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Abstract

Each Coxeter element c of a Coxeter group W defines a subset of W called the
c-sortable elements. The choice of a Coxeter element of W is equivalent to the choice
of an acyclic orientation of the Coxeter diagram of W . In this paper, we define a
more general notion of Ω-sortable elements, where Ω is an arbitrary orientation of
the diagram, and show that the key properties of c-sortable elements carry over to
the Ω-sortable elements. The proofs of these properties rely on reduction to the
acyclic case, but the reductions are nontrivial; in particular, the proofs rely on a
subtle combinatorial property of the weak order, as it relates to orientations of the
Coxeter diagram. The c-sortable elements are closely tied to the combinatorics of
cluster algebras with an acyclic seed; the ultimate motivation behind this paper is
to extend this connection beyond the acyclic case.

1 Introduction

The results of this paper are purely combinatorial, but are motivated by questions in
the theory of cluster algebras. To define a cluster algebra, one requires the input data
of a skew-symmetrizable integer matrix; that is to say, an n × n integer matrix B and
a vector of positive integers (δ1, . . . , δn) such that δiBij = −δjBji. (For the experts: we
are discussing cluster algebras without coefficients.) This input data defines a recursion
which produces, among other things, a set of cluster variables . Each cluster variable
is a rational function in x1, . . . , xn, and the cluster variables are grouped into overlapping
sets of size n, called clusters. The cluster algebra is the algebra generated, as a ring, by
the cluster variables.
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Experience has shown1 that the properties of the cluster algebra are closely related to
the properties of the corresponding Kac-Moody root system, coming from the generalized
Cartan matrix A defined by Aii = 2 and Aij = −|Bij | for i 6= j. Let W stand for the Weyl
group of the Kac-Moody algebra. From the Cartan matrix, one can read off the Coxeter
diagram of W . This is the graph Γ whose vertices are labeled by {1, 2, . . . , n} and where
there is an edge connecting i to j if and only if Aij 6= 0. To encode the structure of B, it
is natural to orient Γ, directing i← j if Bij > 0. This orientation of Γ is denoted by Ω.

This paper continues a project [15, 18, 19] of attempting to understand the structure
of cluster algebras by looking solely at the combinatorial data (W, Γ, Ω). In the previous
papers, it was necessary to assume that Ω was acyclic. This assumption is no restriction
when Γ is a tree—in particular, whenever W is finite. In general, however, many of the
most interesting and least tractable cluster algebras correspond to orientations with cycles.
Methods based on quiver theory, which have proved so powerful in the investigation of
cluster algebras, were originally also inapplicable in the case of cycles; recent work of
Derksen, Weyman and Zelevinsky [6] has partially improved this situation.

The aim of this note is to extend the combinatorial results of [19] to the case of an
orientation with cycles. This paper does not treat cluster algebras at all, but proves
combinatorial results which will be applied to cluster algebras in a future paper. The
results can be understood independently of cluster algebras and of the previous papers.
The arguments are valid not only for the Coxeter groups that arise from cluster algebras,
but for Coxeter groups in full generality. In this sense, the title of the paper is narrower
than the subject matter, but we have chosen the narrow title as a briefer alternative to a
title such as “Sortable elements for non-acyclic orientations of the Coxeter diagram.”

Let S be the set of simple generators of W , i.e. the vertex set of Γ. If Ω is acyclic, then
we can order the elements of S as s1, s2, . . . , sn so that, if there is an edge si ← sj, then i <
j. The product c(Ω) = s1s2 · · · sn is called a Coxeter element of W . Although Ω may
not uniquely determine the total order s1, s2, . . . , sn, the Coxeter element c(Ω) depends
only on Ω. Indeed, Coxeter elements of W are in bijection with acyclic orientations of Γ.

Given a Coxeter element c, every element w of W has a special reduced word called
the c-sorting word of w. The c-sortable elements of [16, 17, 18, 19] are the elements
of W whose c-sorting word has a certain special property. We review the definition in
Section 3. Sortable elements provide a natural scaffolding on which to construct cluster
algebras [18, 20]. The goal of this paper is to provide a definition of Ω-sortable elements
for arbitrary orientations which have the same elegant properties as in the acyclic case
(always keeping in mind the underlying goals related to cluster algebras).

Say that a subset J of S is Ω-acyclic if the induced subgraph of Γ with vertex set J
is acyclic. If J is Ω-acyclic, then the restriction Ω|J defines a Coxeter element c(Ω, J) for
the standard parabolic subgroup WJ . (Here WJ is the subgroup of W generated by J .)
We define w to be Ω-sortable if there is some Ω-acylic set J such that w lies in WJ and w
is c(Ω, J)-sortable, when considered as an element of WJ . The definition appears artificial

1See [8], [18] for direct connections between cluster algebras and root systems; see [4] and [12], and
the works cited therein, for connections between cluster algebras and quivers, and see, for example, [11]
for the relationship between quivers and root systems.
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at first, but in Section 3 we present an equivalent, more elegant definition of Ω-sortability
which avoids referencing the definition from the acyclic case.

When J is Ω-acyclic, we will often regard Ω|J as a poset. Here the order relation,
written 6J , is the transitive closure of the relation with r >J s if there is an edge r → s.

We now summarize the properties of Ω-sortable elements for general Ω. All of these
properties are generalizations of results on the acyclic case which were proved in [19].
As in the acyclic case, we start with a recursively defined downward projection map
πΩ
↓ : W → W . (The definition is given in Section 3.) We then prove the following

property of πΩ
↓ .

Proposition 1.1. Let w ∈ W . Then πΩ
↓ (w) is the unique maximal (under weak order)

Ω-sortable element weakly below w.

As immediate corollaries of Proposition 1.1, we have the following results.

Theorem 1.2. The map πΩ
↓ is order-preserving.

Proposition 1.3. The map πΩ
↓ is idempotent (i.e. πΩ

↓ ◦ πΩ
↓ = πΩ

↓ ).

Proposition 1.4. Let w ∈ W . Then πΩ
↓ (w) 6 w, with equality if and only if w is

Ω-sortable.

We also establish the lattice-theoretic properties of Ω-sortable elements and of the
map πΩ

↓ .

Theorem 1.5. If A is a nonempty set of Ω-sortable elements then
∧

A is Ω-sortable. If
A is a set of Ω-sortable elements such that

∨

A exists, then
∨

A is Ω-sortable.

