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Abstract

We study quantized dual graded graphs, which are graphs equipped with linear
operators satisfying the relation DU − qUD = rI. We construct examples based
upon: the Fibonacci differential poset, permutations, standard Young tableau, and
plane binary trees.

1 Introduction

Fomin’s dual graded graphs [Fom] and Stanley’s differential posets [Sta] are constructions
developed to understand and generalize the enumerative consequences of the Robinson-
Schensted algorithm. The key relation in these constructions is DU − UD = rI, where
U, D are up and down operators acting on the graphs or posets1. In this article we develop
some of the basic theory of quantized dual graded graph, which are equipped with up-down
operators U, D satisfying the q-Weyl relation DU − qUD = rI. Here q can be considered
a parameter which the graph depends upon, and which can be specialized. One of the
motivations for the current work were the signed differential posets developed in [Lam],
which correspond to the relation DU + UD = rI. Thus quantized dual graded graphs
specialize to usual dual graded graphs at q = 1, and to signed differential posets (or their
dual graded graph equivalent) at q = −1.

The motivating enumerative identity in the subject developed by Fomin and Stanley
is ∑

λ⊢n

(fλ)2 = n!

∗The author was supported by NSF grants DMS-0600677, DMS-0652641 and DMS-0901111, and by
a Sloan Fellowship.

1Fomin also considered more general relations of the form DU = f(UD)
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where the sum is over partitions of n, and fλ is the number of standard Young tableau
of shape λ. The corresponding analogue (Theorem 4) for a quantized dual graded graph
(Γ, Γ′) reads ∑

v

f v
Γ(q) f v

Γ′(q) = rn[n]q! (1)

where the sum is over vertices of height n, the polynomials f v
Γ(q) and f v

Γ′(q) are weighted
enumerations of paths in Γ and Γ′, and [n]q! is the q-analogue of n!.

We explicitly construct examples of quantized dual graded graphs and interpret (1).
These examples are based on various combinatorial objects: the Fibonacci differential
poset (also called the Young-Fibonacci lattice), permutations, standard Young tableau,
and plane binary trees. Unfortunately, we have been unable to quantize Young’s lattice.
More examples will be given in joint work [BLL] with Bergeron and Li, where in some
cases a representation theoretic explanation for the identities DU − qUD = I and (1) will
be given.

We remark that in [Ter] Terwilliger introduced the notion of a uniform poset, a different
generalization of differential posets, which includes quantized dual graded graphs as a
special case.

2 Quantized dual graded graphs

Let Γ = (V, E, m, h) be a graded graph with edge weights m(v, w) ∈ N[q]. That is,
Γ is a directed graph with vertex set V , directed edge set E, edge weights {m(v, w) |
(v, w) ∈ E}, and equipped with a height function h : V → N such that if (v, w) ∈ E then
h(w) = h(v)+1. Furthermore, each edge has a weight m(v, w) ∈ N[q] which is a non-zero
polynomial in q with nonnegative coefficients. We shall assume that Γ is locally finite in
the following sense: for each v, there are finitely many edges entering and leaving (this
differs slightly from the usual definition of locally finiteness for posets). Because each
edge has a weight, we shall assume that there are no multiple edges.

Let Ĉ(q)[V ] be the C(q)-vector space of formal linear combinations of the vertex set

V . A linear operator on Ĉ(q)[V ] is continuous if it is compatible with arbitrary linear

combinations. Define continuous linear operators U, D : Ĉ(q)[V ] → Ĉ(q)[V ] by

U(v) =
∑

w:(v,w)∈E

m(v, w) w

D(w) =
∑

v:(v,w)∈E

m(v, w) v.

and extending by linearity and continuity. We define a pairing 〈., .〉 : Ĉ(q)[V ]×C(q)[V ] →
C(q) by 〈v, w〉 = δv,w for v, w ∈ E. Then U and D are adjoint with respect to this pairing.

