.

If |S| 6 5, then each vertex v of V (H1) has at most five neighbours in S and so v
must have at least two neighbours in V (H1), since δ(G) > k+ 1 > 7. In particular, there
is at least one edge u1u2 in H1, and so G − u1 − u2 is (k − 2)-colourable. This implies
that the subgraph G2 := G − H1 of G − u1 − u2 is (k − 2)-colourable. Let ϕ2 denote a
(k−2)-colouring of G2. A similar argument shows that G1 := G−H2 is (k−2)-colourable.
Let ϕ1 denote a (k− 2)-colouring of G1. If ϕ1 or ϕ2 applies just one colour to the vertices
of S, then S is an independent set of G, which contradicts Proposition 5.1. Thus, we may
assume that both ϕ1 and ϕ2 applies at least two colours to the vertices of S. Let |ϕi(S)|
denote the number of colours applied by ϕi (i = 1, 2) to the vertices of S. By symmetry,
we may assume |ϕ1(S)| > |ϕ2(S)| > 2.

Moreover, if |ϕ1(S)| = |ϕ2(S)| = |S|, then, clearly, the colours applied by say ϕ1 may
be permuted such that ϕ1(s) = ϕ2(s) for every s ∈ S and so ϕ1 and ϕ2 may be combined
into a (k − 2)-coloring of G, a contradiction. Thus, |ϕ1(S)| = |S| implies |ϕ2(S)| < |S|.

In general, we redefine the (k − 2)-colourings ϕ1 and ϕ2 into (k − 1)-colourings of G1

and G2, respectively, such that, after a suitable permutation of the colours of say ϕ1,
ϕ1(s) = ϕ2(s) for every vertex s ∈ S. Hereafter a proper (k − 1)-colouring of G may be
defined as ϕ(v) = ϕ1(v) for every v ∈ V (G1) and ϕ(v) = ϕ2(v) for every v ∈ V (G)\V (G1),
which contradicts the fact that G is k-chromatic. In the following cases we only state the
appropriate redefinition of ϕ1 and ϕ2.

Suppose that |S| = 4, say S = {v1, v2, v3, v4}. We consider several cases depending on
the values of |ϕ1(S)| and |ϕ2(S)|. If |ϕi(S)| = 2 for some i ∈ {1, 2}, then ϕi must apply
both colours twice on vertices of S (by Proposition 5.1).
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(1) Suppose that |ϕ1(S)| = 4.

(1.1) Suppose that |ϕ2(S)| = 3. In this case ϕ2 uses the same colour at two vertices of
S, say ϕ2(v1) = ϕ2(v2). We simply redefine ϕ2 such that ϕ2(v1) = k − 1. Now
both ϕ1 and ϕ2 applies four distinct colours to the vertices of S and so they may
be combined into a (k − 1)-colouring of G, a contradiction.

(1.2) Suppose that |ϕ2(S)| = 2, say ϕ2(v1) = ϕ2(v2) and ϕ2(v3) = ϕ2(v4). This im-
plies v1v2 /∈ E(G), and so ϕ1 may be redefined such that ϕ1(v1) = ϕ1(v2) = k − 1.
Moreover, ϕ2 is redefined such that ϕ2(v4) = k − 1.

(2) Suppose that |ϕ1(S)| = 3, say ϕ1(v1) = 1, ϕ1(v2) = 2 and ϕ1(v3) = ϕ1(v4) = 3.

(2.1) Suppose that |ϕ2(S)| = 3, say ϕ2(x) = ϕ2(y) for two distinct vertices x, y ∈ S.
Redefine ϕ1 and ϕ2 such that ϕ1(v4) = k − 1 and ϕ2(x) = k − 1.

(2.2) Suppose that |ϕ2(S)| = 2. If ϕ2(v1) = ϕ2(v2) and ϕ2(v3) = ϕ2(v4), then the
desired (k − 1)-colourings are obtained by redefining ϕ2 such that ϕ2(v2) = k − 1.
If ϕ2(v2) = ϕ2(v3) and ϕ2(v4) = ϕ2(v1), then the desired (k − 1)-colourings are
obtained by redefining ϕ2 such that ϕ2(v3) = ϕ2(v4) = k − 1.

(3) Suppose that |ϕ1(S)| = 2. This implies |ϕ2(S)| = 2. We may, w.l.o.g., assume
ϕ1(v1) = ϕ1(v2) and ϕ1(v3) = ϕ1(v4), in particular, v1v2 /∈ E(G). If ϕ2(v1) = ϕ2(v2)
and ϕ2(v3) = ϕ2(v4), then, obviously, ϕ1 and ϕ2 may be combined into a (k − 2)-
colouring of G, a contradiction. Thus, we may assume that ϕ2(v2) = ϕ2(v3) and
ϕ2(v4) = ϕ2(v1). In this case we redefine both ϕ1 and ϕ2 such that ϕ1(v4) = k − 1,
and, since v1v2 /∈ E(G), ϕ2(v1) = ϕ2(v2) = k − 1.

