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Abstract

We present an explicit solution of the Ar T -system for arbitrary boundary condi-
tions. For each boundary, this is done by constructing a network, i.e. a graph with
positively weighted edges, and the solution is expressed as the partition function
for a family of non-intersecting paths on the network. This proves in particular the
positive Laurent property, namely that the solutions are all Laurent polynomials of
the initial data with non-negative integer coefficients.

1 Introduction

In this paper we study the solutions of the Ar T -system, namely the following coupled
system of recursion relations for α, j, k ∈ Z:

Tα,j,k+1Tα,j,k−1 = Tα,j+1,kTα,j−1,k + Tα+1,j,kTα−1,j,k (1.1)

for α ∈ Ir = {1, 2, ..., r}, and subject to the boundary conditions

T0,j,k = Tr+1,j,k = 1 (j, k ∈ Z) (1.2)

This system arose in many different contexts. The system (1.1) and its generalizations
were introduced as the set of relations satisfied by the eigenvalues of the fused transfer
matrices of generalized quantum spin chains based on any simply-laced Lie algebra g

[2] [16]; in this paper we restrict ourselves to the case g = slr+1, but we believe our
constructions can be adapted to other g’s as well.
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With the additional condition that Tα,0,k = 1, k ∈ Z and the restriction to j ∈ Z+, the
solutions of (1.1-1.2) were also interpreted as the q-characters of some representations of

the affine Lie algebra Uq(ŝlr+1), the so-called Kirillov-Reshetikhin modules [12], indexed
by α ∈ Ir = {1, 2, ..., r} and j ∈ Z+, while k stands for a discrete spectral parameter [18].

The same equations appeared in the context of enumeration of domino tilings of plane
domains [21], and was studied in its own right under the name of octahedron equation
[15] [14]. As noted by many authors, this equation may also be viewed as a particular case
of Plücker relations when all T ’s are expressed as determinants involving only the T1,j,k’s.
These particular Plücker relations are also known as the Desnanot-Jacobi relation, used
by Dodgson to devise his famous algorithm for the computation of determinants [9]. In
[20], this equation was slightly deformed by introducing a parameter λ before the second
term on the r.h.s. and used to define the “lambda-determinant”, with a remarkable
expansion on alternating sign matrices, generalizing the usual determinant expansion
over permutations. Here we will not consider such a deformation, although we believe our
constructions can be adapted to include this case as well (see [21] for a general discussion,
which however does not cover the Ar case).

Viewing the system (1.1) as a three-term recursion relation in k ∈ Z, it is clear that the
solution is entirely determined in terms of some initial data that covers two consecutive
values of k, say k = 0, 1 and say all j ∈ Z. In [7], an explicit expression for Tα,j,k was
derived as a function of the initial data x0 = {Tα,j,0, Tα,j,1}α∈Ir ,j∈Z. It involved expressing
first T1,j,k as the partition function for weighted paths on some particular target graph,
with weights that are monomials of the initial data, and then interpreting Tα,j,k as the
partition of non-intersecting families of such paths. This interpretation was then extended
to other initial data of the form

xk = {Tα,j,kα, Tα,j,kα+1}α∈Ir ,j∈Z (1.3)

where k = (k1, k2, ..., kr) ∈ Z
r is a Motzkin path of length r − 1, namely kα+1 − kα ∈

{0, 1,−1} for all α = 1, 2, ..., r − 1. In this construction, for each Motzkin path k, the
expressions for the Tα,j,k in terms of the initial data xk are also partition functions of
weighted paths on some target graph Γk.

The equation (1.1) is also connected to cluster algebras. In Ref. [4], it was shown that
the initial data sets xk form a particular subset of clusters in a suitably defined cluster
algebra. Roughly speaking, a cluster algebra [11] is a dynamical system expressing the
evolution of some initial data set (cluster), with the built-in property that any evolved
data is expressible as Laurent polynomials of any other data set. This Laurent property
or Laurent phenomenon turned out to be even more powerful than expected, as all the
known examples show that these polynomials have non-negative integer coefficients. The
positivity conjecture of [11] states that this property holds in general. As an example, the
above-mentioned lambda-determinant relation may be viewed as an evolution equation in
the same cluster algebra as in [4], with λ as a coefficient: the existence of an expansion
formula of the lambda-determinant on alternating sign matrices is a manifestation of the
positive Laurent phenomenon. As another example, the explicit expressions of [7] for the
solutions Tα,j,k of the Ar T -system as partition functions for positively weighted paths

the electronic journal of combinatorics 17 (2010), #R89 2



gives a direct proof of Laurent positivity for the relevant clusters.
However, the set of initial data xk (1.3) covered in [7] is limited to sets of Tα,j,k’s with

fixed values of k = kα independently of j. The most general set of initial data should also
allow for inhomogeneities in j, namely values of k = kα,j varying with j as well. It is easy
to see that the most general boundary condition consists in assigning fixed positive values
(aα,j)α∈Ir;j∈Z to Tα,j,kα,j

along a “stepped surface” (also called solid-on-solid interface in
the physics literature), namely such that |kα+1,j − kα,j| = 1 and |kα,j+1 − kα,j| = 1 for all
α ∈ Ir and j ∈ Z.

In this paper we address the most general case of initial data for the Ar T -system (1.1-
1.2). As we will show, initial data are in bijection with configurations of the six-vertex
model with face labels on a strip of square lattice of height r − 1 and infinite width. For
any such given set of initial data, we derive an explicit expression for the solution Tα,j,k

(1.1-1.2) as the partition function for α non-intersecting paths on a suitable network, in
the spirit of Refs. [10] and [19], and with step weights that are Laurent monomials of the
initial data. This completes the proof of the Laurent positivity of the solutions of the Ar

T -system for arbitrary initial data.
The paper is organized as follows.
Our construction was originally inspired by Ref.[1] which basically deals with the case

of A1 under the name of “friezes”1: the latter is reviewed in Section 2, where we make
in particular the connection between the frieze language and the solutions of the A1 T -
system with arbitrary boundary data. Roughly speaking, the solution is expressed as the
element of a matrix product taken along the boundary.

A warmup generalization to the case of A2 is presented in Section 3, with the main
Theorem 3.4 giving an explicit solution for arbitrary boundary data, also as an element
of a matrix product taken along the boundary.

Section 4 is devoted to the general Ar case. Starting from the path solution of [7]
for some particular initial data, we construct various transfer matrices associated to the
boundary, with simple transformations under local elementary changes of the boundary
(mutations). For convenience, boundaries are expressed as configurations of the six-vertex
model in an infinite strip of finite height r − 1. These in turn encode a network, entirely
determined by the boundary data. The final result is an explicit formula Theorem 4.12 for
the solution of the Ar T -system as the partition function for families of non-intersecting
paths.

In Section 5, we study the restrictions of our results to the Q-system.
A few concluding remarks are gathered in Section 6.

1Strictly speaking the term frieze only refers to the particular cases of integer-valued boundary condi-
tions, for which the entire solution is integer-valued. Here, we use this term in a broader sense, including
arbitrary boundary conditions as well, and would correspond more to what is called “SL2-tilings of the
plane” in Ref.[1].
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2 A1 T -system and Frises

In this section, we first review the results of [1], and then rephrase them in terms of
solutions to the A1 T -system for arbitrary boundary conditions.

2.1 Friezes

2.1.1 Frieze equation

The frieze equation reads2:

ua+1,b−1ua,b = 1 + ua+1,bua,b−1 (2.1)

for a, b ∈ Z.

2.1.2 Boundaries

The most general (infinite) boundary condition is along a “staircase”, made of horizontal
(h) and vertical (v) steps of the form h : (x, y) → (x + 1, y) and v : (x, y) → (x, y + 1),
giving rise to a sequence of vertices (xj , yj), j ∈ Z. To each vertex of the sequence we
attach a positive number aj , j ∈ Z, and the boundary condition for the system (2.1)
reads:

uxj,yj
= aj (j ∈ Z) (2.2)

The simplest such boundary is the sequence ...hvhvhv..., say with variable a2x at vertex
(x, x) and a2x+1 at vertex (x, x+1), x ∈ Z. We refer to it as the basic staircase boundary.

The problem is now to find the solution ua,b of (2.1) with the boundary condition
(2.2).

2.1.3 Projection of (x, y) on the boundary and step matrices

The general solution at a point (x, y) to the right of the boundary is expressed solely in
terms of the values (2.2) taken by u along the “projection” of (x, y) onto the boundary,
defined as follows.

Definition 2.1 (Projection). The projection of (x, y) onto the boundary {(xj , yj)}j∈Z is
the sequence (xj , yj), j = t, t + 1, ..., t′, where yt = y, xt′ = x, and the first step t → t + 1
is vertical, while the last step t′ − 1 → t′ is horizontal.

This is illustrated in Fig.2.1. Alternatively the projection of (x, y) is coded by the
word w(x, y) =v...h of length t′ − t with letters h and v, starting with v and ending with
h and coding the succesion of horizontal (h) and vertical (v) steps along the boundary
between (xt, yt) and (xt′ , yt′). We also define the corresponding sequence of boundary
weights a(x, y) = (at, at+1, ..., at′).

2Our convention corresponds to b → −b in those of Ref [1].
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Figure 2.1: A typical boundary for the frieze and the projection of a point (x, y) onto it. The vertices of
the projection on the boundary are represented with blue circles. Here, the word w(x, y) reads v2hvhvh3.

Definition 2.2 (Step matrices). We define the two horizontal and vertical matrices

H(a, b) =
1

b

(
b 0
1 a

)
V (a, b) =

1

b

(
a 1
0 b

)
(2.3)

2.1.4 Solution

Given some boundary conditions, we associate to the word w and the sequence a the
following 2 × 2 matrix product

M(w, a) = V (at, at+1) · · ·H(at′−1, at′) (2.4)

where the product extends over all the intermediate steps i → i + 1 between t and t′ as
coded by w, and involves the matrix H(ai, ai+1) if the step i → i + 1 is h and V (ai, ai+1)
if it is v. The result of [1] takes the following form:

Theorem 2.3 ([1]). The solution of (2.1) subject to the boundary condition (2.2) reads:

ux,y = at′ (M(w(x, y), a(x, y)))1,1 (2.5)

with M as in (2.4).

All matrices V, H having elements that are positive Laurent monomials of the initial
data, the general Laurent positivity of the solution follows:

Corollary 2.4. The general solution of (2.1) subject to the boundary condition (2.2) is
a Laurent polynomial of its initial data {aj}j∈Z, with non-negative integer coefficients.
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Example 2.5 (The basic staircase boundary). For any x > y ∈ Z>0, we have a projection
on the boundary with w(x, y) = (vh)x−y, and a(x, y) = (a2y, a2y+1, ..., a2x). We deduce that

M(w(x, y), a(x, y)) =
x−1∏

i=y

V (a2i, a2i+1)H(a2i+1, a2i+2) (2.6)

and the solution reads:
ux,y = a2x (M(w(x, y), a(x, y)))1,1 (2.7)

Explicitly, we compute the two-step matrix:

M(a, b, c) = V (a, b)H(b, c) =
1

c

(
ac+1

b
1

1 b

)
(2.8)

2.1.5 Mutations

Note that we may move from one boundary to another by elementary “mutations”3,
namely the local substitution (v, h) → (h, v) on the boundary (forward mutation) or
(h, v) → (v, h) (backward mutation), while the sequence a is updated using the frieze
relation (2.1). In particular, we may in principle reach any boundary from the basic
staircase one, by possibly infinitely many such mutations.