Theorem 1.6. If A is a nonempty subset of W then πΩ
↓ (

∧

A) =
∧

πΩ
↓ A. If A is a subset

of W such that
∨

A exists, then πΩ
↓ (

∨

A) =
∨

πΩ
↓ A.

None of these results are trivial consequences of the definitions; the proofs are non-
trivial reductions to the acyclic case. Our proofs rely on the following key combinatorial
result.

Proposition 1.7. Let w be an element of W and Ω an orientation of Γ. Then there is an
Ω-acyclic subset J(w, Ω) of S which is maximal (under inclusion) among those Ω-acyclic
subsets J ′ of S having the property that w > c(Ω, J ′).

We prove Proposition 1.7 by establishing a stronger result, which we find interesting
in its own right. Let L(w, Ω) be the collection of subsets J of S such that J is Ω-acyclic
and c(Ω, J) 6 w.

Theorem 1.8. For any orientation Ω of Γ and any w ∈W , the collection L(w, Ω) is an
antimatroid.
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We review the definition of antimatroid in Section 2. By a well-known result (Propo-
sition 2.5) on antimatroids, Theorem 1.8 implies Proposition 1.7.

A key theorem of [19] is a very explicit geometric description of the fibers of πc
↓ (the

acyclic version of πΩ
↓ ). To each c-sortable element is associated a pointed simplicial cone

Conec(v), and it is shown [19, Theorem 6.3] that πc
↓(w) = v if and only if wD lies in

Conec(v), where D is the dominant chamber. The cones Conec(v) are defined explicitly
by specifying their facet-defining hyperplanes. The geometry of the cones Conec(v) is inti-
mately related with the combinatorics of the associated cluster algebra. (This connection
is made in depth in [20].) In this paper, we generalize this polyhedral description to the
fibers of πΩ

↓ , when Ω may have cycles. We will see that this polyhedral description, while
not incompatible with the construction of cluster algebras, is nevertheless incomplete for
the purposes of constructing cluster algebras.

We conclude this introduction by mentioning a negative result. In [19, Theorem 4.3]
(cf. [16, Theorem 4.1]), c-sortable elements (and their c-sorting words) are characterized
by a “pattern avoidance” condition given by a skew-symmetric bilinear form. Gener-
alizing these pattern avoidance results has proved difficult. In particular, the verbatim
generalization fails, as we show in Section 5.

The paper proceeds as follows. In Section 2, we establish additional terminology and
definitions, prove Theorem 1.8, and explain how Theorem 1.8 implies Proposition 1.7.
In Section 3, we give the definitions of c-sortability and Ω-sortability, and prove Propo-
sition 1.1 and Theorems 1.5 and 1.6. Section 4 presents the polyhedral description of
the fibers of πΩ

↓ . In Section 5, we discuss the issues surrounding the characterization of
Ω-sortable elements by pattern avoidance.

In writing this paper, we have had to make a number of arbitrary choices of sign
convention. Our choices are completely consistent with our sign conventions from [19]
and are as compatible as possible with the existing sign conventions in the cluster algebra
and quiver representation literature. Our bijection between Coxeter elements and acyclic
orientations of Γ is the standard one in the quiver literature, but is opposite to the
convention of the first author in [16]. We summarize our choices in Table 1.

For i 6= j in [n], the following are equivalent:

There is an edge of Γ oriented si ← sj.

The B-matrix of the corresponding cluster algebra has Bij = −Aij > 0.

If J ⊆ [n] is Ω-acyclic and i 6= j are in J , the following are equivalent:

There is an oriented path in J of the form i← · · · ← j.

In the poset Ω|J , we have i <J j.

All reduced words for c(Ω, J) are of the form · · · si · · · sj · · · .

Table 1: Sign Conventions
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2 Coxeter groups and antimatroids

We assume the definition of a Coxeter group W and the most basic combinatorial facts
about Coxeter groups. Appropriate references are [2, 5, 9]. For a treatment that is very
well aligned with the goals of this paper, see [19, Section 2]. The symbol S will represent
the set of defining generators or simple generators of W . For each s, t ∈ S, let m(s, t)
denote the integer (or ∞) such that (st)m(s,t) = e. The Coxeter diagram Γ of W was
defined in Section 1. We note here that, for s, t ∈ S, there is an edge connecting s and t
in Γ if and only if s and t fail to commute. (The usual edge labels on Γ, which were not
described in Section 1, are not necessary in this paper.) For w ∈ W , the length of w,
denoted ℓ(w), is the length of the shortest expression for w in the simple generators. An
expression which achieves this minimal length is called reduced .

The (right) weak order on W sets u 6 w if and only if ℓ(u) + ℓ(u−1w) = ℓ(w).
Thus u 6 w if there exists a reduced word for w having, as a prefix, a reduced word for
u. Conversely, if u 6 w then any given reduced word for u is a prefix of some reduced
word for w. For any J ⊆ S, the standard parabolic subgroup WJ is a (lower) order ideal
in the weak order on W . (This follows, for example, from the prefix characterization of
weak order and [2, Corollary 1.4.8(ii)].)

We need another characterization of the weak order. We write T for the reflections
of W . An inversion of w ∈ W is a reflection t ∈ T such that ℓ(tw) < ℓ(w). Write
inv(w) for the set of inversions of w. If a1 · · ·ak is a reduced word for w then

inv(w) = {a1, a1a2a2, . . . , a1a2 · · ·ak · · ·a2a1},

and these k reflections are distinct. We will review a geometric characterization of in-
versions below. The weak order sets u 6 v if and only if inv(u) ⊆ inv(v). As an easy
consequence of this characterization of the weak order (see, for example, [19, Section 2.5]),
we have the following lemma.

Lemma 2.1. Let s ∈ S. Then the map w 7→ sw is an isomorphism from the weak order
on {w ∈W : w 6> s} to the weak order on {w ∈ W : w > s}.

The weak order is a meet semilattice, meaning that any nonempty set A ⊆ W has a
meet. Furthermore, if a set A has an upper bound in the weak order, then it has a join.

Given w ∈ W and J ⊆ S, there is a map w 7→ wJ from W to WJ , defined by the
property that inv(wJ) = inv(w) ∩WJ . (See, for example [19, Section 2.4].) For A ⊆ W
and J ⊆ S, let AJ = {wJ : w ∈ A}. The following is a result of Jedlička [10].