This completes the case |S| = 4. Suppose |S| = 5, say S = {v1, v2, v3, v4, v5}. According
to Proposition 5.1, neither ϕ1 nor ϕ2 uses the same colour for more than three vertices.
Suppose that one of the colourings ϕ1 or ϕ2, say ϕ2, applies the same colour to three
vertices of S, say ϕ2(v3) = ϕ2(v4) = ϕ2(v5). Now {v3, v4, v5} is an independent set. If
(i) ϕ1(v1) = ϕ1(v2) and ϕ2(v1) = ϕ2(v2) or (ii) ϕ1(v1) 6= ϕ1(v2) and ϕ2(v1) 6= ϕ2(v2),
then we redefine ϕ1 such that ϕ1(v3) = ϕ1(v4) = ϕ1(v5) = k − 1, and so ϕ1 and ϕ2

may, after a suitable permutation of the colours of say ϕ1, be combined into a (k − 1)-
colouring of G. Otherwise, if ϕ1(v1) 6= ϕ1(v2) and ϕ2(v1) = ϕ2(v2), then we redefine
both ϕ1 and ϕ2 such that ϕ1(v3) = ϕ1(v4) = ϕ1(v5) = k − 1 and ϕ2(v2) = k − 1.
If ϕ1(v1) = ϕ1(v2) and ϕ2(v1) 6= ϕ2(v2), then we redefine both ϕ1 and ϕ2 such that
ϕ1(v3) = ϕ1(v4) = ϕ1(v5) = k − 1 and ϕ2(v1) = ϕ2(v2) = k − 1. In both cases ϕ1 and ϕ2

may be combined into a (k− 1)-colouring of G Thus, we may assume that neither ϕ1 nor
ϕ2 applies the same colour to three or more vertices of S, in particular, |ϕi(S)| > 3 for
both i ∈ {1, 2}. Again, we may assume |ϕ1(S)| > |ϕ2(S)|.

(a) Suppose that |ϕ1(S)| = 5.

(a.1) Suppose that |ϕ2(S)| = 4 with say ϕ2(v4) = ϕ2(v5). In this case v4v5 /∈ E(G) and
so we redefine ϕ1 such that ϕ1(v4) = ϕ1(v5) = k − 1.
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(a.2) Suppose that |ϕ2(S)| = 3. Since ϕ2 cannot assign the same colour to three or more
vertices of S, we may assume ϕ2(v2) = ϕ2(v3) and ϕ2(v4) = ϕ2(v5). In this case
v4v5 /∈ E(G), and so we redefine ϕ1 and ϕ2 such that ϕ1(v4) = ϕ1(v5) = k − 1 and
ϕ2(v3) = k − 1.

(b) Suppose |ϕ1(S)| = 4, say ϕ1(v4) = ϕ1(v5).

(b.1) Suppose |ϕ2(S)| = 4 with ϕ2(x) = ϕ2(y) for two distinct vertices x, y ∈ S. In this
case we redefine ϕ1 and ϕ2 such that ϕ1(v5) = k − 1 and ϕ2(y) = k − 1.

(b.2) Suppose |ϕ2(S)| = 3. In this case we distinguish between two subcases depending
on the number of colours ϕ2 applies to the vertices of the set {v1, v2, v3}. As noted
earlier, we must have |ϕ2({v1, v2, v3})| > 2. If |ϕ2({v1, v2, v3})| = 3, then we redefine
ϕ2 such that ϕ2(v4) = ϕ2(v5) = k − 1. Otherwise, if |ϕ2({v1, v2, v3})| = 2 with say
ϕ2(v2) = ϕ2(v3). Now v2v3, v4v5 /∈ E(G) and so we redefine ϕ1 and ϕ2 such that
ϕ1(v2) = ϕ1(v3) = k − 1 and ϕ2(v4) = ϕ2(v5) = k − 1.

(c) Suppose that |ϕ1(S)| = 3, say ϕ1(v2) = ϕ1(v3) and ϕ1(v4) = ϕ1(v5). In this case
we must have |ϕ2(S)| = 3. As noted earlier, ϕ2 does not assign the same colour to
three vertices of S, and so we may assume ϕ2 applies the colours 1, 2 and 3 to the
vertices of S and that only one vertex of S is assigned the colour 1 while two pairs
of vertices of given the colours 2 and 3, respectively. We distinguish between four
subcases depending on which vertex of S is assigned the colour 1 by ϕ2 and and the
number of colours ϕ2 applies to the vertices of the two sets {v2, v3} and {v4, v5}.
We may assume |ϕ2({v2, v3})| > |ϕ2({v4, v5})|.

(c.1) If |ϕ2({v2, v3})| = |ϕ2({v4, v5})| = 1, then, clearly, ϕ1 and ϕ2 may be combined into
a (k − 2)-colouring of G, a contradiction.