The effect of such a mutation is easily obtained by computing the corresponding matrix
transformation within M(w, a). It basically corresponds to the following identity:

Lemma 2.6. For all a, b, c > 0, we have:

c

a x

b

V (a, b)H(b, c) = H(a, x)V (x, c), x =
1 + ac

b
(2.9)

This may be understood as a matrix representation of the mutation via the commu-
tation of the matrices V and H , which acquire the new boundary value x in replacement
for b. This mutation affects all values of um,p such that the projection of (m, p) contains
the new boundary point with value x.

We may deduce the general formula (2.5) from that for the basic staircase boundary,
by induction under mutation. In general a mutation simply switches two consecutive
matrices V H → HV in the product M . We must be careful with mutations that update
the extremal vertices of the projection of (x, y), namely in the two cases: (i) when w
starts with vh, updated into hv or (ii) when w ends up with vh, updated into hv. We
note however that H(a, b)1,j = bV (a, b)j,1 = δi,j hence in the updated matrix M we may:
(i) drop the first matrix factor H (ii) drop the last matrix factor V , but replace the scalar
prefactor by the new updated vertex value, and the formula (2.5) follows.

3The term “mutation” is borrowed from cluster algebras, as this elementary move indeed corresponds
to a mutation in the associated cluster algebra of [7].
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2.2 The A1 T-system

2.2.1 T-system

The A1 T-system reads:
Tj,k+1Tj,k−1 = Tj+1,kTj−1,k + 1 (2.10)

where we use the shorthand notation Tj,k = T1,j,k for j, k ∈ Z. Note that this splits into
two independent systems for fixed value of j + k modulo 2.

In the case when j + k = 0 modulo 2, we immediately see that changing to “light
cone” coordinates: a = j+k

2
and b = j−k

2
, we have that ua,b = Tj,k−1 satisfies the frieze

equation (2.1). So the two problems are equivalent. Analogously, when j + k = 1 modulo
2, we take a = j+k−1

2
and b = j−k+1

2
and ua,b = Tj,k.

2.2.2 Boundaries

The fundamental boundary for the T-system is obtained by fixing the values of say T2j+1,0

and T2j,1 for all j ∈ Z. It corresponds to the basic staircase boundary in the case j+k = 1
modulo 2 above, with T2j,1 = a2j and T2j+1,0 = a2j+1.

Other boundaries are mapped in an obvious manner.

2.2.3 Path solution

In [7], an explicit path formulation was derived for the solution Tj,k for the fundamental
boundary condition. Defining the 4 × 4 transfer matrix

T(u, v, w) =





0 1 0 0
u 0 1 0
0 v 0 1
0 0 w 0





we have

Theorem 2.7 ([7]). The solution of the A1 T -system (2.10) for the fundamental boundary
condition with initial data {T2j+1,0, T2j,1}j∈Z reads for j + k = 1 mod 2:

Tj,k = Tj+k,0

(
j+k−1∏

i=j−k

T(ui, vi, wi)

)

1,1

ui =
Ti,1

Ti+1,0
, vi =

1

Ti,0Ti+1,1
, wi =

1

ui

(2.11)

Here the matrix T(i, i + 1) ≡ T(ui, vi, wi) is interpreted as the transfer matrix from
time i to time i + 1 for weighted paths with steps a → a± 1 on the integer segment [0, 3],
with time-dependent step weights 0 → 1 : ui, 1 → 2 : vi and 2 → 3 : wi, the other weights
being equal to 1.
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2.2.4 Gauge invariance

The above formula (2.11) remains clearly unchanged if we transform the matrix T into
the following: T(i, i + 1) → T̃(i, i + 1) = LiT(i, i + 1)L−1

i+1, for any invertible matrix Li

such that (Li)1,j = δj,1 and (Li)j,1 = δj,1.

To make the contact with the frieze solution, let us define T̃ as above, by use of the
matrix

Li =





1 0 0 0
0 1 0 0
0 0 Ti,0 0
0 0 0 Ti,1





2.2.5 Comparison with the frieze solution

Let us now compute the “two-step” transfer matrix at times i, i + 1 for i = j + k modulo
2: T̃(i, i + 2) = T̃(i, i + 1)T̃(i + 1, i + 2), with the weights as in (2.11), namely:

ui =
bi

bi+1
, vi =

1

aiai+1
, wi =

1

ui

ui+1 =
ai+1

ai+2
, vi+1 =

1

bi+1bi+2
, wi+1 =

1

ui+1

where we have introduced ai = Ti,0, ai+1 = Ti+1,1, ai+2 = Ti+2,0, bi = Ti,1, bi+1 = Ti+1,0,
and bi+2 = Ti+2,1, while Li = diag(1, 1, ai, bi), Li+1 = diag(1, 1, bi+1, ai+1) and Li+2 =
diag(1, 1, ai+2, bi+2).

We get:

T̃(i, i + 2) =





ai+1

ai+2
0 1

ai+2
0

0 1+bibi+2

bi+1bi+2
0 1

bi+2
1

ai+2
0 1+aiai+2

ai+1ai+2
0

0 1
bi+2

0 bi+1

bi+2





This 4×4 matrix clearly decomposes into two independent 2×2 linear operators acting
respectively on components 1, 3 and 2, 4. The corresponding matrices are respectively:

P̃(i, i + 2) =

(
ai+1

ai+2

1
ai+2

1
ai+2

1+aiai+2

ai+1ai+2

)
= H(ai, ai+1)V (ai+1, ai+2)

Q̃(i, i + 2) =

(
1+bibi+2

bi+1bi+2

1
bi+2

1
bi+2

bi+1

bi+2

)
= V (bi, bi+1)H(bi+1, bi+2)

We may now use the gauge-transformed and reduced two-step transfer matrix P̃(i, i+2)
instead of T in (2.11). Indeed, in the product over steps from j−k to j+k−1, we may pair
up consecutive T matrices in (2.11) to express it in terms of the P’s, and then substitute
the latter with the P̃’s, leading to:

Tj,k = Tj+k,0

(
k−1∏

i=0

P̃(j − k + 2i, j − k + 2i + 2)

)

1,1
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Noting moreover that H(a, b)1,j = bV (a, b)j,1 = δj,1, we may rewrite this as

Tj,k = Tj+k−1,1

(
k−2∏

i=0

V (aj−k+2i+1, aj−k+2i+2)H(aj−k+2i+2, aj−k+2i+3)

)

1,1

(2.12)

Assuming that j + k = 1 modulo 2, we see that in light-cone coordinates with x = j+k−1
2

and y = j−k+1
2

, equation (2.12) amounts to equations (2.6-2.7), as the projection of (x, y)
on the boundary staircase starts at t = j − k + 1 and ends at t′ = j + k − 1.

2.2.6 Mutations and arbitrary boundary

As in the frieze case, this identification gives us access to mutations, via the V H ↔ HV
identity (2.9). Starting from (2.12), we may iteratively apply forward/backward mutations
to the basic staircase boundary to get any other boundary (up to global translations) of
the form {Tj,kj

}j∈Z with a sequence kj ∈ Z such that |kj+1 − kj | = 1. Let us denote by
(j0, kj0) and (j1, kj1) the extremities of the projection of (j, k) onto the boundary, namely
such that j0 − kj0 = j − k, j1 + kj1 = j + k, j0 maximal and j1 minimal.

We deduce that the general solution for arbitrary staircase boundary reads:

Tj,k = Tj1,kj1

(
V (Tj0,kj0

, Tj0+1,kj0+1
)...H(Tj1−1,kj1−1

, Tj1,kj1
)
)

1,1

where the product is taken along the projection of (j, k) on the boundary, with a matrix
V per vertical step and H per horizontal step.

3 The A2 T-system with arbitrary boundary

Before going to the general Ar case, we derive the A2 solution in detail.

3.1 T-system

The A2 T-system reads:

T1,j,k+1T1,j,k−1 = T1,j+1,kT1,j−1,k + T2,j,k

T2,j,k+1T2,j,k−1 = T2,j+1,kT2,j−1,k + T1,j,k (3.1)

for j, k ∈ Z. Note that this splits again into two independent systems for Tα,j,k with fixed
value of α+ j +k modulo 2. These indices run over two consecutive layers of the centered
cubic lattice α = 1 and α = 2, which form two square lattices, the vertices of the second
layer lying at the vertical of the centers of the faces of the first layer.
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B
A

B
A

B

. . .
 

(2,j+1,0)

(1,j,0)

(2,j,1)

(2,j+2,1)

(1,j−1,1)

(1,j+1,1)

(1,j+2,0) (1,j+3,1)

(2,j+3,0)

(2,j−1,0)

. . .
 

(1,j+4,0)

(2,j+4,1)

Figure 3.1: The basic staircase boundary for the A2 T -system. We have indicated the corresponding
succession of edges (thick black line) and the two types of tetrahedrons A,B that connect them.

3.2 Boundaries

The fundamental boundary considered in Ref. [7] involves fixing the values of the Tα,j,k

with α = 1, 2 k = 0, 1, and j ∈ Z, with fixed parity of α + j + k (say even). We refer
to this boundary as the basic staircase boundary, in reference to the A1 case. It can be
viewed as an infinite strip made of a succession of four kinds of vertices (see Fig.3.1).
We may also view this strip as a succession of edges of the form ej = (1, j, 0) − (2, j, 1),
fj+1 = (1, j + 1, 1) − (2, j + 1, 0), ej+2 = (1, j + 2, 0) − (2, j + 2, 1), etc. for j − 1 ∈ 2Z

(thick black lines in Fig.3.1). Two such consecutive edges define a tetrahedron. The
basic staircase may therefore be viewed as the alternating succession of two kinds of
tetrahedrons denoted by A (defined by ej, fj+1) and B (defined by fj−1, ej).