Proposition 2.2. For any J ⊆ S and any subset A of W , if A is nonempty then
∧

(AJ) =
(
∧

A)J and, if
∨

A exists, then
∨

(AJ) exists and equals (
∨

A)J .

As an immediate corollary:

Proposition 2.3. The map w 7→ wJ is order-preserving.
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We now fix a reflection representation for W in the standard way. For a more in-
depth discussion of the conventions used here, see [19, Sections 2.2–2.3]. We first form a
generalized Cartan matrix for W . This is a real matrix A with rows and columns
indexed by S such that:

(i) Ass = 2 for every s ∈ S;

(ii) Ass′ 6 0 with Ass′As′s = 4 cos2

(

π

m(s, s′)

)

when s 6= s′ and m(s, s′) < ∞, and

Ass′As′s > 4 if m(s, s′) =∞; and

(iii) Ass′ = 0 if and only if As′s = 0.

The matrix A is crystallographic if it has integer entries. We assume that A is sym-
metrizable. That is, we assume that there exists a positive real-valued function δ on S
such that δ(s)Ass′ = δ(s′)As′s and, if s and s′ are conjugate, then2 δ(s) = δ(s′).

Let V be a real vector space with basis {αs : s ∈ S} (the simple roots). Let s ∈ S
act on αs′ by s(αs′) = αs′ − Ass′αs. Vectors of the form wαs, for s ∈ S and w ∈ W ,
are called roots3. The collection of all roots is the root system associated to A. The
positive roots are the roots which are in the positive linear span of the simple roots.
Each positive root has a unique expression as a positive combination of simple roots.
There is a bijection t 7→ βt between the reflections T in W and the positive roots. Under
this bijection, βs = αs and wαs = ±βwsw−1.

Let α∨
s = δ(s)−1αs. The set {α∨

s : s ∈ S} is the set of simple co-roots . The action
of W on simple co-roots is s(α∨

s′) = α∨
s′ − As′sα

∨
s . Let K be the bilinear form on V given

by K(α∨
s , αs′) = Ass′. The form K is symmetric because K(αs, αs′) = δ(s)K(α∨

s , αs′) =
δ(s)Ass′ = δ(s′)As′s = K(αs′, αs). The action of W preserves K. We define β∨

t =
(2/K(βt, βt))βt. If t = wsw−1, then β∨

t = δ(s)−1βt. The action of t on V is by the relation
t · x = x−K(β∨

t , x)βt = x−K(x, βt)β
∨
t .

A reflection t ∈ T is an inversion of an element w ∈ W if and only if w−1βt is a
negative root. A simple generator s ∈ S acts on a positive root βt by sβt = βsts if t 6= s;
the action of s on βs = αs is sαs = −αs.

The following lemma is a restatement of the second Proposition of [14].

Lemma 2.4. Let I be a finite subset of T . Then the following are equivalent:

(i) There is an element w of W such that I = inv(w).

(ii) If r, s and t are reflections in W , with βs in the positive span of βr and βt, then
I ∩ {r, s, t} 6= {s} and I ∩ {r, s, t} 6= {r, t}.

2In the introduction, A arises from a matrix B defining a cluster algebra. It may appear that requiring
δ(s) = δ(s′) for s conjugate to s′ places additional constraints on B. However, this condition on δ holds
automatically when A is crystallographic, as explained in [19, Section 2.3].

3In some contexts, these are called real roots.
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We now review the theory of antimatroids; our reference is [7]. Let E be a finite set
and L be a collection of subsets of E. The pair (E,L) is an antimatroid if it obeys the
following axioms:4

(1) ∅ ∈ L.

(2) If Y ∈ L and Z ∈ L such that Z 6⊆ Y , then there is an x ∈ (Z \ Y ) such that
Y ∪ {x} ∈ L.

Proposition 2.5. If (E,L) is an antimatroid, then L has a unique maximal element with
respect to containment.

Proof. By axiom (1), L is nonempty, so it has at least one maximal element. Suppose
that Y and Z are both maximal elements of L. Since Z is maximal, it is not contained
in Y . Now, axiom (2) implies that Y is not maximal, a contradiction.

The next lemma and its proof are modeled after [3, Lemma 2.1]:

Lemma 2.6. Let E be a finite set and L a collection of subsets of E. Then L is an
antimatroid if and only if L obeys the following conditions.

(1) ∅ ∈ L.

(2′) For any Y and Z ∈ L, with Y ⊆ Z, there is a chain Y = X0 ⊂ X1 ⊂ · · · ⊂ Xl = Z
with every Xi ∈ L and #Xi+1 = #Xi + 1.

(3′) Let X be in L and let y and z be in E \X such that X ∪ {y} and X ∪ {z} are in
L. Then X ∪ {y, z} is in L.

Proof. First, we show that, if (E,L) is an antimatroid, then (E,L) obeys conditions (2′)
and (3′). For condition (2′), we construct the Xi inductively: Take X0 to be Y . If Xi 6= Z
then we apply axiom (2) to the pair Z 6⊆ Xi and set Xi+1 = Xi ∪ {x}. For condition (3′),
apply axiom (2) with Y = X ∪ {y} and Z = X ∪ {z}.

Now we assume conditions (1), (2′) and (3′) and show axiom (2). Let X be an element
of L which is maximal subject to the condition that X ⊆ Y ∩ Z. By condition (1),
such an X exists and, as Z 6⊆ Y , we know that X ( Z. Using condition (2′), let
X = W0 ⊂ W1 ⊂ · · · ⊂ Wl = Z be a chain from X to Z and let W1 = X ∪ {x}. We now
show that x has the desired property. By the maximality of X, we know that x 6∈ Y . Use
condition (2′) again to construct a chain X = X0 ⊂ X1 ⊂ · · · ⊂ Xr = Y from X to Y .
We will show by induction on i that Xi ∪ {x} is in L. For i = 0, this is the hypothesis
that W1 ∈ L. For larger i, apply condition (3′) to the set Xi−1, the unique element of
Xi \Xi−1, and the element x.