(c.2) Suppose |ϕ2({v2, v3})| = 2, |ϕ2({v4, v5})| = 2 and ϕ2(v1) = 1. Suppose that ϕ2

assigns the colour 2 to the two distinct vertices x, y ∈ S\{v1}. Now we redefine
ϕ1 and ϕ2 such that ϕ1(x) = ϕ1(y) = k − 1 and ϕ2(z) = k − 1 for some vertex
z ∈ S\{v1, x, y}.

(c.3) Suppose |ϕ2({v2, v3})| = 2, |ϕ2({v4, v5})| = 2 and ϕ2(v1) 6= 1, say ϕ2(v5) = 1. In
this case there is a vertex x ∈ {v2, v3} such that ϕ2(x) = ϕ2(v4). Now we redefine
ϕ1 and ϕ2 such that ϕ1(x) = ϕ1(v4) = k − 1 and ϕ2(v1) = k − 1.

(c.4) If |ϕ2({v2, v3})| = 2 and |ϕ2({v4, v5})| = 1, then we redefine the mapping ϕ2 such
that ϕ2(v2) = ϕ2(v3) = k − 1.
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6 Double-critical 6-chromatic graphs

In this section we prove, without use of the Four Colour Theorem, that any double-critical
6-chromatic graph is contractible to K6.

Theorem 6.1. Every double-critical 6-chromatic graph G contains K6 as a minor.

Proof. If G is a the complete 6-graph, then we are done. Hence we may assume that
G is not the complete 6-graph. Now, according to Proposition 3.9, δ(G) > 7. Firstly,
suppose that δ(G) > 8. Then m(G) = 1

2

∑
v∈V (G) deg(v) > 4n(G) > 4n(G) − 9. Győri [8]

and Mader [15] proved that any graph H with n(H) > 6 and m(H) > 4n(H) − 9 is
contractible to K6, which implies the desired result. Secondly, suppose that G contains a
vertex, say x, of degree 7. Let yi (i ∈ [7]) denote the neighbours of x. Now, according to
Proposition 3.12, the complement of the induced subgraph Gx consists of isolated vertices
and cycles (at least one) of length at least five. Since n(Gx) = 7, the complement Gx

must contain exactly one cycle Cℓ. We consider three cases depending on the length
of Cℓ. Suppose Cℓ = {y1, y2, . . . , yℓ}. If ℓ = 5, then {y1, y3, y6, y7} induces a K4, and
so {y1, y3, y6, y7, x} induces a K5, which contradicts Proposition 3.1. If ℓ = 6, then
{y1, y3, y5, y7, x} induces aK5; again, a contradiction. Finally, if ℓ = 7, then by contracting
the edges y2y5 and y4y7 of Gx into two distinct vertices a complete 5-graph is obtained, as
is readily verified. Since, by definition, x is adjacent to every vertex of V (Gx), it follows
that G is contractible to K6.

The proof of Theorem 6.1 implies the following result.

Corollary 6.1. Every double-critical 6-chromatic graph G with δ(G) = 7 has the property
that for every vertex x ∈ V (G) with deg(x) = 7, the complement Gx is a 7-cycle.

7 Double-critical 7-chromatic graphs

Let G denote a double-critical non-complete 7-chromatic graph. Recall, that given a
vertex x ∈ V (G), we let Gx denote the induced graph G[N(x)] and αx := α(Gx). The
following corollary is a direct consequence of Proposition 3.11.

Corollary 7.1. For any vertex x of G not joined to all other vertices, χ(Gx) 6 4.

Proposition 7.1. For any vertex x of G of degree 9, αx = 3.

Proof. It follows from Proposition 3.10, that αx is at most 3. Since χ(Gx)·αx > n(Gx) = 9,
it follows from Corollary 7.1, that αx > 9/χ(Gx) > 9/4, which implies αx > 3. Thus,
αx = 3.

Proposition 7.2. If x is a vertex of degree 9 in G, then the complement Gx does not
contain a K−

4 as a subgraph.
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Proof. Let x denote a vertex of degree 9 in G. By Proposition 3.4, the minimum degree
in Gx is at least k − 2 = 5. Suppose that the vertices y1, y2, z1, z2 are the vertices of a
subgraph K−

4 in Gx, that is, a 4-cycle with a diagonal edge y1y2. The graph G−x−y1 is 5-
colourable, and, according to Corollary 3.1, every one of the five colours occurs in B(xy1).
None of the vertices y2, z1 or z2 are in B(xy1), that is, B(xy1) ⊆ V (Gx)\{y1, y2, z1, z2}.
Now the vertex y2 is not adjacent to every vertex of B(xy1), since that would leave none of
the five colours available for properly colouring y2. Thus, in Gx the vertex y2 has at least
four non-neighbours (y1, z1, z2 and, at least, one vertex from B(xy1)). Since n(Gx) = 9,
we find that y2 has at most 8 − 4 neighbours in N [x], and we have a contradiction.