3.3 Solution for the basic staircase boundary

In Ref. [7], the solution T1,j,k was expressed in terms of paths on a target graph with 6
vertices and with time-dependent edge weights involving only the boundary values. These
weights are coded by a 6 × 6 transfer matrix. Defining:

T(s, t, u, v, w) =





0 1 0 0 0 0
s 0 1 0 0 0
0 t 0 1 1 0
0 0 u 0 0 0
0 0 v 0 0 1
0 0 0 0 w 0




(3.2)

and using the notation

si =
T1,i,1

T1,i+1,0
, ti =

T2,i,1

T1,i,0T1,i+1,1
, ui =

T1,i+1,0T2,i−1,1

T1,i,1T2,i,0
, vi =

T1,i+1,0

T2,i,0T2,i+1,1
, wi =

T2,i+1,0

T2,i,1

(3.3)
we have:
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Theorem 3.1 ([7]). The solution of the A2 T -system for α = 1 reads:

T1,j,k = T1,j+k,0

(
j+k−1∏

i=j−k

T(si, ti, ui, vi, wi)

)

1,1

(3.4)

3.4 Reduced transfer matrix

As before we note that the two-step transfer matrix T(i, i + 2) = T(i, i + 1)T(i + 1, i + 2),
with T(i, i+1) ≡ T(si, ti, ui, vi, wi), is again decomposable into two linear operators acting
respectively on components (1, 3, 6) and (2, 4, 5). Explicitly:

T(s, t, u, v, w)T(s′, t′, u′, v′, w′) =





s′ 0 1 0 0 0
0 s + t′ 0 1 1 0
ts′ 0 t + u′ + v′ 0 0 1
0 ut′ 0 u u 0
0 vt′ 0 v v + w′ 0
0 0 wv′ 0 0 w





Defining:

P(i, i + 2) =




si+1 1 0
tisi+1 ti + ui+1 + vi+1 1

0 wivi+1 wi





we may rewrite (3.4) as:

T1,j,k = T1,j+k,0

( k−1∏

i=0

P(j − k + 2i, j − k + 2i + 2)
)

1,1
(3.5)

3.5 Gauge transformation and tetrahedron decomposition

As before, we note that any gauge transformation of the form P(i, i + 2) → P̃(i, i + 2) =
LiP(i, i + 2)L−1

i+2 and such that (Li)1,j = (Li)j,1 = δj,1 leaves the formula (3.5) invariant.
We choose

Li =




1 0 0
0 T1,i,0 0
0 0 T2,i,1





Defining

M(a, b, c, u, v, w) =




b
c

1
c

0
u
c

u
bc

+ au
bv

+ a
vw

a
w

0 1
w

v
w





we have
P̃(i, i + 2) = M(T1,i,0, T1,i+1,1, T1,i+2,0, T2,i,1, T2,i+1,0, T2,i+2,1)
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The matrix M may be further decomposed as follows:

M(a, b, c, u, v, w) = A(a, b, u, v)B(b, c, v, w)

where

b

v

u

a

A(a, b, u, v) =




1 0 0
u
b

au
bv

a
v

0 0 1





w

c

b

v

B(b, c, v, w) =




b
c

1
c

0
0 1 0
0 1

w
v
w





In view of our interpretation of the boundary (see Fig.3.1), the matrices A and B may
be associated to the tetrahedrons A and B. The arguments are the values of T at the
vertices of the tetrahedrons. We write

A(i, i+1) = A(T1,i,1, T1,i+1,0, T2,i,0, T2,i+1,1) and B(i, i+1) = B(T1,i,0, T1,i+1,1, T2,i,1, T2,i+1,0)

and finally we may rewrite (3.5) as:

T1,j,k = T1,j+k,0

( k−1∏

i=0

A(j − k +2i, j − k + 2i +1)B(j − k +2i +1, j − k + 2i +2)
)

1,1
(3.6)

We may now interpret this result as a generalization of the frieze result. By analogy
with the frieze solution, let us define the projection of (1, j, k) on the boundary as the
portion of the boundary between the edge fj−k+1 and the edge fj+k−1. We have:

Theorem 3.2. The general solution of the A2 T -system with the basic staircase boundary
for α = 1 reads:

T1,j,k = T1,j+k−1,1

( k−2∏

i=0

B(j−k+2i+1, j−k+2i+2)A(j−k+2i+2, j−k+2i+3)
)

1,1
(3.7)

Proof. We start from (3.6) and use the fact that A(a, b, u, v)1,j = bB(a, b, u, v)j,1 = δj,1 to
eliminate the first (A) and last (B) matrices in the product on the r.h.s.

The product extends over the sequence of tetrahedrons along the projection of (1, j, k)
onto the boundary. We may think of the two tetrahedron matrices A, B as a generalization
of the horizontal and vertical matrices of the A1 case, but more general boundaries involve
four more such matrices, as discussed below.
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(1,j−1,1)
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(2,j+3,0)
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(1,j−1,1) (1,j,2)

(2,j+1,2)(2,j−1,0)
(1,j+3,1)

(1,j+2,2)

(1,j+1,3)

(2,j,1)

(2,j+2,1)

(1,j−1,1)

(1,j+1,1)

(1,j,2)

(2,j+1,2)

(2,j+3,0)

(2,j−1,0)
(1,j+3,1)
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AB          CD
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(1,j+2,0)

(2,j+3,0)

(1,j+3,1)

(1,j−1,1)

(2,j−1,0)

Figure 3.2: Various mutations of the basic staircase boundary for the A2 T -system. We have indicated
the tetrahedrons A,B and the parallelograms C,D,E,F that may connect two consecutive edges of the
boundary.
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Figure 3.3: Triangle decomposition A1,A2,B1,B2 of the tetrahedrons A,B and parallelograms C,D,E,F.
We use the same letter for different triangles that share the same transfer matrices (see eq.(3.10)).

3.6 Other boundaries

The most general boundaries are obtained from the basic staircase via local elementary
moves (forward/backward mutations) corresponding to one application of one of the sys-
tem relations. The effect is of flipping a single thick edge of the boundary in the following
manner: denoting by ej,k = (1, j, k) − (2, j, k + 1) and fj,k = (1, j, k + 1) − (2, j, k), we
have the two possible elementary (forward) moves:

. . . , ej,k, . . . → . . . fj,k+1 . . . (3.8)

. . . , fj,k, . . . → . . . ej,k+1 . . . (3.9)

It is easy to see that this gives rise to six possible relative positions for two consecutive
edges:

(ej,k, fj+1,k), (fj,k, ej+1,k), (ej,k, ej+1,k+1), (ej,k, ej+1,k−1), (fj,k, fj+1,k+1), (fj,k, fj+1,k−1)

which define two tetrahedrons and four parallelograms, respectively denoted by A,B and
C,D,E,F (see Fig.3.2).

Note that the boundary is entirely specified by a Motzkin path and the edge at one
of its vertices. Indeed the transition from an edge to the next changes k → k, k + 1 or
k − 1, and the nature of the edge (e or f) is switched only if k is unchanged. So keeping
a record of the variable k is sufficient, and the record is a Motzkin path (or equivalently
an infinite word in 3 letters).

3.7 Triangle decomposition

As already mentioned, we may further decompose the tetrahedrons A and B, as well
as the parallelograms C,D,E,F, into pairs of triangles, as indicated in Fig.3.3. To all
triangles labelled A1,A2,B1,B2, we associate the following 3 × 3 “triangle” matrices with
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3 parameters equal to the values of Tα,j,k at their vertices. We have:

A1(a, b, u) =




1 0 0
u
b

a
b

0
0 0 1



 A2(b, u, v) =




1 0 0
0 u

v
b
v

0 0 1





B1(a, b, u) =




a
b

1
b

0
0 1 0
0 0 1



 B2(b, u, v) =




1 0 0
0 1 0
0 1

v
u
v



 (3.10)

The two tetrahedrons A,B, correspond to the matrices

A(a, b, u, v) = A1(a, b, u)A2(b, u, v) = A2(a, u, v)A1(a, b, v)

B(a, b, u, v) = B1(a, b, u)B2(b, u, v) = B2(a, u, v)B1(a, b, v) (3.11)

independent of the two triangle decompositions. The parallelograms C,D,E,F of Fig.3.3
have unique triangle decompositions, to which we attach the following matrices:

C(a, b, u, v) = A1(a, b, u)B2(b, u, v) =




1 0 0
u
b

a
b

0
0 1

v
u
v





D(a, b, u, v) = A2(a, u, v)B1(a, b, v) =




a
b

1
b

0
0 u

v
a
v

0 0 1





E(a, b, u, v) = B2(a, u, v)A1(a, b, v) =




1 0 0
v
b

a
b

0
1
b

a
vb

u
v





F (a, b, u, v) = B1(a, b, u)A2(b, u, v) =




a
b

u
bv

1
v

0 u
v

b
v

0 0 1





Note that the products are taken in a specific order, namely that the matrix for the
triangle which lies on the left of the diagonal of the parallelogram multiplies that on the
right from the left.

3.8 Mutations via triangles and the general formula

The general formula for T1,j,k for an arbitrary boundary reads as follows. First, we may
view the boundary above in yet another manner, by projecting it vertically onto the
bottom plane, as illustrated in Fig. 3.4. It is the superimposition of the two sets of
boundary vertices in the bottom (resp. top) layers (represented as filled (resp. empty)
circles), which are both staircase boundaries of the type considered in the A1 case, drawn
on the two corresponding shifted square lattice layers in thick (resp. dashed) lines. These
two staircases are constrained by the condition that their vertices must be connected via
e or f edges only (diagonal thick black lines in Fig.3.4).
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  (1,j  ,k  )
1 1

(1,j,k)

(a) (b)

e
f

f
e

j

k

(1,j  ,k  )
0
  

0

Figure 3.4: The projection of a point (1, j, k) onto a typical boundary for the A2 T-system (a), viewed
in vertical projection onto the bottom plane. The vertices of the bottom (rep. top) layers are represented
as filled (resp. empty) circles. The boundary edges are represented as thick diagonal lines. We have
indicated (b) the two types of forward mutations corresponding to e → f and f → e as in (3.8-3.9).

Definition 3.3. The projection of the point (1, j, k) onto the boundary is the portion of
boundary (finite sequence of edges) between the edges containing (1, j0, k0) and (1, j1, k1),
repectively such that j0 − k0 = j − k and j1 + k1 = j + k with j0 maximal and j1 minimal.

This coincides with the definition for the A1 T-system, using the staircase of the
bottom layer only. The corresponding finite sequence of edges corresponds alternatively
to a finite sequence of triangles according to the decomposition above, modulo the two-fold
ambiguities of decomposition of the tetrahedrons A and B.

To this sequence we associate the matrix:

M(j, k) =
∏

triangle Z
w/vertex values x,y,z

Z(x, y, z) (3.12)

where for each triangle Z=A1,A2,B1,B2, along the sequence we multiply by the corre-
sponding triangle matrix Z = A1, A2, B1, B2. Note that, due to the identities (3.11), this
definition is independent of the particular choice of triangle decomposition of the possible
tetrahedrons along the boundary. We have:

Theorem 3.4. The solution of the A2 T -system for arbitrary boundary reads for α = 1:

T1,j,k = T1,j1,k1 M(j, k)1,1 (3.13)

with M(j, k) as in (3.12), with the product extending over the projection of (1, j, k) onto
the boundary.
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Before proving the Theorem by induction under mutation, let us describe the muta-
tions of the boundary in more detail. The two possible mutations (3.8-3.9) correspond
to a local transformation of the chain of triangles that forms the boundary, namely it
replaces a pair of adjacent triangles sharing the initial boundary edge with a new pair of
adjacent triangles sharing the mutated boundary edge. Using the definition (3.10), we
get the following Lemma, generalizing Lemma 2.6:

Lemma 3.5. For all a, b, c, u, v, w > 0 we have:

B

A

A

B
x

1

1

1

1

c

a

u

b
B1(a, b, u)A1(b, c, u) = A1(a, x, u)B1(x, c, u),

(bx = ac + u)
(3.14)

A

B

B

A

w2

y

2

2

2

u

b

v

A2(b, u, v)B2(b, v, w) = B2(b, u, y)A2(b, y, w),
(vy = uw + b)

(3.15)

where we have represented in thick black (resp. red) line the initial (resp. mutated)
boundary edge.

In the above equations, the transformations b → x (resp. v → y) are precisely the two
types of forward mutations of the A2 T-system cluster algebra, obtained by applying the
first (resp. second) line of (3.1). We may now turn to the proof of Theorem 3.4.