4The reference [7] adds the following additional axiom: if X ∈ L, X 6= ∅, then there exists x ∈ X such
that X \ {x} ∈ L. However, Lemma 2.6 shows in particular that axioms (1) and (2) imply a condition
numbered (2′). Setting Y = ∅ and Z = X in condition (2′), we easily see that the additional axiom of [7]
follows from (1) and (2).
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For the remainder of the section, we fix W , w and Ω, and we omit these from the
notation where it does not cause confusion. Thus we write L for the set L(w, Ω) of
subsets J of S such that J is Ω-acyclic and c(Ω, J) 6 w. We now turn to verifying
conditions (1), (2′) and (3′) for the pair (S, L). Condition (1) is immediate.

Lemma 2.7. Let J1 and J2 ∈ L. Suppose that J1 ∪ J2 is Ω-acyclic and Ω|J1∪J2
has

a linear extension (q1, q2, . . . , qk, r, s1, s2, . . . , sl), where J1 is {q1, q2, . . . , qk, r} and J2 is
{q1, q2, . . . , qk, s1, s2, . . . , sl}. Then J1 ∪ J2 is in L.

Proof. Since J1 ∈ L, we have q1 · · · qk 6 q1 · · · qkr = c(Ω, J1) 6 w. Similarly, because
J2 ∈ L, we know that q1 · · · qks1 · · · sl 6 w. Defining u so that w = q1 · · · qku, repeated
applications of Lemma 2.1 imply that r 6 u and also that s1 · · · sl 6 u.

Define t1 = s1, t2 = s1s2s1, t3 = s1s2s3s2s1 and so forth. The ti are inversions
of s1 · · · sl, and thus they are inversions of u. Each βti is in the positive linear span
of the simple roots

{

αsj
: j = 1, 2, . . . , l

}

. None of these simple roots is αr, and since
off-diagonal entries of A are nonpositive, we have K(α∨

r , βti) 6 0. So the positive root
βrtir = rβti = βti − K(α∨

r , βti)αr is in the positive linear span of βr and βti . Since ti
is an inversion of u, and r is as well, we deduce by Lemma 2.4 that rtir is also an
inversion of u. So r, rt1r, rt2r, . . . , and rtlr are inversions of u. But inv(rs1 · · · sl) =
{r, rt1r, rt2r, . . . , rtlr}, so u > rs1 · · · sl. Applying Lemma 2.1 repeatedly, we conclude
that w > (q1q2 · · · qk)r(s1 · · · sl) = c(Ω, J1 ∪ J2).

We now establish condition (2′) for the pair (S, L).

Lemma 2.8. Let I ⊂ J be two elements of L. Then there exists a chain I = K0 ⊆ K1 ⊆
. . . ⊆ Kl = J with each Ki ∈ L and #Ki+1 = #Ki + 1.

Proof. It is enough to find an element I ′ of L, of cardinality #I +1, with I ⊂ I ′ ⊆ J . Let
(y1, y2, · · ·yj) be a linear extension of Ω|J . Let ya be the first entry of (y1, y2, · · ·yj) which
is not in I. So w > c(Ω, J) > y1y2 · · · ya−1ya. Applying Lemma 2.7 to (y1, y2, · · ·ya) and
I, we conclude that I ∪ {y1, y2, · · ·ya} = I ∪ {ya} is in L. Taking I ∪ {ya} for I ′, we have
achieved our goal.

We now prepare to prove that (S, L) satisfies condition (3′).

Lemma 2.9. Let J be Ω-acyclic and let (s1, s2, . . . , sk) be a linear extension of Ω|J . Set
t = s1s2 · · · sk · · · s2s1. Then

βt =
∑

(r1,r2,...,rj)

(−Arjrj−1
) · · · (−Ar3r2

)(−Ar2r1
)αr1

(1)

where the sum runs over all directed paths r1 ← r2 ← · · · ← rj in Γ ∩ J with rj = sk.

Proof. By a simple inductive argument,

βt =
∑

(r1,r2,...,rj)

(−Arjrj−1
) · · · (−Ar3r2

)(−Ar2r1
)αr1

,
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where the summation runs over all subsequences of (s1, s2, . . . , sk) ending in sk. If there
is no edge of Γ between ri and ri+1 then (−Ari+1ri

) = 0 so in fact we can restrict the
summation to all subsequences which are also the vertices of a path through Γ. Since
(s1, s2, . . . , sk) is a linear extension of Ω|J , we sum over all directed paths r1 ← r2 ←
· · · ← rj with rj = sk.

Lemma 2.10. Suppose A is symmetric or crystallographic. Let J be Ω-acyclic and let
(s1, s2, . . . , sk) be a linear extension of Ω|J . Set t = s1s2 · · · sk · · · s2s1. If r ∈ J has
r 6J sk then αr appears with coefficient at least 1 in the simple root expansion of βt.

Proof. Since A is either symmetric or crystallographic, Aij 6 −1 whenever Aij < 0. Thus
in Lemma 2.9, every coefficient (−Arjrj−1

) · · · (−Ar3r2
)(−Ar2r1

) in the sum is at least one.
If r >J sk then there is a directed path from r to sk through J , so the coefficient of αr in
βt is at least one.

Lemma 2.11. Let P and Q be disjoint, Ω-acyclic subsets of S. Suppose there exists
p ∈ P and q ∈ Q such that there is an oriented path from p to q within P ∪ {q} and an
oriented path from q to p within Q∪{p}. Then there is no element of W which is greater
than both c(Ω, P ) and c(Ω, Q).

Proof. The lemma is a purely combinatorial statement about W , and in particular does
not depend on the choice of A. Thus, to prove the lemma, we are free to choose A to be
symmetric, so that we can apply Lemma 2.10. Furthermore, for A symmetric, each root
equals the corresponding co-root, and A is the matrix of the bilinear form K.

Let (p1, · · · , pk) be a linear extension of Ω|P and let (q1, · · · , qn) be a linear extension
of Ω|Q. The hypothesis of the lemma is that there exist i, j, l and m with 1 6 i 6 j 6 k
and 1 6 l 6 m 6 n such that there is a directed path from pj to pi in P , followed by
an edge pi → qm, and, similarly a directed path from qm to ql in Q followed by an edge
ql → pj . The reflection t = p1p2 · · · pj · · · p2p1 is an inversion of c(Ω, P ) and the reflection
u = q1q2 · · · qm · · · q2q1 is an inversion of c(Ω, Q). To prove the lemma, it is enough to
show that no element of W can have both t and u in its inversion set.