Proposition 7.3. For any vertex x of degree 9 in G, any vertex of an α(Gx)-set has
degree 5 in the neighbourhood graph Gx.

Proof. Let x denote vertex ofG of degree 9, and letW = {w1, w2, w3} denote any indepen-
dent set in Gx. This vertices of W all have degree at most 6 in Gx and, by Proposition 3.4,
at least 5. Suppose that, say, w1 ∈W has degree 6. Now B(xw2) is a subset of N(w1;Gx),
G− x− w2 is 5-colourable, and, according to Corollary 3.1, every one of the five colours
occurs in B(xy1). This, however, leaves none of the five colours available for w1, and we
have a contradiction. It follows that any vertex of an independent set of three vertices in
Gx have degree 5 in Gx.

Proposition 7.4. If G has a vertex x of degree 9, then

(i) the vertices of any αx-set W = {w1, w2, w3} all have degree 5 in Gx,

(ii) the vertices of V (Gx) have degree 5, 6 or 8 in Gx,

(iii) every vertex wi (i = 1, 2, 3) has exactly one private non-neighbour w.r.t. W in Gx,
that is, there exist three distinct vertices in Gx −W , which we denote by y1, y2 and
y3, such that each wi (i = 1, 2, 3) is adjacent to every vertex of Gx − (W ∪ yi), and

(iv) each vertex yi has a neighbour and non-neighbour in V (Gx)\(W ∪ {y1, y2, y3}) (see
Figure 1).

In the following, let W := {w1, w2, w3}, Y := {y1, y2, y3} and Z := V (Gx)\(W ∪ Y ).
Note that the above corollary does not claim that each vertex yi has a private non-
neighbour in Z w.r.t. to Y .

Proof. Claim (i) follows from Proposition 7.1 and Proposition 7.3. According to Propo-
sition 3.4, δ(Gx) > 5, and, obviously, ∆(Gx) 6 8, since n(Gx) = 9. If some vertex y ∈ Gx

has degree strictly less than 8, then, according to Proposition 3.8, it has at least two
non-neighbours in Gx, that is, deg(y,Gx) 6 8 − 2. This establishes (ii). As for the claim
(iii), each vertex wi (i = 1, 2, 3) has exactly five neighbours in V (Gx)\W , which is a set
of six vertices, and so wi has exactly one non-neigbour in V (Gx)\W . Suppose say w1

and w2 have a common non-neighbour in V (Gx)\W , say u. Now the vertices w1, w2, w3

and u induce a K4 or K−

4 in the complement Gx, which contradicts Propositions 7.2.
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w2

w3

w1

y1

y2

y3

z1

z2

z3

W Y Z

Figure 1: The graph Gx as described in Proposition 7.4. The dashed curves indicate
missing edges. The missing edges from W to Y ∪Z are exactly as indicated in the figure,
while there may be more missing edges in E(Gx −W ) than indicated. The dashed curves
starting at vertices of yi (i = 1, 2, 3) and not ending at a vertex represent a missing edges
between yi and a vertex of Z.

Hence, (iii) follows. Now for claim (iv). The fact that each vertex yi in Y has at least
one neighbour in Z follows (ii) and the fact that yi is not adjacent to wi. It remains to
show that yi has at least one non-neighbour in Z. The graph G− x−w1 is 5-colourable,
in particular, there exists a 5-colouring c of Gx − w1, which, according to Corollary 3.1,
assigns every colour from [5] to at least one vertex of B(xw1). In this case B(xw1) con-
sists of precisely the vertices y2, y3, z1, z2 and z3. We may assume ϕ(y2) = 1, ϕ(y3) = 2,
ϕ(z1) = 3, ϕ(z2) = 4 and ϕ(z3) = 5. Since w2 is adjacent to every vertex of Z ∪ Y \{y2},
the only colour available for w2 is the colour assign to y2, that is, ϕ(w2) = ϕ(y2) = 1.
Similarly, ϕ(w3) = ϕ(y3) = 2. Both the vertices w2 and w3 are adjacent to y1 and so the
colour assigned to y1 cannot be one of the colours 1 or 2, that is, ϕ(y1) ∈ {3, 4, 5}. This
implies, since ϕ(z1) = 3, ϕ(z2) = 4 and ϕ(z3) = 5, that y1 cannot be adjacent to all three
vertices z1, z2 and z3. Thus, (iv) is established.

Corollary 7.2. If G has a vertex x of degree 9, then there are at least two edges between
vertices of Y .

Proof. If m(G[Y ]) 6 1, then it follows from (iiic) and (iv) of Proposition 7.4, that some
vertex yi ∈ Y has at most four neighbours in Gx. But this contradicts (b) of the same
proposition. Thus, m(G[Y ]) > 2.

Lemma 7.1. If x is a vertex of G with minimum degree 9 and the neighbourhood graph
Gx is isomorphic to the graph F of Figure 2, then G is contractible to K7.