Proof. The formula is proved by induction under mutation. We start from the basic
staircase solution (3.7), which may be put in the form (3.13), upon substituting A = A1A2

and B = B1B2, and noting that k1 = 1, j1 = j + k − 1, while k0 = 1 and j0 = j − k + 1.
Starting from the expression (3.13) for the basic staircase boundary, we may apply

iteratively either of (3.14) or (3.15) to get to any other boundary (up to global translation),
by simply substituting products of pairs of triangle matrices into the expression (3.13).

We must however pay special attention to the extremal cases, namely when the mu-
tation acts on the edge just before the upper extremity as in Fig.3.5 (a), or just after the
lower extremity as in Fig.3.5 (b), of the projection of (1, j, k).

The prefactor T1,j1,k1 in (3.13) corresponds indeed to the bottom vertex of the upper
extremity of the projection of (1, j, k) onto the boundary. Assuming as in Fig.3.5 (a) that
the edge just before the upper extremity of the projection of (1, j, k) is of e type, with
value b at the bottom vertex as in eq. (3.14), the mutation sends it to an f -type edge
with bottom vertex value x, which becomes the new upper extremity of the projection of
(1, j, k), replacing c. Noting that B1(x, c, u)j,1 = δj,1

x
c
, we see that the last multiplication

by B1(x, c, u) amounts to replacing the global prefactor c by x, which is the desired change
of T1,j1,k1. Analogously, when the mutation acts on an edge of type e next to the bottom
extremity of the projection as in Fig.3.5 (b), with bottom vertex value b as in (3.14),

the electronic journal of combinatorics 17 (2010), #R89 17



(1,j,k)

B

A

A

(a)(1,j,k)

A

B

A
B

(b)

B
a

b

x a x

1

1
b

1

1

1

1

u

1

1

cc

u

Figure 3.5: The effect of a mutation next to the top (a) and bottom (b) of the projection of (1, j, k). The
new mutated edge is represented in red. The corresponding new lower vertex of the projection extremity
is changed accordingly: c → x (a) and a → x (b). The extremal matrices B1(x, c, u) (a) and A1(a, x, u)
(b) must be dropped from the expression for M(i, j), as the corresponding triangles lie outside of the
new projection of (1, j, k).

it sends it to an edge of type f with bottom value x, which becomes the new lower
extremity of the projection of (1, j, k), replacing a. As A1(a, x, u)1,j = δj,1, we may drop
the contribution of this first triangle, and we recover (3.13). This completes the proof of
the Theorem.

The case α = 2 needs no extra work, due to the following symmetry:

Lemma 3.6. For any fixed boundary, with initial data of the form {Tα,j,kα,j
}α=1,2;j∈Z we

have
T2,j,k

(
{Tα,j,kα,j

}α=1,2;j∈Z

)
= T1,j,k

(
{T3−α,j,k3−α,j

}α=1,2;j∈Z

)

Proof. The transformation α → r + 1 − α is a symmetry of (1.1-1.2).

Corollary 3.7. The solution of the A2 T -system for arbitrary boundary is for all α = 1, 2
a Laurent polynomial of the initial data with non-negative integer coefficients.

4 The Ar case

4.1 T-system

We now consider the general Ar T-system (1.1-1.2) for j, k ∈ Z, and α ∈ Ir. As before,
this splits again into two independent systems for Tα,j,k with fixed value of α + j + k
modulo 2, which we fix to be 0, without loss of generality.

The indices {(α, j, k)} for α + j + k = 0 modulo 2 run over r consecutive horizontal
layers α = 1, 2, ..., r of the centered cubic lattice, each of which is a square lattice, the
vertices of the next layer lying at the vertical of the centers of the faces of the previous
one. For technical reasons, we will also represent the extra bottom and top layers α = 0
and α = r + 1, within which all values of T are fixed to 1, by the Ar boundary condition
(1.2).
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Figure 4.1: The basic staircase boundary for the Ar T-system, here for r = 4, on which all vertex
values Tα,j,0 and Tα,j−1,1 are specified (blue dots). We have added an extra bottom and top layer where,
according to the Ar boundary, all vertex values are set to 1 (red dots).

4.2 Boundaries

As before we start with the basic boundary {Tα,j,0, Tα,j−1,1}α∈Ir ,j∈Z for α + j even. We
may describe this boundary in 3D space as a succession of broken lines at constant j
(represented in thick solid lines in Fig.4.1) of the form:

ℓj = {(α, j, ǫα,j)}r
α=1, ǫα,j = α + j mod2 (4.1)

We denote by A,B the vertical stacks of tetrahedrons depicted in Fig.4.1, respectively
between ℓ2i−1 and ℓ2i and ℓ2i and ℓ2i+1 for all i ∈ Z. Each tetrahedron has two opposite
(thick) edges of the form (α, j, ǫ)− (α + 1, j, 1− ǫ) and (α, j + 1, 1− ǫ)− (α + 1, j + 1, ǫ).

4.3 Solution for the basic staircase boundary

In Ref. [7], the system was solved for the basic staircase boundary in two steps. First one
eliminates Tα,j,k for all α > 1 as:

Tα,j,k = det
16a,b6α

(T1,j−a+b,k+a+b−α−1) , α ∈ Ir, j, k ∈ Z (4.2)

which allows to concentrate on T1,j,k.
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The solution T1,j,k was then expressed in terms of paths on a rooted target graph with
time-dependent weights involving only the boundary values. More precisely, T1,j,k was
found to be equal to T1,j+k,0 times the partition function for paths starting from the root
at time j − k and ending at the root at time j + k. It is best expressed in terms of the
2r + 2 × 2r + 2 transfer matrix, encoding the step weights y = y1, y2, ..., y2r+1:

T(y) =





0 1 0 0 0 · · · 0 0 0 0
y1 0 1 0 0 · · · 0 0 0 0
0 y2 0 1 1 · · · 0 0 0 0
0 0 y3 0 0 · · · 0 0 0 0
0 0 y4 0 0 · · · 0 0 0 0
...

...
. . .

...
0 0 0 0 0 · · · 0 1 1 0
0 0 0 0 0 · · · y2r−1 0 0 0
0 0 0 0 0 · · · y2r 0 0 1
0 0 0 0 0 · · · 0 0 y2r+1 0





Defining the time-dependent weights

y1(t) =
T1,t,1

T1,t+1,0
, y2α+1(t) =

Tα+1,t−1,1 Tα,t+1,0

Tα+1,t,0 Tα,t,1
, y2α(t) =

Tα+1,t,1 Tα−1,t+1,0

Tα,t,0 Tα,t+1,1
, (α = 1, 2, ..., r)

and the transfer matrix for steps from time t to t + 1:

T(t, t + 1) = T(y1(t), y2(t), ..., y2r+1(t))

we have:

Theorem 4.1 ([7]). The solution of the Ar T -system (1.1-1.2) for the basic staircase
boundary reads for α = 1:

T1,j,k = T1,j+k,0

( j+k−1∏

t=j−k

T(t, t + 1)
)

1,1

4.4 Reduced transfer matrix

As before we note that the two-step transfer matrix T(y,y′) = T(y)T(y′) is again de-
composable into two linear operators acting on two complementary spaces of dimensions
r +1, corresponding respectively to components (1, 3, 6, 7, 10, 11, ..., ) and (2, 4, 5, 8, 9, ...).
Explicitly, the operator acting on the first set of components reads:

P(y,y′) =





y′

1 1 0 0 0 0 0 · · ·
y2y

′

1 y2 + y′

3 + y′

4 1 1 0 0 0
0 y5y

′

4 y5 y5 0 0 0
0 y6y

′

4 y6 y6 + y′

7 + y′

8 1 1 0
0 0 0 y9y

′

8 y9 y9 0
0 0 0 y10y

′

8 y10 y10 + y′

11 + y′

12 1
...

. . .




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The corresponding reduced two-step transfer matrix is P(t, t + 2) = P(y(t),y(t + 1)).
Theorem 4.1 turns into:

T1,j,k = T1,j+k,0

( k−1∏

i=0

P(j − k + 2i, j − k + 2i + 2)
)

1,1
(4.3)

4.5 Gauge transformation and rhombus/triangle decomposition

We may apply to P any gauge transformation of the form P̃(t, t + 2) = LtP(t, t + 2)L−1
t+2

and such that (Lt)1,j = (Lt)j,1 = δj,1 without altering the result (4.3).
Here we choose:

Lt = diag(1, T1,t,0,
T2,t,1T3,t,0

T3,t−1,1
, T3,t,0, . . . , T2α−1,t,0,

T2α,t,1T2α+1,t,0

T2α+1,t−1,1
, . . .)

One advantage of this choice is that P̃(t, t + 2) only depends on values of Tα,j,k at times
j = t, t + 1, t + 2. It is also justified a posteriori by the decomposition formulas below.

We will now decompose the reduced two-step transfer matrix P̃ into a product of
elementary matrices, defined as follows.

Definition 4.2. We define the following 2 × 2 elementary step matrices:

H(a, b, x) =

(
1 0
x
b

a
b

)
V (x, a, b) =

(
a
b

x
b

0 1

)
(4.4)

Note that these generalize the horizontal and vertical step matrices of Definition 2.2,
used in the A1 case.

Definition 4.3. For any 2 × 2 matrix X and α ∈ {1, 2, ..., r} define the r + 1 × r + 1
matrices:

Xα,α+1 =




1α−1 0α−1×2 0α−1×r−α

02×α−1 X 02×r−α

0r−α×α−1 0r−α×2 1r−α



 (4.5)

where 1m denotes the m×m identity matrix and 0m×p the m×p matrix with zero entries.

This gives rise to matrices Hα,α+1(a, b, u) and Vα,α+1(a, x, y) using for X (4.5) the
matrices (4.4). As an example, the triangle matrices A1, A2, B1, B2 introduced in the A2

case (3.10) may be identified with:

A1(a, b, u) = H1,2(a, b, u) A2(b, u, v) = V2,3(b, u, v)
B1(a, b, u) = V1,2(1, a, b) B2(b, u, v) = H2,3(u, v, 1)

We finally define:
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Figure 4.2: The triangle decomposition of the stacks A,B of tetrahedrons on the basic staircase bound-
ary. The triangles are colored either white or gray, and are grouped into pairs of distinct colors sharing an
edge (rhombi). The H (resp. V) rhombi have the gray triangle pointing up (resp. down), and correspond
to products with the matrices H (resp. V ) in the indicated manner. The three parameters are the values
of Tα,j,k at the vertices of the gray triangle.

Definition 4.4. We define the following r + 1 × r + 1 matrices:

Aα(a, x, y, u) =

{
Hα,α+1(x, y, u) if α odd
Vα,α+1(a, x, y) if α even

(4.6)

Bα(a, x, y, u) =

{
Vα,α+1(a, x, y) if α odd
Hα,α+1(x, y, u) if α even

(4.7)

and for sequences a = a0, a1, ..., ar+1 and b = b0, b1, ..., br+1, we define:

A(a;b) = A1(b0, a1, b1, a2)A2(b1, a2, b2, a3)...Ar(br−1, ar, br, ar+1)

B(a;b) = B1(b0, a1, b1, a2)B2(b1, a2, b2, a3)...Br(br−1, ar, br, ar+1) (4.8)

Theorem 4.5. The following decomposition holds:

P̃(t, t + 2) = A(a(t), a(t + 1)) B(a(t + 1), a(t + 2))

where aα(t) = Tα,t,ǫα,t, with ǫα,t as in (4.1), and in particular a0(t) = ar+1(t) = 1, due to
the Ar boundary condition.