Let (Γ = (V, E, m, h), Γ′ = (V, E ′, m′, h)) be a pair of graded graphs with the same
vertex set. Then (Γ, Γ′) is a pair of quantized dual graded graphs (qDGG for short) if we
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have the identity
DΓ′UΓ − qUΓDΓ′ = rI (2)

for some positive integer r ∈ {1, 2, 3, . . .}, called the differential coefficient. In the sequel,
we will often write U and D for UΓ and DΓ′. When q = 1, we obtain the dual graded
graphs of [Fom], which are equipped with the relation DU − UD = rI. We should note
that Fomin also considered the more general relation DU = f(UD) for arbitrary functions
f ; however, he did not focus on (2) where q is a formal parameter. Strictly speaking, our
quantized dual graded graphs are not graded graphs in Fomin’s sense, as Fomin only
allows (nonnnegative) integer edge weights.

If (Γ(q), Γ′(q)) are a pair of quantized dual graded graphs then we say that (Γ(q), Γ′(q))
is a quantization of (Γ(1), Γ′(1)). The basic example of a dual graded graph is Young’s
lattice of partitions, ordered by containment; see [Fom, Sta]. Thus one should consider
the following as the basic problem for quantized dual graded graphs.

Problem 1. Find a quantization of Young’s lattice.

Paul Terwilliger has shown (private communication) that Young’s lattice cannot be
quantized with weights in N[q], as required by our definitions here. However, quantization
allowing more general weights, such as weights in N[q1/2, q−1/2], may still exist. Since all
the examples in the present paper have weights in N[q], we shall not discuss the situation
with more general edge weights.

In [LS], we constructed in joint work with Mark Shimozono dual graded graphs from
the strong (Bruhat) and weak orders of the Weyl group of a Kac-Moody algebra. The dual
graded graphs constructed this way include Young’s lattice, and closely related graphs
such as the shifted Young’s lattice.

Problem 2. Find a quantization of Kac-Moody dual graded graphs.

It would be extremely interesting to solve the above problem (again allowing more
general weights) using the representation theory of quantized Kac-Moody algebras, gen-
eralizing the construction of [LS] which relied on the root system combinatorics of a
Kac-Moody algebra.

Remark 1. Equation (2) specializes to DU + UD = I when q = −1 and r = 1. Graphs
satisfying this relation were studied in [Lam]. More specifically, in [Lam] we studied
only such graphs, called signed differential posets, which arose from labeled posets. The
examples constructed in the present paper can also be specialized at q = −1, giving
what would be called “signed dual graded graphs”. The main example in [Lam] was the
construction of a signed differential poset structure on Young’s lattice. Since we have
been unable to quantize Young’s lattice, we have stopped short of explicitly writing the
examples in the current article using the notation in [Lam].
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3 q-derivatives and enumeration on quantized dual

graded graphs

Let f(t) =
∑

n>0 antn ∈ C[[t]] be a formal power series in one variable. Define the
q-derivative as follows:

f q(t) =
∑

n>0

[n]qantn−1.

Here [n]q = 1 + q + . . . + qn−1 denotes the q-analogue of n. We also set [n]q! := [n]q[n −
1]q · · · [2]q[1]q. Let U, D be formal, non-commuting variables satisfying the relation DU −
qUD = r. We assume that U and D commute with the variable q. The following Lemma
explains the relationship between the relation DU − qUD = r and q-derivatives.

Lemma 3. Suppose f(U) ∈ C[[U ]] is a formal power series in the variable U . Then

Df(U) = r f q(U) + f(qU)D.

Proof. By linearity and continuity it suffices to prove the statement for f(U) = Un. For
n = 0, the formula is trivially true. The inductive step follows from the calculation

DUn = (r[n − 1]qU
n−2 + qn−1Un−1D)U

= r[n − 1]qU
n−1 + qn−1Un−1(r + qUD)

= r[n]qU
n−1 + qnUnD,

using [n]q = [n − 1]q + qn−1.

We now suppose (Γ, Γ′) is a qDGG with a unique minimum (source) ∅, which we
assume has height h(∅) = 0. Let us denote the weight generating function of paths in Γ
from ∅ to a vertex v ∈ V by f v

Γ = (Un∅, v), where n = h(v). It is not difficult to see that
we have

(DnUn∅, ∅) =
∑

v: h(v)=n

f v
Γ f v

Γ′ .

The following is an analogue of [Fom, Corollary 1.5.4]; see also [Sta, Corollary 3.9].