Proof. According to Corollary 7.1, χ(G[N [x]]) 6 5, and so N [x] 6= V (G). Let H denote
some component in G − N [x]. There are several ways of contracting Gx to K−

6 . For
instance, by contracting the three edges w1y3, w2y1 and w3y2 into three distinct vertices
a K−

6 is obtained, where the vertices z1 and z3 remain non-adjacent. Thus, if there were
a z1-z3-path P (z1, z3) with internal vertices completely contained in the set V (G)\N [x],
then, by contracting the edges of P (z1, z3), we would have a neighbourhood graph of
x, which were contractible to K6. Similarly, there exists contractions of Gx such that if
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w2

z2y2

y3 z3
w3

y1 z1
w1

Figure 2: The graph F . The dashed lines between vertices indicate missing edges. Any
edge which is not explicity indicated missing is present in F .

only there were a w1-y1-path P (w1, y1), w2-y2-path P (w2, y1) or w3-y3-path P (w3, y3) with
internal vertices completely contained in the set V (G)\N [x], then such a path could be
contracted such that the neighbourhood graph of x would be contractible to K6. Assume
that none of the above mentioned paths P (z1, z3), P (w1, y1), P (w2, y1) and P (w3, y3) exist.
In particular, for each pair of vertices (z1, z3), (w1, y1), (w2, y2) and (w3, y3) at most one
vertex is adjacent to a vertex of V (H), since if both, say z1 and z3 were adjacent to, say
u ∈ V (H) and v ∈ V (H), respectively, then there would be a z1-z3-path with internal
vertices completely contained in the set V (G)\N [x], contradicting our assumption. Now
it follows that in G there can be at most five vertices of V (Gx) adjacent to vertices of
V (H). By removing from G the vertices of V (Gx), which are adjacent to vertices of V (H),
the graph splits into at least two distinct components with x in one component and the
vertices of V (H) in another component. This contradicts Theorem 5.1, which states that
G is 6-connected, and so the proof is complete.

Theorem 7.1. Every double-critical 7-chromatic graph G contains K7 as a minor.

Proof. If G is a complete 7-graph, then we are done. Hence, we may assume that G is
not a complete 7-graph, and so, according to Proposition 3.9, δ(G) > 8. If δ(G) > 10,
then m(G) > 5n(G) > 5n − 14, and it follows from a theorem of Mader [15] that G
contains K7 as a minor. Let x denote a vertex of minimum degree. Suppose δ(G) = 8.
Now, according to Proposition 3.12, the complement Gx consists of isolated vertices and
cycles (at least one), each having length at least five. Since n(Gx) = 9, it follows that Gx

contains exactly one cycle Cℓ of length at least 5.

(i) If ℓ = 5, then G[y1, y3, y6, y7, y8, x] is the complete 6-graph, a contradiction.

(ii) If ℓ = 6, then G[y1, y3, y5, y7, y8, x] is the complete 6-graph, a contradiction.

(iii) If ℓ = 7, then by contracting the edges y1y4 and y2y6 of Gx into two distinct vertices
a complete 6-graph is obtained, and so G > K7.

(iv) If ℓ = 8, then by contracting the edges y1y5 and y3y7 of Gx into two distinct vertices
a complete 6-graph is obtained, and so G > K7.

Now, suppose δ(G) = 9. By Proposition 7.4, there is an αx-set W = {w1, w2, w3} of three
distinct vertices such that there is a set Y = {y1, y2, y3} ⊆ V (G)\W of three distinct
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W
w3

Y

w1

Z

w2

y1

y2

y3

z1

z3

z2

Figure 3: In Case 1.2.3, the graph Gx contains the graph depicted above as a subgraph.
The thick curves indicate the edges to be contracted. By contracting the three edges of
Gx as indicated above, a K6 minor is obtained.

vertices such that N(wi, Gx) = V (Gx)\(W ∪ yi) (see Figure 1). Let Z = {z1, z2, z3}
denote the three remaining vertices of Gx − (W ∪ Y ). We shall investigate the structure
of Gx and consider several cases. Thus, e(W ) = 0, and, as follows from Corollary 7.2,
e(Y ) > 2.

Suppose e(Z) = 3. By contracting the edges w1y2, w2y3 and w3y1 of Gx into three
distinct vertices a complete 6-graph is obtained (see Figure 3). Thus, G > K7. In the
following we shall be assuming e(Z) 6 2.

Secondly, suppose e(Z) = 0. Now Z is an αx-set and it follows from Proposition 7.4,
that Gx possess the structure as indicated in Figure 4.

W Y Z

Figure 4: The graph Gx contains the graph depicted above as a subgraph. The dashed
curves represent edges missing in Gx. Except for the edges of E(Y ), any two pair of edge
which are not explicity shown as non-adjacent are adjacent. The edge-set E(Y ) contains
at least two edges. By symmetry, we assume y1y3 ∈ E(Y ). By contracting two edges
represented by thick curves, it becomes clear that Gx contains K6 as a minor.