Proof. By direct calculation.

In analogy with the frieze result, we may now interpret pictorially the decomposition
result above. We interpret the matrices A(a(j − 1), a(j)) and B(a(j), a(j + 1)) as cor-
responding respectively to the stacks A,B of tetrahedrons in Fig.4.1. Each tetrahedron
may be decomposed in two ways into a pair of triangles (the thin solid lines in Fig.4.1
correspond to one particular choice for each tetrahedron).

Let us now pick the canonical choice indicated in Fig.4.2 for both types A, B of stacks,
namely that all squares are divided along their second diagonal. Then each term Ai or Bi
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in the products (4.8) may be associated to a pair of triangles sharing an horizontal edge
(which we call a rhombus, by a slight abuse).

As illustrated in Fig.4.2, we color the triangles in white or gray in such a way that
rhombi are made of one triangle of each color. This gives rise to two types of rhombi
H (resp. V), depending on whether the gray triangle is on top (resp. bottom), that are
interchanged when going from stacks of type A to type B. In the rhombi, gray triangles
play a particular role: their vertex values carry the 3 parameters of respectively the
matrices H or V in the product definition of Ai or Bi (4.6-4.7). Taking the product over
the rhombi from bottom to top yields the formulas (4.8).

Each stack contains r−1 tetrahedrons, hence there are 2r−1 possible triangle/rhombus
decompositions of each stack of type A (resp. B), each made of r rhombi. By their
definition (4.5-4.6-4.7), the operators Ai and Aj (resp. Bi and Bj) commute as soon as
|i − j| > 1. So a given rhombus decomposition carries the information of whether Ai

multiplies Ai+1 from the left (like in Fig.4.2) or from the right (for the other choice of
diagonal in the i-th tetrahedron from the bottom), and of what the three arguments of
the H or V factors are (via the boundary values at the vertices of the gray triangle).

The 2r−1 a priori distinct matrix products corresponding to these rhombus decompo-
sitions turn out to be identical. This is a consequence of the following local commutation
relations (for odd i):

Ai−1(x, a, b, a′)Ai(b, a
′, b′, y) = Ai(a, a′, b′, y)Ai−1(x, a, b, b′)

Bi−1(x, a, b, a′)Bi(b, a
′, b′, y) = Bi(a, a′, b′, y)Bi−1(x, a, b, b′)

easily derived from the following:

Lemma 4.6.

y

a b

b’a’

x

Hi−1,i(a, b, a′) Vi,i+1(b, a
′, b′) = Vi,i+1(a, a′, b′) Hi−1,i(a, b, b′)

a

b’a’

x

y

b

(4.9)

y

a b

b’a’

x

Vi−1,i(x, a, b) Hi,i+1(a
′, b′, y) = Hi,i+1(a

′, b′, y) Vi−1,i(x, a, b)

b

y

x

a’ b’

a

(4.10)

Proof. By direct computation.
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Figure 4.3: A forward mutation of the boundary consists of a vertex value update y → y′, with
yy′ = xz + au. It takes the 4 triangles in the back (black lines) of the octahedron (a) to the 4 triangles in
the front (red lines). We have also represented (b) the corresponding Ai-Bi matrix identity, equivalent
to a rhombus exchange, in the case of odd i.

Theorem 4.1 now turns into:

T1,j,k = T1,j+k,0

( k−1∏

i=0

A(a(j−k+2i), a(j−k+2i+1))B(a(j−k+2i+1), a(j−k+2i+2))
)

1,1

(4.11)
With the above-mentioned freedom of picking any of the 2r−1 A and B product decom-
positions for each transfer matrix A(a(t), a(t + 1)) and B(a(t + 1), a(t + 2)) in (4.11), we
get 2k(r−1) equivalent expressions for T1,j,k.

4.6 Mutations as rhombus exchange

Forward mutations of the boundary of the Ar T-system may take place whenever five
neighboring vertices form the back of an octahedron, say in positions (i, j, k − 1), (i, j −
1, k), (i, j + 1, k), (i− 1, j, k) and (i + 1, j, k), in which case the mutation µi,j replaces the
back vertex (i, j, k − 1) with the front one (i, j, k + 1). It also induces the update of the
boundary value y of the back vertex with y′ = bu+xz

y
for the front one (see Fig.4.3 (a),

with x = Ti,j−1,k, y = Ti,j,k−1, z = Ti,j+1,k, b = Ti−1,j,k, u = Ti+1,j,k, and y′ = Ti,j,k+1).
Backward mutations just correspond to the inverse process with y′ → y.

Whenever a mutation is possible, using the freedom to pick rhombus decompositions,
we will see in next section that we may always bring H and V rhombi in contact. The
mutation corresponds then to interchanging the two rhombi: it is a forward mutation if
V passes from the left to the right of H (see Fig. 4.3), backward otherwise.

To check that the mutation is faithfully represented by the matrices, we use the fol-
lowing:
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Lemma 4.7.

u

y z

y’

b

x
V (b, x, y) H(y, z, u) = H(x, y′, u) V (b, y′, z), yy′ = xz + bu

(4.12)

Proof. By direct calculation.

The forward mutation µi,j is implemented by simply switching the two rhombi in the
decomposition of the corresponding adjacent stacks. In the case i odd, this corresponds
to the identity depicted in Fig.4.3 (b):

Ai(b, x, y, u) Bi(b, y, z, u) = Bi(b, x, y′, u) Ai(b, y
′, z, u) yy′ = xz + bu,

a direct consequence of Lemma 4.7. When i is even, the mutation µi,j corresponds to the
same identity read in the opposite direction (but still corresponds to a V passing from
the left to the right of an H).

We conclude that the forward mutations µi,j of the boundary may be iteratively imple-
mented on the formula (4.11) by simply (i) picking the relevant rhombus decomposition
among all equivalent ones namely bring a V to the left of an H with the vertex (i, j, ki,j)
of the boundary in the center (ii) switching the corresponding matrices Ai and Bi in the
product transfer matrix. This will be made very precise in the next section.

4.7 Arbitrary boundaries and the 6 Vertex model

In this section, we give a bijection between boundary strips of the Ar T-system and
configurations of the 6-Vertex (6V) model on infinite strips of width r − 1. In the 6V
picture, mutations correspond to the reversal of all spins around square faces whose spins
form an oriented loop.

4.7.1 Local configurations and the six vertices

Recall that the 6V model is a statistical model defined on the square lattice, whose con-
figurations consist of an orientation (spin) on each edge, in such a way that the following
“ice rule” is satisfied: at each vertex of the lattice there are exactly two entering and two
outgoing edges.

The idea of the bijection is very simple. As we noted before, the boundary strips
may be decomposed into broken lines ℓj at time j, j ∈ Z, as in (4.1), each made of a
succession of r−1 edges of type e or f . As discovered in the case of A2, there are 6 possible
transitions between an edge of type e or f of the form e = (α, j, k) − (α + 1, j, k + 1) or
f = (α, j, k)−(α+1, j, k−1), at time j, connecting vertices in the layers α and α+1, and
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Figure 4.5: The 6V configuration corresponding to the basic staircase configuration of Fig.4.1 for r = 4.

an edge of either type at time j+1, also connecting vertices in the layers α and α+1. The
two corresponding edges give rise to either tetrahedrons A,B if they are of opposite types,
and parallelograms C,D,E,F otherwise. Moreover, the 4 vertices included in the two edges
also define two horizontal edges respectively within the layers α and α + 1. These may
also be of only two types, say e′ and f ′, of the form: e′ = (α, j, k) − (α, j + 1, k + 1) and
f ′ = (α, j, k) − (α, j + 1, k − 1).

These 6 local configurations A,B,C,D,E may be represented as squares in projection
onto a (j, α) plane, with vertical edges labeled e or f and horizontal edges labeled e′ or
f ′. In this projection, a complete boundary is simply a strip of squares, infinite in the j
direction, and of finite width in the α direction, with some compatible edge assignments.
The corresponding configurations of the 6V model are on the dual of this strip, namely
with a vertex in the middle of each square.

To the 6 configurations of each square, we associate bijectively the 6 vertices of the
6V model as indicated in Fig.4.4, namely we pick the horizontal edge orientation to be to
the right (resp. left) for an e type (resp. f type) edge, while the vertical edge is oriented
upward (resp. downward) for an e′ type (resp. f ′ type) edge.

Another direct way of connecting the initial boundary vertices to the 6V configuration
is to view the latter as coding the value of kα,j as the label of the face (j, α) in the 6V
configuration as follows. Note first that values of k differ by ±1 in neighboring faces. We
impose the following “Ampère rule” that the value of k on the right of an arrow is smaller
than that on the left. This fixes all the values of kα,j up to a global translation.
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Figure 4.6: A sequence of mutations applied on a length 2 portion of the boundary strip for A2 in the
6V formulation. The green (resp. red) dots mark the places where a forward (resp. backward) mutation
can be applied. The spin of the top and bottom edge sequences are conserved, equal to −1 and 1 here.

4.7.2 The basic staircase boundary as a 6V configuration

We now consider the basic staircase boundary introduced in Section 4.2. It is an infinite
horizontal strip of square lattice with height r−1, with an alternance of ..., e, f, e, f, ... ver-
tical edges and ..., e′, f ′, e′, f ′... horizontal edges, namely a checkerboard of configurations
A and B of tetrahedrons, with vertices such that kα,j ∈ {0, 1}. The dual 6V configuration
is simply made of arrows that alternate in all directions (it is a fully antiferromagnetic
groundstate configuration). In particular the bottom and top horizontal rows of vertical
edges alternate along the j direction.

4.7.3 Mutations as loop reversals

As illustrated in Fig.4.3, a mutation of the boundary at a given vertex amounts to trans-
forming the 4 edges sharing this vertex, by simply permuting the two vertical ones (i.e.
belonging to the plane j =const.) and the two horizontal ones (i.e. belonging to the plane
α =const.). This is also true if α = 1 or α = r, with the condition that the bottom (resp.
top) vertex which belongs to the layer α = 0 (resp. α = r + 1) has an attached value 1.
This situation was already encountered in the case r = 1 (see Lemma 2.6) and r = 2 (see
Lemma 3.5).

Such a mutation can only take place if the permuted edges are of respective following
types, clockwise around the vertex from the top: e, e′, f, f ′ for a forward mutation, and
f, f ′, e, e′ for a backward mutation, and the two are transformed into one-another.

Once reformulated via the 6V bijection, and for 1 < α < r, this simply means that
a forward (resp. backward) mutation can take place only around faces whose adjacent
edges form a clockwise (resp. counterclockwise) oriented loop, and the mutation simply
reverses the direction of all 4 arrows. When α = 1 (resp. α = r), the “loop” is open,
i.e. is only formed of 3 edges with the bottom (resp. top) edge of the loop missing. In
the case of A1, we are only left with open loops with both the top and bottom horizontal
edges missing. In both cases, the corresponding mutation reverses the orientations of the
2 or 3 edges around the loop. By a slight abuse of language we still call “loops” these
open loops, and still refer to the edge reversal as “loop reversal”.