Theorem 4. Let (Γ, Γ′) be a qDGG with a unique minimum ∅. Then

∑

v: h(v)=n

f v
Γ f v

Γ′ = rn[n]q!.

Proof. By Lemma 3 we have

DnUn ∅ = Dn−1(r[n]qU
n−1 + qnUnD) ∅ = r[n]qD

n−1Un−1∅

from which the result follows by induction.
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More generally, let f(∅ → v → w) denote the weight generating function of paths
beginning at ∅, going up to v in Γ, then going down to w in Γ′. For fixed w with
h(w) = m 6 n, we then have

∑

v: h(v)=n

f(∅ → v → w) = (Dn−mUn ∅, w) = rn−m([n]q[n − 1]q · · · [m + 1]q) fw
Γ .

Other path generating function problems can be solved by studying the “normal ordering
problem” for the relation DU − qUD = r, that is, the problem of rewriting a word in the
letters U and D as a linear combination of terms U iDj . We shall not pursue this direction
here, but see for example [Var].

4 q-reflection-extension

Let (Γn = (V, E, m, h), Γ′
n = (V, E ′, m′, h)) be a pair of graded graphs with height function

taking values in [0, n], and such that (2) holds for some fixed r, when applied to all vertices
v such that h(v) < n. We call such a pair a partial qDGG of height n. We will construct
a partial qDGG (Γn+1, Γ

′
n+1) of height n + 1, and such that they agree with (Γn, Γ′

n) up
to height n.

Let us write Vi = {v | h(v) = i}. The height n + 1 vertices of (both) Γn+1 and Γ′
n+1

will be given by the set Vn+1 = {v1, v2, . . . , vr | v ∈ Vn} ∪ {w′ | w ∈ Vn−1}. There will be
two kinds of edges. For Γn+1, we construct

1. r edges (v, v1), (v, v2), . . . , (v, vr) for each v ∈ Vn which have weight m(v, vj) := 1.

2. An edge (v, w′) for each edge (w, v) of Γ′, where v ∈ Vn and w ∈ Vn−1. This edge
has weight m(v, w′) := q m′(w, v).

And for Γ′
n+1, we construct

1. r edges (v, v1), (v, v2), . . . , (v, vr) for each v ∈ Vn which have weight m′(v, v′) := 1.

2. An edge (v, w′) for each edge (w, v) of Γ′, where v ∈ Vn and w ∈ Vn−1. This edge
has weight m′(v, w′) := m(w, v).

We omit the proof of the following, which is the same as the corresponding result for
differential posets [Sta] or signed differential posets [Lam].

Proposition 5. Suppose (Γn, Γ′
n) is a partial qDGG of height n and differential coeffi-

cient r. Then (Γn+1, Γ
′
n+1) is a partial qDGG of height n+1 and differential coefficient r.

Furthermore, (Γ, Γ′) = limn→∞(Γn, Γ′
n) is a well-defined qDGG with differential coeffi-

cient r.
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5 The quantized Fibonacci poset

Let (Γ, Γ′) be a qDGG. If the edge sets of Γ and of Γ′ are identical and in addition every
edge weight m(v, w) (and m′(v, w)) of Γ (and Γ′) is a single power qi then we call (Γ, Γ′)
a quantized differential poset. For then, Γ(1) would be a differential poset in the sense of
Stanley [Sta].

Remark 2. We could insist that Γ = Γ′ as graded graphs, but then in the construction of
a quantization of the Fibonacci differential posets we would need to use half powers of q.

Define Γ0 = Γ′
0 to be the graded graph with a single vertex ∅ with height 0. For each

r ∈ {1, 2, . . .}, we define the quantized r-Fibonacci poset to be the corresponding qDGG
(Fib(r), Fib′

(r)) obtained from (Γ0, Γ
′
0) via Proposition 5. The qDGG (Fib(r), Fib′

(r)) is a
quantization of the Fibonacci differential poset of Stanley [Sta], or the Young-Fibonacci
graph of Fomin [Fom]. We now describe (Fib(r), Fib′

(r)) explicitly, suppressing the param-
eter r in most of the notation.