By contracting the edges w1z3 and w3z1 of Gx into two distinct vertices w′

1 and w′

3,
we find that the vertices w′

1, w2, w
′

3, y1, y3 and z2 induce a complete 6-graph, and we
are done. Thus, in the following we shall be assuming e(Z) > 1. Moreover, we shall
distinguish between several cases depending on the number of edges in E(Y ) and E(Z).
So far we have established e(Y ) > 2 and 2 > e(Z) > 1. We shall often use the fact that
deg(u,Gx) ∈ {5, 6, 8} for every vertex u ∈ Gx, in particular, each vertex of Gx can have
at most three non-neighbours in Gx (excluding itself).

(1) Suppose e(Y ) = 3.
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y1

y2

y3

Y

Figure 5: The graph Gx contains the graph depicted above as a subgraph. The thick
curves indicate the edges to be contracted. By contracting two edges of Gx as indicated
above, it becomes obvious that Gx contains K6 as a minor.

(1.1) If, in addition, there is a matching M of Y into Z, say M = {y1z1, y2z2, y3z3},
then contracting the edges wizi (i = 1, 2, 3) into three distinct vertices results
in a complete 6-graph, and we are done (see Figure 5).

(1.2) Suppose that there is no matching of Y into Z. Now it follows from Hall’s
Theorem [2, Th. 16.4] that there exists some non-empty set S ⊆ Y such that
e(S, Z) < |S| (recall, that e(S, Z) denotes the number of edges with one end-
vertex in S and the other end-vertex in Z). According to Proposition 7.4,
e(S, Z) > 1 for any non-empty S ⊆ Y .

(1.2.1) Suppose that e(Y, Z) = 1, say E(Y, Z) = {z1}. Now y1, y2 and y3 are all non-
neighbours of z2 and z3, and so both z2 and z3 must be adjacent to each other
and to z1, that is, e(Z) = 3, contradicting our assumption that e(Z) 6 2.

(1.2.2) Suppose that e(Y, Z) = 2, say E(Y, Z) = {z1, z2}. Now y1, y2 and y3 are three
non-neighbours of z3, and so z3 must be adjacent to both z2 and z3. Since
e(Z) 6 2, it must be the case that z1 and z2 are non-neighbours. Since no vertex
of Gx has precisely one non-neighbour, both z1 and z2 must have at least one
non-neighbour in Y . By symmetry, we may assume that y1 is a non-neighbour
of z1. Now w1, z1 and z3 are three non-neighbours of y1, and so y1 cannot be
a non-neighbour of z2. It follows that y2 or y3 must be a non-neighbour of z2.
By symmetry, we may assume y2z2 /∈ E(G). Now there may be no more edges
missing in Gx, however, we assume that there are more edges missing, and show
that Gx remains contractible toK6. Each of the vertices y1 and y2 has three non-
neighbours specified, while y3 already has two non-neighbours specified. Thus,
the only possible hitherto undetermined missing edge must be either y3z1 or y3z2
(not both, since that would imply y3 to have at least four non-neighbours). By
symmetry, we may assume y3z2 /∈ E(G). Now it is clear that Gx is isomorphic
to the graph depicted in Figure 6, and so it follows from Lemma 7.1 that G is
contractible to K7.

(1.2.3) Suppose that e(Y, Z) = 3. Now, since there is no matching of Y into Z there
must be some non-empty proper subset S of Y such that |S| 6 2 and e(S, Z) <
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w3

w1

z3y3

z1

w2 y2
z2

y1

Figure 6: In Case 1.2.2, the graph Gx is isomorphic to the graph depicted above. Any
edge which is not explicity indicated missing is present.

|S|. Recall, e(S, Z) > 1 for any non-empty subset S of Y , and so it must be the
case that |S| = 2 and e(S, Z) = 1, say S = {y1, y2} and E(S, Z) = {z1}. The
assumption e(Y, Z) = 3 implies that y3 is adjacent to both z2 and z3. According
to Proposition 7.4 (iv), each vertex of Y has a non-neighbour in Z, and so it
must be the case that y3 is not adjacent to z1. Now, since z1 has one non-
neighbour in V (Gx)\{z1}, Proposition 3.8 (b) implies that it must have at least
one other non-neighbour in V (Gx)− z1. The only possible non-neighbours of z1
in V (Gx)\{z1, y3} are z2 and z3, and, by symmetry, we may assume that z1 and
z2 are not adjacent. Thus, z2 is adjacent to neither z1, y1 nor y2 and so z2 must
be adjacent to every vertex of V (Gx)\{z1, z2, y1, y2}, in particular, z2 is adjacent
to z3. Thus, Gx contains the graph depicted in Figure 7 as a subgraph. Now,
by contracting the edges w1z1, w2y1 and w3y2 of Gx into three distinct vertices
a complete 6-graph is obtained.

w2

w3

w1 z1

z3y3

y1

y2

z2

Figure 7: The graph Gx contains the graph depicted above as a subgraph. The thick
curves indicate the edges to be contracted. By contracting three edges of Gx as indicated
above, it becomes obvious that Gx contains K6 as a minor.