Starting from the basic configuration of Fig.4.5, we may therefore generate all others
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Figure 4.7: The correspondence between 6V configurations and the square/triangle decomposition of
the dual lattice. The diagonals that split squares into two triangles are the diagonal reflection symmetry
axes of the vertex configurations (dashed lines). Vertices without diagonal reflection symmetry correspond
to squares. The gray (resp. white) triangles or squares correspond to horizontal arrows pointing toward
(resp. from) the central vertex, and vertical arrows pointing from (resp. toward) the central vertex.

by successive elementary loop reversals. For illustration, we display in Fig.4.6 a sequence
of mutations applied to a length 2 portion of boundary in the A2 case. The central
configuration corresponds to the basic staircase boundary.

All our 6V boundaries are generated by iterated loop reversals on the 6V basic stair-
case. However, the basic staircase has the particular property that its top and bottom
boundary vertical edges alternate between up and down. Loop reversals involving these
will create zones of successive up or down edges, with the property that the total spin
(i.e. the total number of up minus down edges) remains 0. We deduce the following:

Lemma 4.8. The boundaries of the Ar T-system correspond to the configurations of the
6V model on an infinite strip of width r − 1, such that there exist two times jmin and
jmax ∈ Z with the same parity such that:

• (i) The portions of 6V boundary for j 6 jmin and for j > jmax are identical to those
corresponding to the basic staircase.

• (ii) The total spin for the portion for jmin 6 j 6 jmax of 6V boundary is zero for
both top and bottom vertical edges.

Finally, the 6V boundaries must also carry the information of the initial data: there
is one initial value per vertex of the original boundary, hence these may be represented
as face labels for the 6V configuration (including the bottom and top faces with only 3
bounding edges).

4.8 From general boundaries to networks

We now wish to associate transfer matrices to the 6V configurations described above.

4.8.1 6V and square/triangle decomposition

To define the transfer matrices associated to 6V configurations, we first associate to
each 6V configuration a square/triangle decomposition of the dual square lattice via the
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Figure 4.8: A typical vertical slice in square/triangle decomposition (a) and the associated 6V config-
uration (b) in the A7 case. The squares in (a) are further cut into two triangles by drawing the second
diagonal. The configurations (a)-(b) determine the H, V structure of the transfer matrix (c) where green
(resp. red) segments between lines i, i + 1 correspond to Hi,i+1 (resp. Vi,i+1) matrices. The relative
position of segments in consecutive horizontal slices corresponds to the order of multiplication of the
associated matrices. We also indicate the network (d) corresponding to the complete matrix product.
The labels ai, bi are now face labels of the network.

correspondence of Fig.4.7. Note that each edge of the square lattice is adjacent to two
polygons (triangle or square) of opposite colors.

4.8.2 Slice transfer matrix

Any given 6V boundary is decomposed into vertical slices of unit width, made of a vertical
sequence of r− 1 vertices. To each such slice we associate an r + 1× r + 1 matrix T . The
matrix T is defined recursively from the bottom to the top of the slice according to its
6V configurations as follows.

For illustration and help, we have represented in Fig.4.8 a typical slice configuration (a)
in square/triangle decomposition and (b) in 6V form. We first consider the square/triangle
decomposition of the 6V slice at hand, the vertices of which carry the initial data, say
a1, a2, ..., ar from bottom to top on the left and b1, b2, ..., br on the right. We further
split all the squares into pairs of triangles by drawing their second diagonal. Note that
horizontal edges are adjacent to two triangles of opposite colors. By a slight abuse of
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language, we call again rhombi such pairs of triangles. With this definition, we are left
with two unpaired triangles with edges ar − br and a1 − b1 respectively. This is repaired
by adding the missing triangle of the opposite color on both top and bottom of the slice,
with a third vertex carrying the value ar+1 = br+1 = 1 and a0 = b0 = 1. As they all carry
the same value 1, it will be convenient to identify all the vertices of the bottom layer as
well as all those of the top one.

We label the lines supporting the horizontal edges of the 6V and the two extra rows of
vertices by 1, 2, ..., r + 1, from bottom to top. We denote by Ti the matrix corresponding
to the partial slice extending from lines 1 to i.

We start by defining T1 = H1,2(a1, b1, x) if the bottom triangle is white and T1 =
V1,2(1, a1, b1) if it is gray, where x is the top vertex value of the rhombus containing the
bottom triangle. Let us consider the vertices i and i + 1, for i = 1, 2, ..., r − 1. If the 6V
vertical edge between line i and i + 1 points up (resp. down), then Ti+1 is obtained by
multiplying Ti by an operator Vi,i+1 (resp. Hi,i+1) of Eqs. (4.9-4.10). Moreover the order
of multiplication is from the left (resp. right) if the diagonal of the square is the first,
connecting the SW and NE corners (resp. second, connecting NW to SE corners). This
gives:

T iT iVi,i+1 Hi,i+1 T iHi,i+1 T Vi,i+1 T iVi,i+1 T iHi,i+1T    =i+1 i (4.13)

The three arguments of the Vi,i+1 and Hi,i+1 operators are respectively (xi−1, ai, bi) and
(ai, bi, ui+1), where xi−1 (resp. ui+1) is the third vertex label of the gray triangle with
edge ai − bi. This defines T = Tr uniquely.

Example 4.9. Let us consider the case of Fig.4.8 (a)-(c). The total matrix T = T7 is
obtained recursively as follows:

T1 = V1,2(1, a1, b1) T2 = V2,3(a1, a2, b2)T1 T3 = T2 V3,4(b2, a3, b3) T4 = T3 H4,5(a4, b4, b5)
T5 = H5,6(a5, b5, b6)T4 T6 = T5 V6,7(b6, a7, b7) T7 = H7,8(a7, b7, 1)T6

4.8.3 Networks

As pointed out earlier, the operators with respective indices i, i + 1 and j, j + 1 commute
as soon as j > i + 1 or j + 1 < i. A useful way of representing the matrices Vi,i+1 and
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Hi,i+1 is as networks. We start with the representation:

b b
x

u
b

a
b

a

i

i+1

a b

u

a

x

b

Hi,i+1(a, b, u) Vi,i+1(x, a, b) (4.14)

where the left vertices i, i+1 are connected to the right vertices i, i+1 via weighted edges
i → j corresponding to the nonzero entries (i, j) of the matrices H , V of (4.4). More
precisely, a diagonal entry 1 with indices (j, j) is coded by a thick black horizontal edge
connecting the left vertex j to the right vertex j. The other nontrivial entries (j, k) are
coded by thick green (resp. red) edges for H (resp. V ), connecting the left vertex j to
the right vertex k. The actual values of these nontrivial entries are coded by the labels
of the faces of the network x, a, b, u in (4.14). Implicitly, the full representation of Hi,i+1

and Vi,i+1 as r + 1 × r + 1 matrices also involves thick horizontal black edges connecting
the left vertices 1, 2, ..., i − 1, i + 2, ..., r + 1 to their right counterparts, corresponding to
the block form of (4.5), and which we omitted in (4.14) for simplicity.

The multiplication of two matrices is naturally coded by the concatenation of their
networks, by identifying the right vertices of the network of the first matrix to the left
ones of that of the second. The result is in general a rectangle of height r + 1, and width
possibly smaller than the number of matrices multiplied, as some horizontal black lines
may be freely removed to gain space. We denote by N(M) the network associated to
the matrix M . For illustration, we have represented in Fig.4.8 (d) the network N(T )
corresponding to the matrix T of Example 4.9. As another example, the “mutation”
Lemma 4.7 reads in network language:

=x y z

b

u

b

u

x y’ z

The networks provide us with natural weighted path models. Indeed, the matrix entry
Tm,p is interpreted as the partition function for paths from left to right on the network
of T , starting from the left vertex m and ending at the right vertex p, weighted by the
product of weights of the edges visited, namely:

Tm,p =
∑

paths m→p
on N(T )

∏

edges e
visited

w(e) (4.15)

4.9 General solution as path model on networks

We now give the general expression for the solution Tα,j,k of the Ar T-system for arbitrary
boundary conditions.
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4.9.1 The case of T1,j,k

As shown above, any boundary condition is coded by a configuration of the 6V model on
an infinite strip of width r − 1 with the properties (i)-(ii) of Lemma 4.8.

Definition 4.10. The projection of (1, j, k) on the boundary is the portion of boundary
between the broken lines ℓj0 and ℓj1, containing the bottom vertices (1, j0, k0) and (1, j1, k1),
repectively such that j0 − k0 = j − k and j1 + k1 = j + k with j0 maximal and j1 minimal.

To this projection we naturally associate the corresponding truncated configuration C

of the 6V model on a rectangle of height r − 1 between the planes j = j0 and j = j1,
and with face labels given by the original vertex values of the boundary. Let Tj0,j1(C)
denote the product of vertical slice transfer matrices from the slice (j0, j0 + 1) to the slice
(j1 − 1, j1). Then we have:

Theorem 4.11. The solution of the Ar T -system with arbitrary fixed boundary reads for
α = 1:

T1,j,k = T1,j1,k1 (Tj0,j1(C))1,1 (4.16)

in the above notations.

Proof. This is proved by induction under mutation. First, (4.16) is satisfied for C = C0,
corresponding to the truncated basic staircase boundary. Indeed, we may rewrite (4.11)
as

T1,j,k = T1,j+k−1,1

( k−2∏

i=0

B(a(j − k + 1 + 2i), a(j − k + 2 + 2i))

×A(a(j − k + 2 + 2i), a(j − k + 3 + 2i))
)

1,1

by use of A(a, a′)1,j = δj,1 and B(a, a′)j,1 = δj,1a
′

1/a1. We see that this boils down to
(4.16) with k0 = k1 = 1, j1 = j + k − 1, and j0 = j − k + 1. As explained above, any
mutation µ may be implemented by an elementary loop reversal on the 6V configurations,
and only mutations within the projection of (1, j, k) affect the value of T1,j,k.

Let us assume (4.16) holds for some 6V configuration with face labels C. We wish
to apply a mutation µ, i.e. form the configuration µ(C), identical to C except for the
reversed elementary loop and the updated face label. Assume this is a forward mutation,
i.e. the corresponding loop is oriented clockwise in C, and assume for definiteness that it
occurs between vertical slices s and s + 1, with respective slice transfer matrices T (s) and
T (s+1), and between horizontal lines i and i + 1. Due to the rules (4.13), examining the
triangle decompositions of the four adjacent vertices to the loop, we find the following
four possibilities:
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Recalling that the choice of diagonal in the white squares is arbitrary, we may bring all
situations to the first one, by use of the identity (4.10) within the relevant slice transfer
matrices. Applying the mutation to this case amounts to the transformation of Fig.4.3
(b). We now have the following four possibilities for the environment of the reversed loop:

To recover the correct slice transfer matrices, we must flip the diagonals of the gray
squares, by applying (4.9). Taking the product of transfer matrices over all slices, we
finally get the “mutated” matrix Tj0,j1(µ(C)). We may repeat the same argument for
backward mutations, while exchanging the roles of white and gray triangles, and for
mutations at vertices with α = 1 and α = r with the obvious changes.