The vertex set V of (Fib(r), Fib′

(r)) consists of words w in the letters 11, 12, . . . , 1r, 2
with height function given by summing the letters in the word (all the 1’s have the same
value). In the notation of the q-reflection algorithm, the vertices v1, . . . , vr are obtained
from v by prepending 11, 12, . . . , 1r respectively; the vertices w′ are obtained from w by
prepending the letter 2. The edges (v, w) are of one of the two forms:

1. v is obtained from w by removing the first 1 (one of the letters 11, 12, . . . , 1r);

2. v is obtained from w by changing a 2 to one of the 1’s, such that all letters to the
left of this 2 is also a 2.

In either case, let s(v, w) denote the number of letters preceding the letter which is
changed or removed to go from w to v. The edges (v, w) of form (1) have edge weight
m(v, w) = m′(v, w) = qs(v,w) in both Fib(r) and Fib′

(r). The edges of form (2) have edge

weight m(v, w) = qs(v,w)+1 in Fib(r), and edge weight m′(v, w) = qs(v,w) in Fib′

(r).
For the rest of this section, we will restrict ourselves to r = 1, and write 1 instead of 11.

We now describe the weight of a path from ∅ to a word w in Fib = Fib(1) or Fib′ = Fib′

(1).
Given a word w ∈ Fib one has a snakeshape ([Fom]) consisting of a series of columns of
height one or two. For example, for w = 21121 we have the shape

.

Given such a snakeshape λ, following Fomin [Fom] we say that a Young-Fibonacci-
tableau of shape λ is a bijective filling of λ with the numbers {1, 2 . . . , n} so that:

1. In any height two column the lower number is smaller.

2. To the right of a height two column containing the numbers a and b none of the
numbers in [a, b] occur.
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3. To the right of a height one column containing the number a, no numbers greater
than a occur.

For each number i ∈ {1, 2 . . . , n}, let pi(T ) denote the number of columns C in T to the
left of the column containing i, and such that C contains a number less than i. Then set

wt(T ) =
∏

i∈lower row

qpi(T )
∏

i∈upper row

qpi(T )+1 and wt′(T ) =
∏

i

qpi(T ).

Fomin [Fom] described a bijection between Young-Fibonacci-tableau T of shape λ =
λ(w) and paths from ∅ to w in Fib (or Fib′). For example, the tableau

T = 3 5
2 7 6 4 1

corresponds to the path ∅ → 1 → 11 → 21 → 211 → 221 → 2121 → 21121, and we have
wt(T ) = q0q0q1q1q1 · q1q2 = q6 and wt′(T ) = q0q0q0q1q1q1q1 = q4.

Lemma 6. Under this bijection the weight of the path is equal to wt(T ) in Fib, and equal

to wt′(T ) in Fib′.

Proof. This is straightforward, using the description of the bijection on [Fom, p.394].

Thus we have fw
Fib =

∑
T wt(T ) and fw

Fib′ =
∑

T wt′(T ) where the sum is over Young-
Fibonacci tableau with shape λ(w). It is not clear whether there is a simple way to write
the identity that results from Theorem 4.

6 The qDGG on permutations

Let V = ⊔n>0Sn be the disjoint union of all permutations equipped with the height
function h(w) = n if w ∈ Sn. Define a graded graph Perm with vertex set V and edge
set E consisting of edges (v, w) whenever v ∈ Sn−1 is obtained from w ∈ Sn by deleting
the letter n; define m(v, w) := qn−s, where 1 6 s 6 n is the position of the letter n in w.
Define Perm′ with the same vertex set and edges (v, w) whenever v ∈ Sn−1 is obtained
from w ∈ Sn by deleting the last letter, followed by reducing all letters greater than the
deleted letter by one; define m′(v, w) := 1 always.

For example, in Perm there is an edge from 4123 to 41523 with weight q3. In Perm′

there is an edge from 3142 to 41523 with weight 1. The following result is a straightforward
verification of the definitions.

Proposition 7. The pair (Perm, Perm′) is a qDGG with differential coefficient r = 1.

Let inv(w) denote the number of inversions of a permutation w. For the pair of
quantized dual graded graphs (Perm, Perm′), we have

fw
Perm = qinv(w) and fw

Perm′ = 1.