(2) Suppose e(Y ) = 2, say y1y2, y2y3 ∈ E(G).

(2.1) Suppose that e(Z) = 2, say z1z2, z2z3 ∈ E(G).

(2.1.1) Suppose that at least one of the edges y1z1 or y3z3 are not in E(G), say y1z1 /∈
E(G). The vertex y1 has three non-neighbours in Gx, namely w1, y3 and z1.
Thus, y1 must be adjacent to both z2 and z3. We have determined the edges
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of E(W ), E(Y ) and E(Z), and the edges joining vertices of W with vertices
of Y ∪ Z. Moreover, Gx contains at least two edges joining vertices of Y with
vertices of Z, as indicated in Figure 8 (a). It follows that Gx contains the graph
depicted in Figure 8 (b) as a subgraph. By contracting the edges w1y2, w2y3

and w3z1 of Gx into three distinct vertices a complete 6-graph is obtained, and
so G > K7.

y1

z1

z3
y3

y2
w2 z2

w3

w1

(a) The graph Gx is completely de-
termined, except for possible some
edges between Y and Z.

z1

z2

z3y3

y1w1

w2

w3

y2

(b) The graph depicted above
is a subgraph of Gx.

Figure 8: Illustration for Case 2.1.1.

(2.1.2) Suppose that both y1z1 and y3z3 are in E(G).

(2.1.2.1) Suppose that y1z2 or y3z2 is in E(G), say y1z2 ∈ E(G). In this case Gx contains
the graph depicted in Figure 9 (a) as a subgraph, and so by contracting the
edges w1y2, w2y3 and w3z3 into three distinct vertices a complete 6-graph is
obtained.

z1

z2

z3

y2

y1

y3w3

w1

w2

(a) In Case 2.1.2.1, Gx con-
tains the graph depicted above
as a subgraph.

y1

z1

z3

y2
w2 z2

w3

w1

y3

(b) In Case 2.1.2.2, Gx is at least
missing the edges as indicated in
the above graph.

Figure 9: Illustration for Case 2.1.2.
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(2.1.2.2) Suppose that neither y1z2 nor y3z2 is in E(G). Now S := {y1, z2, y3} is an
independent set of Gx and so, according to Proposition 7.4 (iii), the vertex z2
has a private non-neighbour in V (Gx) − S w.r.t. S, and, as is easily seen from
Figure 9 (b), the only possible non-neighbour of z2 in V (Gx) is y2. The vertices
z1 and z3 are not adjacent, and so, according to Proposition 7.4 (ii), each of
them must have a second non-neighbour. Since y1 and y3 already have three
non-neighbours specified, it follows that the only possible non-neighbour of z1
and z3 is y2, but if neither z1 nor z3 are adjacent to y2, then y2 would have at
least four non-neighbours in Gx, a contradiction.

(2.2) Suppose that e(Z) = 1, say E(Z) = {z1z3}.

(2.2.1) Suppose that y2z2 ∈ E(G). Now at least one of the edges y1z2 and y3z2 is in
E(G), since otherwise z2 would have at least four non-neighbour. By symmetry,
we may assume y1z2 ∈ E(G). At least one of the edges y1z1 and y1z3 must be in
E(G), since y1 cannot have more than three non-neighbours. By symmetry, we
may assume y1z1 ∈ E(G) (see Figure 10 (a)). By contracting the edges w1z1,
w3z3 and y2y3 of Gx into three distinct vertices we obtain a complete 6-graph
(see Figure 10 (b)), and, thus, G > K7.

y1

z1

z3
y3

y2
w2

w3

w1

z2

(a) The graph Gx is completely de-
termined, except for some edges be-
tween Y and Z.

z1

z2

z3

y1w1

w2

w3 y3

y2

(b) The above graph is a subgraph of Gx.

Figure 10: Illustration for Case 2.2.1.

(2.2.2) Suppose that y2z2 /∈ E(G). Each of the vertices z1 and z3 has exactly one non-
neighbour in Z, namely z2, and so each must have at least one non-neighbour
in Y . If neither z1 nor z3 were adjacent to y2, then y2 would have at least four
non-neighbours in Gx. Thus, at least one of z1 and z3 is not adjacent to y1 or
y3. By symmetry, we may assume that y1z1 /∈ E(G). Now we need to determine
the non-neighbour of y3 in Y .

(2.2.2.1) Suppose that y2z3 ∈ E(G). Since y1 already has three non-neighbours, it must
be the case that y3 is a non-neighbour of z3 in Y . There may also be an edge
joining y2 and z1, but in any caseGx contains the graph depicted in Figure 11 (a)
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as a subgraph. Thus, by contracting the edges w2z1, w3z1 and y1z2 into three
distinct vertices, we find that K6 6 Gx.

z2

z3

y1

y3w3

w1

w2
y2

z1

(a) In Case 2.2.2.1, Gx contains the
graph depicted above as a subgraph.

z2

z3

y1

y3w3

w2
y2

z1
w1

(b) In Case 2.2.2.2, Gx contains the
graph depicted above as a subgraph.