The positive root βt is a positive linear combination of simple roots {αs : s ∈ P}. By
Lemma 2.10, αpi

and αpj
both appear with coefficient at least 1 in βt. Similarly, βu

is a positive linear combination of {αs : s ∈ Q} in which αql
and αqm

both appear with
coefficient at least 1.

Since P and Q are disjoint, we have Ars 6 0 for any r ∈ P and s ∈ Q. Also
K(αpj

, αql
) 6= 0, since ql → pj , and thus K(αpj

, αql
) 6 −1. Similarly, K(αpi

, αqm
) 6 −1.

Thus
K(βt, βu) 6 K(αpj

, αql
) + K(αpi

, αqm
) 6 −2.

Now t acts on βu by t · βu = βu − K(β∨
t , βu)βt = βu − K(βt, βu)βt, and u acts on βt

similarly. Thus t and u generate a reflection subgroup of infinite order. Therefore, there
are infinitely many roots in the positive span of βt and βu. In particular, by Lemma 2.4,
no element of W can have both t and u as inversions.
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a a′I2 I1

U

Figure 1: The various subsets of I occurring in the proof of (3′).

We now complete the proof of Theorem 1.8 by showing that (S, L) satisfies condition
(3′). So let w ∈W , let I ∈ L and let a, a′ ∈ S \ I such that J = I ∪{a} and J ′ = I ∪{a′}
are both in L.

Our first major goal is to establish that J ∪J ′ is Ω-acyclic. This part of the argument
is illustrated in Figure 1. Let I1 be the set of all elements of I lying on directed paths
from a to a′, and let I2 be the set of all elements of I lying on directed paths from a′ to a.
Once we show that J ∪ J ′ is Ω-acylic, we will know that either I1 or I2 is empty, but we
don’t know this yet. However, it is easy to see that I1 and I2 are disjoint, as an element
common to both would lie on a cycle in J .

Set U = {u ∈ I : u 6>J a and u 6>J ′ a′}. The reader may find it easiest to follow the
proof by first considering the special case where U is empty. Note that U is disjoint from
I1 and I2.

Let V1 = U ∪ I1 ∪ {a}. We claim that V1 is a (lower) order ideal of Ω|J . It is obvious
that U is an order ideal. If i ∈ I1 ∪ {a}, and j <J i, then j ∈ I1 if j >J a′ and
j ∈ U otherwise. So V1 is an order ideal of Ω|J and we have w > c(Ω, J) > c(Ω, V1).
Moreover, since U is an order ideal in Ω|V1

, we have c(Ω, V1) = c(Ω, U)c(Ω, I1 ∪ {a})
and thus c(Ω, U)−1w > c(Ω, I1 ∪ {a}) by many applications of Lemma 2.1. Similarly,
c(Ω, U)−1w > c(Ω, I2 ∪ {a

′}).
Suppose (for the sake of contradiction) that J ∪ J ′ is not Ω-acyclic. Since J and J ′

are Ω-acyclic, there must exist both a directed path from a to a′ and a directed path from
a′ to a in J ∪ J ′. Applying Lemma 2.11 with P = I1 ∪ {a}, p = a, Q = I2 ∪ {a

′} and
q = a′, we deduce that no element of W is greater than both c(Ω, P ) and c(Ω, Q). This
contradicts the computations of the previous paragraph, so J ∪ J ′ is acyclic.

Choose a linear extension of Ω|J∪J ′. Without loss of generality, we may assume
that a precedes a′; let our linear ordering be b1, b2, . . . , br, a, c1, c2, . . . , cs, a′,
d1, d2, . . . , dt. We can now apply Lemma 2.7 to the sequences (b1, b2, . . . , br, a) and
(b1, b2, . . . , br, c1, c2, . . . , cs, a

′, d1, d2, . . . , dt) and deduce that J ∪ J ′ is in L. This com-
pletes our proof of (3′).

Remark 2.12. It would be interesting to connect the antimatroid (S, L(w, Ω)) to the
antimatroids occurring in [1].
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3 Ω-sortability and πΩ
↓

In this section, we define Ω-sortable elements and the map πΩ
↓ , review the definition of

c-sortable elements and the map πc
↓, and show how the Ω- and c-versions of these concepts

are related. We then prove Proposition 1.1 and Theorems 1.5 and 1.6.
For any w ∈ W , we appeal to Proposition 1.7 to inductively define a sequence of

elements of W as follows: Let w1 = w. When wi has been defined, let Ji = J(wi, Ω), and
define wi+1 = [c(Ω, Ji)]

−1 wi. Since ℓ(wi+1) = ℓ(wi)−|Ji|, the Ji are empty for i sufficiently
large. It is clear that J(v, Ω) = ∅ if and only if v = e, so we see that wi = e for i sufficiently
large. Thus, the infinite product c(Ω, J1)c(Ω, J2) · · · is defined, and equal to w. For each
i, fix a total order on Ji that extends Ω|Ji

. In the expression c(Ω, J1)c(Ω, J2) · · · , replace
each c(Ω, Ji) by the reduced word for c(Ω, Ji) given by listing the elements of Ji according
to the total order. We thus obtain a reduced word called an Ω-sorting word for w.

We say that w is Ω-sortable if J1 ⊇ J2 ⊇ J3 ⊇ · · · . Observe that, if w is Ω-sortable,
then w automatically lies in WJ for some Ω-acyclic J .

We now review the definition of c-sortable elements in W , where c is a Coxeter element
of W . Fix a reduced word s1s2 · · · sn for c and define an infinite word

(s1 · · · sn)∞ = s1s2 · · · sn|s1s2 · · · sn|s1s2 · · · sn| . . .

The symbols “|” serve only to mark the boundaries between repetitions of the word
s1s2 · · · sn. For each w ∈ W , the (s1 · · · sn)-sorting word for w ∈ W is the lexico-
graphically first (as a sequence of positions in (s1 · · · sn)∞) subword of (s1 · · · sn)∞ that
is a reduced word for w. The (s1 · · · sn)-sorting word defines a sequence of subsets of S:
Each subset is the set of letters of the (s1 · · · sn)-sorting word occurring between adjacent
dividers.