Thus Theorem 4 expresses the identity (see [EC1, Corollary 1.3.10])
∑

w∈Sn

qinv(w) = [n]q!. (3)
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7 The qDGG on tableaux

Let Yn denote the set of standard Young tableau P of size n with any shape (see [EC2]).
We assume the reader is familiar with tableaux, and with Schensted insertion.

Let V = ∪i>0Yi with the obvious height function. Define Tab to be the graded
graph with vertex set V , and edges (P, P ′) ∈ Yn × Yn+1 whenever there is some k ∈
{1, 2, . . . , n+1} so that P ′ is obtained from P by first increasing the numbers greater than
or equal to k inside P by 1, and then Schensted inserting k; declare m(P, P ′) = qn+1−k.
Define Tab′ to be the graded graph with vertex set V and edges (P, P ′) ∈ Yn × Yn+1

whenever P ′ is obtained from P by removing n; declare m(P, P ′) = 1. The following
result is straightforward.

Proposition 8. The pair (Tab, Tab′) is a qDGG with differential coefficient r = 1.

Fix a standard Young tableau P ∈ Yn. There is a bijection from the set of paths p

from the empty tableau ∅ to P in Tab, to the set of standard Young tableau of shape
equal to the shape of P . The bijection is obtained by taking the sequence of shapes
encountered along p, or equivalently, by taking the recording tableau of the sequence of
Schensted insertions given by p. The following Lemma is immediate.

Lemma 9. Suppose p is a path from ∅ to P , corresponding to a standard Young tableau

Q. Then the weight of p in Tab is equal to qinv(w(P,Q)), where w(P, Q) ↔ (P, Q) under the

Robinson-Schensted bijection.

It follows that Theorem 4 applied to Proposition 8 gives (3), with the terms labeled
by permutations w on the left hand side grouped according to the insertion tableau of w.

8 The qDGG on plane binary trees

We assume the reader has some familiarity with the Hopf algebra of plane binary trees;
see [AS, Section 1.1, Section 1.5] for further details. A plane binary tree (also called a
rooted plane binary tree) is a tree T embedded into the plane which has three kinds of
vertices: (a) a unique root node r which has exactly 1 child, (b) a number of internal nodes

with two children, and (c) a number of leaves with no children. The leaves are numbered
{0, 1, . . . , n} from left to right, where n is the number of internal nodes. Let Tn denote
the set of plane binary trees with n internal nodes. By definition, T0 consists of the tree
∅, which has a root r, no internal nodes, and a single leaf 0. The cardinality |Tn| is equal

to the Catalan number (2n)!
n!(n+1)!

; see for example [AS, p.3].
We now describe a number of combinatorial operations on plane binary trees. Given

two plane binary trees T1 ∈ Tp and T2 ∈ Tq we can graft a new plane binary tree T1 ∨T2 ∈
Tp+q+1 by placing T1 to the left of T2 in the plane, identifying the two root nodes r1 and
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r2 to form a new internal node, and attaching a new root to this internal node:

r

•
◦ ◦

r

•
◦ •

◦ ◦

−→

r

•
•

◦ ◦
•

◦ •
◦ ◦

Given a tree T ∈ Tp and a position i ∈ {0, 1, . . . , p} indexing a leaf v ∈ T we can slice T

at v to obtain two trees T1 ∈ Ti and T2 ∈ Tp−i as follows: draw the unique path P from
v to the root r. Then the edges of T weakly to the left of P form a rooted planar (but
possibly non-binary) tree TL, which can be transformed into a plane binary tree T1 by
removing internal nodes with less than two children, and merging some edges. Similarly
the edges of T weakly to the right of P give a tree TR that can be made into a plane
binary tree T2. Note that the number of internal nodes of T is equal to the sum of the
number of internal nodes of T1 and T2. The following shows TL and TR for a tree T , when
T is sliced at the ∗-ed leaf:

T =

r

•
•

◦ ◦
•

∗ •
◦ ◦

−→

r

•
•

◦ ◦
•
∗

r

•
•

∗ •
◦ ◦

Thus the trees T1 and T2 obtained by slicing T at the ∗-ed leaf is given as follows:

r

•
•

◦ ◦
•

∗ •
◦ ◦

−→ T1 =

r

•
•

◦ ◦
◦ T2 =

r

•
◦ •

◦ ◦

We write SG(T, i) = T1 ∨ T2 to denote the composition of slicing and grafting, so in the
above example SG(T, 2) would be the tree