As before, we must however consider separately the case when the mutation occurs
in the lower left or lower right square face of the truncated 6V configuration. In these
cases indeed, the projection of (1, j, k) is modified and we must drop (resp. insert) a first
or last slice transfer matrix when the mutation is forward (resp. backward). As before,
dropping/inserting a last slice transfer matrix implements the correct change of prefactor
T1,j1,k1 that makes it agree with the new projection. In all cases, (4.16) follows for µ(C).
This completes the proof of the Theorem.

4.9.2 Non-intersecting paths on networks and the case of Tα,j,k

Let Nj0,j1(C) denote the network associated to the transfer matrix Tj0,j1(C). We may in-
terpret T1,j,k/T1,j1,k1 as the partition function for weighted paths on the network Nj0,j1(C),
that start at the left vertex 1 and end at the right vertex 1, namely:

T1,j,k

T1,j1,k1

=
∑

paths p: 1→1
on Nj0,j1

(C)

∏

edges e
visited

w(e) (4.17)

where w(e) stands for the weight of the edge e.
Note that in the case of the basic staircase C0, this path interpretation is different from

that of Ref. [7]. Nevertheless, we may like in Ref. [7] interpret the determinant identity
(4.2) that relates Tα,j,k to T1,j,k in terms of non-intersecting paths, now on networks.

Let us pick an arbitrary boundary C, and rewrite the determinant formula (4.2) as:

Tα,j,k∏
16b6α T1,j1(b),k1(b)

= det
16a,b6α

(
T1,j−a+b,k+a+b−α−1

T1,j1(b),k1(b)

)
(4.18)

where we denote by (1, j1(b), k1(b)) the common rightmost bottom vertex of the projec-
tions onto the boundary C of the vertices (1, j − a + b, k + a + b − α − 1), a = 1, 2, ..., α.
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Similarly let us denote by (1, j0(a), k0(a)) the common leftmost bottom vertex of the pro-
jections onto the boundary C of the vertices (1, j − a+ b, k + a+ b−α − 1), b = 1, 2, ..., α.

We denote by (j, x) the vertex of N(C) that lies between the slices j − 1, j and j, j +1
at height x, namely the common exit and entry point x of respectively the network for the
slice j−1, j and that for j, j +1. For instance the left vertex x of Na,b(C) has coordinates
(a, x), while the right vertex of same height has coordinates (b, x).

We finally have:

Theorem 4.12. The solution Tα,j,k of the Ar T -system for arbitrary boundary is equal
to
∏

16b6α T1,j1(b),k1(b) times the partition function for families of α non-intersecting paths
on the network N(C), starting at the vertices (j0(a), 1), a = 1, 2, ..., α and ending at the
vertices (j1(b), 1), b = 1, 2, ..., α.

Proof. In view of (4.16) and its reformulation in terms of paths on networks (4.17), we may
interpret the (a, b) term in the determinant (4.18) as the partition function for paths from
the bottom left to the bottom right vertex on the network Nj0(a),j1(b)(C). The Theorem
follows from the application of the Lindström-Gessel-Viennot theorem [17] [13].

Corollary 4.13. The solution Tα,j,k of the Ar T -system for arbitrary boundary condi-
tion Tα,j,kα,j

= aα,j (α ∈ Ir, j ∈ Z) is a positive Laurent polynomial of its initial data
(aα,j)α∈Ir;j∈Z.

4.10 An example

Let us consider the case r = 3 and the boundary depicted in Fig.4.9, with the A3 boundary
condition that T0,j,k = T4,j,k = 1 for all j, k. We wish to compute T2,3,3 in terms of the
indicated boundary values (blue vertices):

T1,0,1 = a1 T1,1,0 = b1 T1,2,1 = c1 T1,3,2 = d1 T1,4,1 = e1 T1,5,0 = f1 T1,6,1 = g1

T2,0,0 = a2 T2,1,1 = b2 T2,2,2 = c2 T2,3,1 = d2 T2,4,0 = e2 T2,5,1 = f2 T2,6,2 = g2

T3,0,1 = a3 T3,1,0 = b3 T3,2,1 = c3 T3,3,0 = d3 T3,4,1 = e3 T3,5,0 = f3 T3,6,1 = g3

We have the determinant formula

T2,3,3 =

∣∣∣∣
T1,3,2 T1,4,3

T1,2,3 T1,3,4

∣∣∣∣ =

∣∣∣∣
TQ1 TQ2

TQ3 TQ4

∣∣∣∣ (4.19)

which involves the 4 points Q1, Q2, Q3, Q4 of the α = 1 plane. In turn, the projections of
the Qi onto the boundary read: X = (1, j0(2), k0(2)) = (1, 0, 1), Y = (1, j0(1), k0(1)) =
(1, j1(1), k1(1)) = (1, 3, 2) and Z = (1, j1(2), k1(2)) = (1, 6, 1).

Next, we construct the 6V configuration with face labels of Fig.4.10 (a) corresponding
to the boundary. The simplest way is to start from the basic staircase and apply to
it the 3 mutations that bring it to the boundary under consideration (see the dashed
lines in Fig.4.9 (b)). We also construct the triangle decomposition of Fig.4.10 (b), by
drawing the diagonal reflection symmetry axes of the vertices and a second diagonal in
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Figure 4.9: A view in perspective of a particular boundary (a) for the A3 T-system (blue vertices
and thick solid black edges). We have indicated the three horizontal layers α = 1, 2, 3, and the j, k

coordinates at α = 1. We have represented the vertex P = (2, 3, 3) and the four points of the α = 1 layer
Q1 = (1, 3, 2), Q2 = (1, 4, 3), Q3 = (1, 2, 3), Q4 = (1, 3, 4) involved in the determinant formula (4.19).
The projections of the latter onto the boundary are X = (1, 0, 1), Y = Q1 = (1, 3, 2) and Z = (1, 6, 1).
We also represent the same information (b) in projection onto the (k, j) plane, with layers α = 1, 2, 3
represented respectively in black, red, blue. We have also indicated in dashed lines the mutations leading
to this boundary from the basic staircase one.
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Figure 4.10: The 6V version of the boundary of Fig.4.9 (a) with its face labels and the corresponding
triangle decomposition of the dual (b). The associated network (c) is represented with an indication of
the successive slices (vertical dashed lines) and the corresponding face labels. The truncation (d) of the
network is the only information needed to get the result. The partition function for paths from X to Z

that do not visit Y is a weighted sum over the four paths (e),(f),(g),(h).
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the remaining squares. This allows to build the network of Fig.4.10 (c), by following
the above procedure. In particular the edge-weights of the network are given by the
surrounding face labels according to the rules (4.14).

The Lindström-Gessel-Viennot theorem expresses T2,3,3/(T1,3,2T1,6,1) as the partition
function for pairs of non-intersecting paths on this network that start at X, Y and end
at Y, Z. This is simply the partition function for a single path from X to Z that does
not visit Y . To compute the latter, we may restrict ourselves to the truncation of the
network depicted in Fig.4.10 (d), where the edges keep their original weights from (c).
The partition function is therefore a weighted sum over the four paths (e),(f),(g),(h), and
the final formula follows:

T2,3,3

T1,3,2T1,6,1
=

1

d3g1
+

c3d3

d2d3g1
+

c2e1e3

d1d2e2g1
+

c2f2

d1e2g1
(4.20)

5 Application: Q-system from the T -system solutions

In this section, we compare the restriction of our T -system solution to the case of the
Ar Q-system whose solution was worked out in [5]. We find alternative path models for
describing the general solutions.

5.1 Q system

The Q-system for Ar is obtained from the T -system by “forgetting” about the variable
j. This can be done in various ways, here we adopt the following: we impose that the
solution and the initial data be periodic, namely that Tα,j+2,k = Tα,j,k for all α, j, k. In
this case, the quantities Rα,k = Tα,α+k [2],k are easily seen to satisfy the Ar Q-system:

Rα,k+1Rα,k−1 = R2
α,k + Rα+1,kRα−1,k

R0,k = Rr+1,k = 1 (5.1)

In [5], the boundary data for (5.1) were shown to be in bijection with Motzkin paths of
length r− 1, m = (m1, m2, ..., mr), and to take the form xm = {Rα,mα , Rα,mα+1}r

α=1. The
explicit solution Rα,k for each such data was expressed as follows. First, for each Motzkin
path m one constructs an explicit rooted oriented graph Γm with 2r+2 vertices, and with
weighted edges encoded in a 2r + 2 × 2r + 2 transfer matrix Tm. The root corresponds
to the row and column index 1 of the transfer matrix. The matrix Tm is constructed in
such a way that any oriented edge i → j of Γm going away from the root (“ascent”) has
a trivial weight 1, while any oriented edge i → j pointing toward the root (“descent”)
has some-non-trivial weight t×yi,j(m), the latter being a Laurent monomial of the initial
data. The main result of [5] for α = 1 reads:

R1,n+m1 = R1,m1

(
(I − Tm)−1

)
1,1

∣∣∣
tn

(5.2)

where the notation X|tn denotes the coefficient of tn in X. In other words, the quantity
R1,n+m1/R1,m1 is the partition function for paths from and to the root on Γm, with exactly
n descents.
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Example 5.1. For the case of A3, the transfer matrix T2,1,0 for the Motzkin path (2, 1, 0)
reads [5]:

T2,1,0 =





0 1 0 0 0 0 0 0
ty1 0 1 0 0 0 0 0
0 ty2 0 1 1 0 0 0
0 0 ty3 0 0 0 0 0
0 ty3,1 ty4 0 0 1 1 0
0 0 0 0 ty5 0 0 0
0 ty4,1 ty4,2 0 ty6 0 0 1
0 0 0 0 0 0 ty7 0





(5.3)

where:

y1 =
R1,3

R1,2
, y2 =

R2
2,2

R2,1R1,2R1,3
, y3 =

R1,2R2,2

R2,1R1,3
, y4 =

R2
1,2R

2
3,1

R3,0R2,1R2,2R1,3
, y5 =

R2,1R3,1

R3,0R2,2

y6 =
R2

2,1

R3,0R3,1R2,2

, y7 =
R3,0

R3,1

, y4,2 =
R2

1,2

R3,0R2,2R1,3

, y3,1 =
R2

3,1

R3,0R2,1R1,3

, y4,1 =
1

R3,0R1,3

(5.4)

The general solution for Rα,n was shown in [5] to be expressible as partition function
for families of α strongly non-intersecting weighted paths on Γm, via a generalization of
the Lindström-Gessel-Viennot Theorem.

5.2 Network formulation from T -system

As mentioned above, the Q-system restriction amounts to having a periodic solution of
the T -system, with period 2 in the variable j. For such a solution, boundaries are much
simpler, as they are also 2-periodic in the j direction. However, constructing such a
boundary by iterated mutations on the basic staircase (which has the desired periodicity)
involves repeating each mutation an infinite number of times (with periodicity 2 in the
j direction). So stricto sensu these boundaries are not covered by our previous solution.
But for each fixed value of (α, j, k) only a finite portion of the boundary is needed to
express Tα,j,k. So we may apply a finite number of mutations for each case and get the
correct result, and just formally complete the boundary by periodicity. We may therefore
apply the results of Section 4 here.