A (s1 · · · sn)-sorting word for w is also called a c-sorting word for w. Thus there are
typically several c-sorting words for w, but exactly one (s1 · · · sn)-sorting word for w for
each reduced word s1s2 · · · sn for c. Each c-sorting word for w defines the same sequence
of subsets. A c-sortable element of W is an element whose a c-sorting word defines a
sequence of subsets which is weakly decreasing under inclusion.

Remark 3.1. Let w be an element of W . We define F (w, Ω) to be the generating func-

tion
∑

x
|J1|
1 x

|J2|
2 · · ·x|Jr|

r , where the sum is over all length-additive factorizations w =
c(Ω, J1)c(Ω, J2) · · · c(Ω, Jr). (It is permitted that some Ji be empty, and r is permitted
to vary.) If W is of type An, and Ω is oriented as 1 → 2 → · · · → n, this is the Stanley
symmetric function [21], as shown in [13, Proposition 5]. If W is of type Ãn, and Ω is
the cyclic orientation, this is (essentially by definition) Lam’s affine generalization of the
Stanley symmetric functions. The c- (respectively Ω)-sorting word for w corresponds to
the unique dominant monomial constructed in [21, Section 4] (respectively, [13, Theorem
13]). It would be interesting to see whether something could be said about F (w, Ω) for
other groups and for other orientations of the diagrams.

If Ω is acyclic, then Ω-sortability coincides with c(Ω)-sortability. To understand why,
it is enough to prove the following proposition.
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Proposition 3.2. If the orientation Ω is acylic, then any c(Ω)-sorting word for w ∈ W
is an Ω-sorting word for w.

Proof. Let J1, J2, . . . be the sequence of subsets of S arising in the definition of the Ω-
sorting word for w. Fix a reduced word s1 · · · sn for c, and let I1, I2, . . . be the sequence
of subsets arising from the definition of the (s1 · · · sn)-sorting word for w. The content
of the proposition is that these two sequences coincide. The definition of I1 assures that
c(Ω, I1) 6 w, so I1 ⊆ J1, by the definition of J1. If I1 ( J1 then any word starting with
a reduced word for c(Ω, J1) is a lexicographically earlier subword of (s1 · · · sn)∞ than the
(s1 · · · sn)-sorting word for w, which omits the letters in J1 \ I1. Thus I1 = J1.

Now J2, J3, . . . and I2, I3, . . . are the sequences arising from the Ω- or c-sorting word
for c(Ω, J1)

−1w. By induction on the length of w, these sequences coincide.

The next proposition says that, when Ω is not acyclic, the notions of Ω-sortability and
c-sortability are related as described in the introduction.

Proposition 3.3. Let w ∈ W . Then w is Ω-sortable if and only if w is a c(Ω, J(w, Ω))-
sortable element of WJ(w,Ω).

Proof. If w is Ω-sortable, then every letter in its Ω-sorting word is contained in J(w, Ω),
and thus w ∈WJ(w,Ω). Furthermore, w is Ω|J -sortable and thus c(Ω, J(w, Ω))-sortable by
Proposition 3.2. The argument is easily reversed.

We now give the recursive definition of πΩ
↓ . For any w ∈ W , set J := J(w, Ω) and

define πΩ
↓ (w) = c(Ω, J)πΩ

↓

[

(c(Ω, J))−1wJ

]

. Setting πΩ
↓ (e) = e, this recursion terminates.

Proposition 1.1 is the assertion that πΩ
↓ (w) is the unique maximal Ω-sortable element

below w in the weak order. In order to prove Proposition 1.1, we will appeal to the
acyclic case of Theorem 1.2, which was proved as [19, Theorem 6.1]. The latter theorem
is a statement about a map πc

↓, whose definition we now review.
Fix a reduced word s1s2 · · · sn for c and let w ∈ W . Let Ω be the corresponding

acyclic orientation of Γ. The definition of πc
↓(w) in [19, Section 6] was inductive, stepping

through one letter of (s1s2 · · · sn)∞ at a time. For our present purposes, it is easier to
perform each n steps at once. The definition from [19] is then equivalent to the following:
Setting J0 = ∅, we will successively construct subsets J1, J2, . . . , Jn with Ji ⊆ [i].
If w > c(Ω, Ji−1)si, then Ji = Ji−1 ∪ {i}; otherwise, Ji = Ji−1. Set J = Jn. Then
πc
↓(w) = c(Ω, J) · πc

↓ ((c(Ω, J)−1w)J).
The base case of the inductive proof of Proposition 3.2 establishes that Jn = J(w, Ω).

Thus π
c(Ω)
↓ coincides with πΩ

↓ when Ω is acyclic. Furthermore, when Ω is not necessarily

acyclic, πΩ
↓ (w) = π

c(Ω,J(w,Ω))
↓ (wJ(w,Ω)).

Proof of Proposition 1.1. Let w ∈ W , abbreviate J(w, Ω) to J and abbreviate c(Ω, J) to
c. We need to show that πc

↓(wJ) is the unique maximal Ω-sortable element below w in
the weak order. We have w > wJ and, by the acyclic case of Theorem 1.2, wJ > πc

↓(wJ).
Also, πc

↓(wJ) is c-sortable, and hence Ω-sortable by Proposition 3.3. We now must check
that, if v is Ω-sortable and v 6 w, then v 6 πc

↓(wJ). Since v is Ω-sortable, we deduce
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that v ∈ WJ(v,Ω). But w > v > c(Ω, J(v, Ω)), so J(w, Ω) ⊇ J(v, Ω) and v ∈ WJ .
Now Proposition 2.3 says that wJ > vJ = v and, appealing again to the acyclic case of
Theorem 1.2, πc

↓(wJ) > πc
↓(v) = v.

Now that we have proven Proposition 1.1, we also have, as corollaries, Theorem 1.2
and Propositions 1.3 and 1.4. We also obtain the following proposition by reduction to
the acyclic case, which was proven as [19, Proposition 3.13].

Proposition 3.4. Let v be an Ω-sortable element of W and let I be any subset of S.
Then vI is Ω|I-sortable.

Proof. Set J = J(v, Ω). So v ∈WJ , Ω|J is acyclic, and v is Ω|J -sortable. Since vI = vI∩J ,
the acyclic case of the proposition says that vI is Ω|I∩J -sortable, so it is Ω|I-sortable.

A more difficult reduction to the acyclic case is needed to prove Theorem 1.5. The
acyclic case was proven as [19, Theorem 7.1].