Figure 11: Illustration for Case 2.2.2.

(2.2.2.2) Suppose that y2z3 /∈ E(G). In this case we find that S := {y2, z2, z3} is a
maximum independent set in Gx and so, according to Proposition 7.4 (iii), each
of the vertices of S has a private non-neighbour in V (Gx) − S w.r.t. S. The
vertices w1, y3 and z1 are all non-neighbours of y1, and so z3 cannot be a non-
neighbour of y1. It follows that the non-neighbour of z3 in V (Gx) − S must be
y3. Now each of the vertices of Y has three non-neighbours, and so there can
be no further edges missing from Gx, that is, Gx contains the graph depicted in
Figure 11 (b) as a subgraph.

This, finally, completes the case δ(G) = 9, and so the proof is complete.

Obviously, if every k-chromatic graph for some fixed integer k is contractible to the
complete k-graph, then every ℓ-chromatic graph with ℓ > k is contractible to the complete
k-graph. The corresponding result for double-critical graphs is not obviously true. How-
ever, for k 6 7, it follows from the aforementioned results and Corollary 7.3 that every
double-critical ℓ-chromatic graph with ℓ > k is contractible to the complete k-graph.

Corollary 7.3. Every double-critical k-chromatic graph with k > 7 contains K7 as a
minor.

Proof. Let G denote an arbitray double-critical k-chromatic graph with k > 7. If G is
complete, then we are done. If k = 7, then the desired result follows from Theorem 7.1.
If k > 9, then, according to Proposition 3.9, δ(G) > 10 and so the desired result follows
from a theorem of Győri [8] and Mader [15]. Suppose k = 8 and that G is non-complete.
Then δ(G) > 9. If δ(G) > 10, then we are done and so we may assume δ(G) = 9, say
deg(x) = 9. In this case it follows from Proposition 3.12 that the complement Gx consists
of cycles (at least one) and isolated vertices (possibly none). An argument similar to the
argument given in the proof of Theorem 6.1 shows that Gx is contractible to K6. Since x
dominates every vertex of V (Gx), then G itself is contractible to K7.
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The problem of proving that every double-critical 8-chromatic graph is contractible to
K8 remains open.

8 Double-edge-critical graphs and mixed-double-

critical graphs

A natural variation on the theme of double-critical graphs is to consider double-edge-
critical graphs. A vertex-critical graph G is called double-edge-critical if the chromatic
number of G decreases by at least two whenever two non-incident edges are removed from
G, that is,

χ(G− e1 − e2) 6 χ(G) − 2 for any two non-incident edge e1, e2 ∈ E(G) (3)

It is easily seen that χ(G − e1 − e2) can never be strictly less that χ(G) − 2 and so we
may require χ(G − e1 − e2) = χ(G) − 2 in (3). The only critical k-chromatic graphs for
k ∈ {1, 2} are K1 and K2, therefore we assume k > 3 in the following.

Theorem 8.1. A graph G is k-chromatic double-edge-critical if and only if it is the
complete k-graph.

Proof. It is straightforward to verify that any complete graph is double-edge-critical.
Conversely, suppose G is a k-chromatic (k > 3) double-edge-critical graph. Then G is
connected. If G is a complete graph, then we are done. Suppose G is not a complete graph.
Then G contains an induced 3-path P : wxy. Since G is vertex-critical, δ(G) > k−1 > 2,
and so y is adjacent to some vertex z is V (G)\{w, x, y}. Now the edges wx and yz are not
incident, and so χ(G−wx−yz) = k−2. Let ϕ denote a (k−2)-colouring of G−wx−yz.
Then the vertices w and x (and y and z) are assigned the same colours, since otherwise G
would be (k−1)-colourable. We may assume that ϕ assigns the colour k−3 to the vertices
w and x, and the colour k − 2 to the vertices y and z. Now define the (k − 1)-colouring
ϕ′ such that ϕ′(v) = ϕ(v) except ϕ′(w) = k − 1 and ϕ′(y) = k − 1. The colouring ϕ′ is a
proper (k − 1)-colouring, since w and y are non-adjacent in G. This contradicts the fact
that G is k-chromatic and therefore G must be a complete graph.

A vertex-critical k-chromatic graph G is called mixed-double-critical if for any vertex
x ∈ G and any edge e = uv ∈ E(G− x),

χ(G− x− e) 6 χ(G) − 2 (4)

Theorem 8.2. A graph G is k-chromatic mixed-double-critical if and only if it is the
complete k-graph.

The proof of Theorem 8.2 is straightforward and similar to the proof of Theorem 8.1.
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373–395 (1964), 1963.
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