In the periodic case, the boundary values must read Tα,0,kα,0 and Tα,1,kα,1 for j = 0, 1
mod 2 respectively. Note that kα,1 − kα,0 = ±1. Defining mα = Min(kα,0, kα,1), mα + 1 =
Max(kα,0, kα,1), we find that m is the relevant Motzkin path for describing the Q-system
boundary data.

According to our results, each periodic boundary may be viewed as a configuration of
the 6V model but now with a periodicity of 2 in the direction of the strip. In other words,
we have a configuration of the 6V model on a cylinder of perimeter 2 and height r − 1.
Moreover, as we started from a configuration with alternating vertical arrows (spin 0 with
two edges) on both the bottom and the top of the strip, any mutated configuration has
one vertical edge pointing up and one pointing down on the upper and lower boundaries
of the cylinder. We have the following:

the electronic journal of combinatorics 17 (2010), #R89 37



Lemma 5.2. The 6V configurations on a cylinder of perimeter 2 and height r − 1 with
alternating edge orientations on top and bottom are in bijection with Motzkin paths of
length r − 1, with m1 = 0 or 1.

Proof. The bijection goes as follows. We start from a Motzkin path m = (m1, m2, ..., mr),
with m1 = 0 or 1. Then we have three possible situations for each of the r−1 steps of the
Motzkin path: xi = mi+1−mi = 0,−1, or 1, and two possible values for yi = i+mi = 0, 1
modulo 2, for i = 1, 2, ..., r−1. We have the following dictionary between the six possible
pairs (xi, yi) and the six vertices of the 6V model.

(−1,0)(0,1) (0,0) (1,1) (1,0) (−1,1)

More simply, xi is the “algebraic sum” of the two horizontal edges (0 if they are opposed,
1 if they both point to the right, −1 if they both point to the left) and yi is determined
only by the bottom vertical edge (1 if it points down, 0 if it points up).

Let us arrange the vertices associated to {(xi, yi)}r−1
i=1 on a single column, from bottom

to top. Note that the rules above make the orientations of edges compatible, so we can
identify the bottom vertical edge of the vertex i+1 with the top vertical edge of the vertex
i. There is a unique way to complete this configuration into one on the 2× r−1 cylinder.
We must indeed add a second column of vertices which are identical to the previous ones,
up to reversal of all vertical arrows (the unique solution respecting the ice rule), in order
to satisfy both the horizontal periodic boundary condition and the alternating one on top
and bottom. Note that m1 = 0 or 1 determines whether the bottom left vertical edge
points down or up.

Example 5.3. We consider the case r = 3 and the Motzkin path (2, 1, 0). We have
xi = −1, yi = 1 for i = 1, 2. The 6V configuration is represented in Fig.5.1 (a). We have
indicated the values of kα,j in the faces of the configuration, corresponding to α = 1, 2, 3
and j = 0, 1. These are not to be mistaken for the usual face labels of the 6V configuration,
which are the assigned boundary data aα,j for the corresponding vertices: Tα,j,kα,j

= aα,j.

To each Motzkin path m = (m1, m2, ..., mr), we may now associate a configuration
of the 6V model on a cylinder of perimeter 2 and height r − 1 via Lemma 5.2 by using
the shifted Motzkin path m′ = m − 2(p, p, ..., p), where p = [m1

2
]. The corresponding

values of kα,j are uniquely determined by the Ampère rule and by mα = Min(kα,0, kα,1),
mα+1 = Max(kα,0, kα,1). The solutions for T1,j,k of Theorem 4.11 and for Tα,j,k of Theorem
4.12 involve only two types of slice transfer matrices, due to the periodicity, namely that
for all slices of the form [2a, 2a + 1] and that for [2a− 1, 2a]. These are coded by the two
columns of the 6V configuration, which have the same horizontal edge orientations and
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Figure 5.1: The periodic 6V configuration (a) associated to the Motzkin path (2, 1, 0) for r = 3.
The corresponding boundary vertices (α, j, k) may be read off the configuration: the third index k is
determined by the Ampère rule and by m1 = 2, and is indicated in each face. We have also sketched
the associated rhombus/triangle decomposition (b) of the two corresponding slices, with the assigned
boundary values.

opposite vertical ones. Using the construction of Sect. 4.8.2, the slice transfer matrices
may be constructed inductively as follows, directly from the Motzkin path m:

We start from m1. If it is even, the first slice transfer matrix has T1 = H1,2, if it is odd
it has T1 = V1,2. Then, having constructed Ti, say with a last factor Hi,i+1 (resp. Vi,i+1),
we have three possibilities (according to the value of xi = mi+1 − mi):

• (i) xi = 0: then Ti+1 = Vi,i+1Ti = TiVi,i+1 (resp. Ti+1 = Hi,i+1Ti = TiHi,i+1).

• (ii) xi = 1: then Ti+1 = TiHi,i+1 (resp. Ti+1 = Vi,i+1Ti).

• (iii) xi = −1: then Ti+1 = Hi,i+1Ti (resp. Ti+1 = TiVi,i+1).

The arguments of the matrices are, as usual, the boundary data at the vertices of the
gray triangles, with the vertex indices of the form (α, j, kα,j) where kα,j are determined
by m. This gives a matrix Um = Tr for each Motzkin path m. The second slice is treated
analogously. Due to the fact that the its 6V configuration is identical to the first up to
reversal of all vertical arrow, it is easy to write the corresponding slice transfer matrix
Ũm in terms of Um. Indeed, the rhombus/triangle decomposition of the second slice is
the reflection of the first w.r.t. a vertical axis, and with all colors of triangles inverted.
We therefore have to interchange H ↔ V , and to reverse the order of the factors. More
precisely, let ∗ be the involutive anti-automorphism ((ab)∗ = b∗a∗, (a∗)∗ = a) such that
V ∗

i,i+1 = Hi,i+1, then we have Ũm = (Um)∗.

Example 5.4. In the case of the Motzkin path (2, 1, 0) for r = 3, we easily read the
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transfer matrices on the rhombus/triangle decomposition of Fig.5.1 (b):

U2,1,0 = H3,4(R3,0, R3,1, 1)H2,3(R2,1, R2,2, R3,1)H1,2(R1,2, R1,3, R2,2)

=





1 0 0 0
R2,2

R1,3

R1,2

R1,3
0 0

R3,1

R1,3

R1,2R3,1

R1,3R2,2

R2,1

R2,2
0

1
R1,3

R1,2

R1,3R2,2

R2,1

R2,2R3,1

R3,0

R3,1





Ũ2,1,0 = V1,2(1, R1,3, R1,2)V2,3(R1,2, R2,2, R2,1)V3,4(R2,1, R3,1, R3,0)

=





R1,3

R1,2

R2,2

R1,2R2,1

R3,1

R2,1R3,0

1
R3,0

0
R2,2

R2,1

R1,2R3,1

R2,1R3,0

R1,2

R3,0

0 0
R3,1

R3,0

R2,1

R3,0

0 0 0 1




(5.5)

Let us apply the result of Theorem 4.11, with k0 = m1 + 1 = k1 and k = n + m1,
j0 = j − n + 1, j1 = j + n − 1. Defining ǫ = 1 − (k mod 2) and θ = j1 mod 2, we get:

R1,n+m1 = T1,ǫ,k = T1,θ,k1

(
(ŨmUm)n−1

)

1,1

= R1,m1+1

(
(ŨmUm)n−1

)

1,1
= R1,m1

(
(UmŨm)n

)

1,1

by use of (Um)1,x = δ1,x and (Ũm)x,1 = δx,1T1,1−θ,k1−1/T1,θ,k1 = δx,1R1,m1/R1,m1+1. Com-
paring this with (5.2), we deduce the

Theorem 5.5. Let m be a Motzkin path of length r − 1, Tm the 2r + 2× 2r + 2 transfer
matrix of the Q-system solution of Ref. [5], and Um, Ũm as above. Then we have an
identity between “resolvents”:

(
(I − Tm)−1

)
1,1

=
(
(I − tUmŨm)−1

)

1,1

Note that the matrices Um and Ũm have size r + 1× r + 1. We may however view the
product UmŨm as the transfer matrix of a weighted graph Gm with 2r+2 vertices labeled
1, 2, ..., (r+1), 1′, 2′, ..., (r+1)′, defined as follows. We interpret the matrix element (Um)i,j

as coding the weights of the oriented edge i → j′ of Gm while (Ũm)i,j codes the weight
of the oriented edge i′ → j. Alternatively, we may form the 2 × 2 block transfer matrix

θm =

(
0 Ũm

Um 0

)
for Gm and note that

(
(I −

√
t θm)−1

)

1,1
=
(
(I − tUmŨm)−1

)

1,1
.

Noting that the non-zero elements of Ũm have the same indices as those of the transpose
of Um, we see that Gm has doubly oriented edges only, with specific weights for each
orientation. From the network construction, all these weights are Laurent monomials of
the initial data.
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Example 5.6. For the Motzkin path m = (2, 1, 0) of r = 3, we may use the matrices
(5.5). Without altering the resolvent, we may gauge-transform the matrices Um and Ũm

with invertible matrices R, L with Lj,1 = L1,j = δj,1: Vm = L−1UmR and Ṽm = R−1ŨmL.
For the choices:

L = diag(1,
R1,2R2,1

R2,2

,
R2,1R3,0

R3,1

, R3,0) R = diag(1, R1,2, R2,1, R3,1)

we find that

Vm =





1 0 0 0
y2 y3 0 0
y3,1 y4 y5 0
y4,1 y4,2 y6 1



 Ṽm =





y1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 y7





in terms of the parameters of (5.4). One checks directly the statement of Theorem 5.5

with the matrix (5.3) and by computing the rational fraction
(
(I − tVmṼm)−1

)

1,1
.

Finally, turning to Rα,n for α > 1, we have a simpler picture than in [5], as the quantity
Rα,n+m1/(Rα,m1)

α is expressed directly as the partition function for α non-intersecting
paths on the associated network, without having to generalize the Lindström-Gessel-
Viennot Theorem.

6 Conclusion

In this paper we have presented an explicit solution of the Ar T -system in terms of
arbitrary boundary data. This solution is expressed in terms of partition functions of
weighted paths on some particular networks, determined by the boundary.

We have briefly described the connection of the T -system to a particular cluster alge-
bra. In particular, the sets of boundary data we have considered here form only a subset
of the clusters in this cluster algebra. What happens is that the form of the cluster mu-
tations can change in general from the equation (1.1), in some sense, the equation itself
evolves, leading to clusters of a different kind. Nevertheless, the positivity conjecture
seems to hold for these other clusters as well. It would be extremely interesting to probe
whether these other clusters also have a description in terms of networks, that would make
the Laurent positivity property manifest, like in the cases studied in this paper.

Another possible direction of generalization concerns non-commutative cluster alge-
bras. In [8], the cluster algebra for the non-commutative A1 Q-system was introduced,
and its positivity proved by use of a non-commutative weighted path model. We have
checked that it can be reformulated as a non-commutative network model in the spirit of
the present paper, but with transfer matrices with entries in a non-commutative algebra.
We hope to report on this direction in a later publication.

After completion of this paper, we became aware of Ref.[3], which deals with similar
problems, but from a different point of view.
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