Proof of Theorem 1.5. First, suppose that A is a nonempty set of Ω-sortable elements.
By Proposition 3.3, every element a of A lies in a parabolic subgroup WJ(a,Ω) where
J(a, Ω) is acyclic. Let J =

⋂

a∈A J(a, Ω). Since each WJ(a,Ω) is a lower order ideal, the
element

∧

A lies in WJ . Thus
∧

A = (
∧

A)J , which equals
∧

a∈A aJ by Proposition 2.2.
By Proposition 3.4, every aJ is c(Ω, J)-sortable so, by the acyclic case,

∧

a∈A aJ is also
c(Ω, J)-sortable and thus Ω-sortable by Proposition 3.3.

Now, suppose A is a set of Ω-sortable elements such that
∨

A exists. Since A is
contained in the interval below

∨

A, in particular A is finite. Thus it is enough to consider
the case where A only has two elements, u and v. Let I = J(u, Ω) and let J = J(v, Ω).
Now u > c(Ω, I) and v > c(Ω, J).

We will show that J(u ∨ v, Ω) = I ∪ J . As u ∨ v > u > c(Ω, I), Proposition 1.7 tells
us that J(u ∨ v, Ω) ⊇ I. By similar logic, J(u ∨ v, Ω) ⊇ J , so J(u ∨ v, Ω) ⊇ I ∪ J . On
the other hand, u ∈ WI and v ∈ WJ , so uI∪J = u and vI∪J = v. By Proposition 2.2,
u∨ v = uI∪J ∨ vI∪J = (u∨ v)I∪J , so u∨ v ∈WI∪J and J(u∨ v, Ω) ⊆ I ∪ J .. We now know
that J(u ∨ v, Ω) = I ∪ J . In particular, I ∪ J is Ω-acyclic.

Now, u and v are both Ω|I∪J -sortable elements of WI∪J . By the acyclic case, we deduce
that u ∨ v is Ω|I∪J -sortable, and thus Ω-sortable.

Finally, we prove Theorem 1.6, which states that πΩ
↓ factors over meets and joins. We

will appeal to the acyclic case of Theorem 1.6, proved as [19, Theorem 7.3].

Proof of Theorem 1.6. The proof of the assertion about meets exactly follows the argu-
ment in [19, Theorem 7.3] for the acyclic case, except that [19, Theorem 6.1] and [19,
Theorem 7.1] are replaced by Theorems 1.2 and 1.5.

To prove the assertion about joins, set J = J(
∨

A, Ω). Now πΩ
↓ (

∨

A) = πΩ
↓ ((

∨

A)J)

which, by Proposition 2.2, is πΩ
↓ (

∨

AJ). The latter equals π
Ω|J
↓ (

∨

AJ) which, by the

acyclic case of the theorem, equals
∨

π
Ω|J
↓ (AJ). Now, for each a ∈ A, we have a 6

∨

A, so J(a, Ω) ⊆ J . Therefore, for each a ∈ A, we have π
Ω|J
↓ (aJ ) = πΩ

↓ (a). Thus
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∨

π
Ω|J
↓ (AJ) =

∨

πΩ
↓ (a) and, stringing together all of the equalities we have proved, we

obtain the result.

4 The fibers of πc
↓

In this section, we describe the fibers of πΩ
↓ in terms of polyhedral geometry. We begin

by reviewing the analogous description in the acyclic case.
The dominant chamber is the full-dimensional simplicial cone

D =
⋂

s∈S

{x∗ ∈ V ∗ : 〈x∗, αs〉 > 0}

in V ∗. The map w 7→ wD takes W bijectively to a collection of n-dimensional cones with
pairwise disjoint interiors.

In [19, Section 5], a linearly independent set Cc(v) of roots is defined recursively
for each c-sortable element v. More specifically, we define n linearly independent roots
Cr

c (v), one for each r ∈ S, and set Cc(v) = {Cr
c (v) : r ∈ S}. The set Conec(v), defined

by
⋂

r∈S {x
∗ ∈ V ∗ : 〈x∗, Cr

c (v)〉 > 0}, is thus a full-dimensional, simplicial, pointed cone
in V ∗. By [19, Theorem 6.3], these cones characterize the fibers of πc

↓ in the sense that
πc
↓(w) = v if and only if wD lies in Conec(v).

To generalize Cc(v) to the cyclic setting, we imitate a non-recursive characterization
of Cr

c (v) which appears as [19, Proposition 5.1]. Fix a reduced word s1 · · · sn for c,
and let a1a2 · · ·ak be the (s1 · · · sn)-sorting word for v. Recall from Section 3 that the
(s1s2 · · · sn)-sorting word for v is the lexicographically leftmost subword of (s1 · · · sn)∞

that is a reduced word for v. In particular, a1a2 · · ·ak is associated to a specific set of
positions in (s1 · · · sn)∞. For each r ∈ S, consider the first occurrence of r in (s1 · · · sn)∞

that is not in a position occupied by a1a2 · · ·ak. Let this occurrence of r be between ai

and ai+1; we define Cr
c (v) := a1a2 · · ·aiαr.

We now make a definition for the case where Ω may contain cycles. Let v be Ω-sortable
and let J = J(Ω, v). If J ∪{r} is Ω-acyclic, define Cr

Ω(v) to be Cr
c(Ω,J∪{r})(v). If J ∪{r} is

not Ω-acyclic, then Cr
Ω(v) is undefined. Set ConeΩ(v) =

⋂

r {x
∗ ∈ V ∗ : 〈x∗, Cr

Ω(v)〉 > 0},
where the intersection is over those r such that Cr

Ω(v) is defined.

Theorem 4.1. Let w ∈W . Then πΩ
↓ (w) = v if and only if wD ⊆ ConeΩ(v).

Once again, the proof draws on the acyclic case, which was proved as [19, Theorem 6.3].
The proof also requires two facts about the polyhedral geometry of Coxeter groups, which
we now provide. First, if t is any reflection of W , then wD ⊆ {x∗ ∈ V ∗ : 〈x∗, βt〉 6 0} if
and only if t is an inversion of w. Second, for any subset J ⊆ S, define

DJ =
⋂

s∈J

{x∗ ∈ V ∗ : 〈x∗, αs〉 > 0}.