SG(T, 2) =

r

•
•

•
◦ ◦

◦
•

◦ •
◦ ◦

Given a non-empty tree T ∈ Tp, we can obtain another tree T ∗ ∈ Tp−1 from T by
removing the leftmost (or 0) leaf v and erasing the node w which is joined to v:

T =

r

•
•

◦ ◦
•

◦ •
◦ ◦

−→ T ∗ =

r

•
◦ •

◦ •
◦ ◦
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Let V = ∪i>0Ti, with the obvious height function h : V → N. Define a graded graph
Tree with vertex set V , and edges (T, T ′) whenever T ′ = SG(T, i) for some i; declare that
m(T ′, T ) := qi. Define a graded graph Tree′ with vertex set V , and edges (T ∗, T ) for every
T 6= ∅; declare that m′(T ∗, T ) := 1.

Proposition 10. The pair (Tree, Tree′) is a qDGG with differential coefficient r = 1.

Proof. Let T ∈ Tp. Let T ′ = SG(T, i), where i ∈ {1, 2, . . . , p}. Then it is not difficult to see
that (T ′)∗ = SG(T ∗, i− 1). This cancels out all the terms in (DTree′UTree − qUTreeDTree′)T
except for the one corresponding to SG(T, 0)∗ = T which has coefficient q0 = 1.

To describe the identity of Theorem 4 explicitly, let us define a linear extension of
T ∈ Tp to be a bijective labeling e : T → {1, 2, . . . , p} of the internal nodes of T with
{1, 2, . . . , p}, so that children are labeled with numbers bigger than those of their ances-
tors. Let E(T ) denote the set of linear extensions of T . Also, let us say that an internal
node v is to the left (resp. to the right) of an internal node w if v belongs to the left (resp.
right) branch and w belongs to the right (resp. left) branch of their closest (youngest)
common ancestor.

If e is a linear extension of T ∈ Tp, then we may define a permutation we ∈ Sp by
reading the labels of the internal nodes from left to right. It is well known (see for example
[LR, Proposition 2.3]) that as T varies over Tp and e varies over E(T ) we obtain every
w ∈ Sp exactly once in this way. For example, the following are the three linear extensions
of the same tree T :

r

1

2

◦ ◦

3

◦ 4

◦ ◦

r

1

3

◦ ◦

2

◦ 4

◦ ◦

r

1

4

◦ ◦

2

◦ 3

◦ ◦

corresponding to the permutations 2134, 3124, and 4123. Thus fT
Tree = q + q2 + q3.

Lemma 11. Let T ∈ Tp. Then

fT
Tree =

∑

e∈E(T )

qinv(we) and fT
Tree′ = 1.

Proof. The claim for Tree′ is clear. For Tree, we will describe a bijection between E(T )
and paths from ∅ to T .

Let e′ be a linear extension of T ′ and suppose that T = T1 ∨ T2 is obtained from
grafting a slice of T ′. We may treat T1 and T2 as subtrees of T ′, and in particular restrict
e′ to T1 and T2. Thus we may define a labeling e (depending on e′, T ′, T1, and T2) of T

by declaring it to be equal to e′ + 1 on T1 ∪ T2, and equal to 1 on the new internal node
present in T but absent in T ′. It is straightforward to see that e ∈ E(T ). Conversely,
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given e ∈ E(T ), it is easy to recover e′ and T ′ by comparing the labels along the leftmost
branch of T2 with the labels along the rightmost branch of T1.

Recursively applying this procedure we obtain the desired bijection between E(T )
and paths from ∅ to T . Finally, the number of new inversions created in each step of this
procedure is equal to the number of internal nodes of T1, which in turn is the exponent
of q in m(T ′, T ). This completes the proof.

Thus Theorem 4 for (Tree, Tree′) amounts to grouping together the terms of the left
hand side of (3) into Catalan number many terms.

Acknowledgements. I am grateful to Nantel Bergeron and Huilan Li for related
collaboration and conversations. I also thank Jordan Ellenberg and Paul Terwilliger for
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