There is an inclusion wD ⊆ wJDJ for any w ∈ W . For details, see [19, Section 2.4], but
notice that the set DJ defined here corresponds to P−1

J (DJ) in the notation of [19]. The
map PJ is a certain projection map which we do not need here.
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Proof of Theorem 4.1. We continue the notation J = J(Ω, v). First, suppose that πΩ
↓ (w)

is v. We need to show that wD ⊆ {x∗ ∈ V ∗ : 〈x∗, Cr
Ω(v)〉 > 0} for all r ∈ S such

that J ∪ {r} is Ω-acyclic. For such an r, the element π
c(Ω,J∪{r})
↓ (wJ∪{r}) coincides with

πΩ
↓ (w) = v. By the acyclic case of the theorem, wJ∪{r}DJ∪{r} is contained in

{

x∗ ∈ V ∗ :

〈x∗, Cr
c(Ω,J∪{r})(v)〉 > 0

}

. But Cr
c(Ω,J∪{r})(v) coincides with Cr

Ω(v), so wD ⊆ wJ∪{r}DJ∪{r}

⊆ {x∗ ∈ V ∗ : 〈x∗, Cr
Ω(v)〉 > 0}.

Now, suppose that wD ⊆ ConeΩ(v). We first note that v ∈ WJ and, for r ∈ J ,
that Cr

Ω(v) = Cr
Ω|J

(v). So ConeΩ(v) ⊆ ConeΩ|J (v) = Conec(Ω,J)(v) and thus wD ⊆

Conec(Ω,J)(v). Every cone of the form uDJ is either completely contained in Conec(Ω,J)(v)
or has its interior disjoint from Conec(Ω,J)(v). We conclude that wJDJ ⊆ Conec(Ω,J)(v).

Then wJD ⊆ wJDJ ⊆ Conec(Ω,J)(v), so π
c(Ω,J)
↓ (wJ) = v by the acyclic case of the theorem.

Since πΩ
↓ (w) = π

c(Ω,J(w,Ω))
↓ (wJ(w,Ω)), we can complete the proof by showing that J(w, Ω) =

J . Set J ′ = J(w, Ω).

Since w > wJ > π
c(Ω,J)
↓ (wJ) = v, it is immediate from the definition of J(w, Ω)

that J ′ ⊇ J . Suppose, for the sake of contradiction, that J ′ 6= J . By definition, J ′

is Ω-acyclic. Choose a linear extension (a1, a2, . . . , ai, r, . . .) of Ω|J ′, where r is the first
element not in J . Then Cr

Ω(v) is the positive root a1a2 · · ·aiαr and hence, by the as-
sumption that wD ⊆ ConeΩ(v), we have wD ⊆ {x∗ ∈ V ∗ : 〈x∗, a1a2 · · ·aiαr〉 > 0}. On
the other hand, w > c(Ω, J ′) > a1a2 · · ·air, by the definition of J ′. Thus wD ⊆
{x∗ ∈ V ∗ : 〈x∗, a1a2 · · ·aiαr〉 6 0}, because a1a2 · · ·air is the positive root associated to
an inversion of w. But wD is a full-dimensional cone, and this contradiction establishes
that J = J ′.

In the acyclic case, [19, Theorem 9.1] states that the cones Conec(v) (and their faces)
form a fan in Tits(W ). Roughly, the assertion is that these cones fit together nicely
within the Tits cone, but not necessarily everywhere. (See [19, Section 9] for the precise
definition.) We observe that the proof in [19] also works without alteration in the more
general setting, replacing [19, Theorem 7.3] by its generalization Theorem 1.6.

We now describe the shortcomings of Theorem 4.1 for the purposes of cluster algebras.
In the acyclic case, the cones Conec(v) correspond to clusters in the corresponding cluster
algebra. More specifically, [20] establishes that the extreme rays of Conec(v) are spanned
by the g-vectors of the cluster variables; this is also shown in [22] for cluster algebras of
finite type. (One interprets the g-vectors as coefficients of an expansion in the basis of
fundamental weights.) The cone Conec(v) has |S| extreme rays because it is a pointed
simplicial cone, or equivalently, because Cc(v) is a set of |S| = dim(V ) linearly independent
vectors.

By contrast, the cone ConeΩ(v) may have fewer than |S| defining hyperplanes, since
Cr

Ω(v) undefined when Ω|J∪{r} has a cycle. In [20], it is shown that each Ω-sortable element
v corresponds to a cluster. Thus, in order to fill in the cluster algebras picture, we need
to define vectors Cr

Ω(v), in the cases we presently leave undefined, so as to turn ConeΩ(v)
into a pointed simplicial cone with the right extreme rays. This appears to be a hard
problem, for reasons we now describe.
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By computing g-vectors, we can determine what the missing values of Cr
Ω(v) should

be. However, we sometimes obtain that Cr
Ω(v) should not be a real root! Consider the

B-matrix
(

0 1 −1
−1 0 1
2 −2 0

)

. The corresponding Cartan matrix A defines a hyperbolic Coxeter

group5 of rank 3. Call the simple generators p, q and r in the order of the rows/columns of
A, and consider the Ω-sortable element v = qrq. The roots Cq

Ω(v) and Cr
Ω(v) are defined,

and equal to −αq − 2αr and αr respectively. By calculating g-vectors, one can check that
Cp

Ω(v) should be αp + αq + 2αr. This is an imaginary root! It would require a significant
modification of the definition of CΩ to output an imaginary root. It is easy to create a
simply laced example with the same difficulty, by building a rank 4 simply laced Coxeter
group which folds to this example.

5 Alignment

The results of [19] make significant use of a skew-symmetric form ωc on V defined by
setting ωc(α

∨
r , αs) = Ars if r → s. The form ωc provides, in particular, a characterization

[19, Proposition 3.11] of c-sorting words for c-sortable elements and a characterization
[19, Theorem 4.2] of inversion sets of c-sortable elements. The two characterizations are
as follows:

Theorem 5.1. Let c be a Coxeter element of W . Let a1a2 · · ·ak be a reduced word for
w ∈ W . Set t1 = a1, t2 = a1a2a1, . . . , tk = a1a2 · · ·ak · · ·a2a1. Then the following are
equivalent:

1. w is c-sortable and a1a2 · · ·an can be transformed into a c-sorting word for w by a
sequence of transpositions of adjacent commuting letters.

2. For i < j, we have ω(βti , βtj ) > 0, with strict inequality holding unless ti and tj
commute.

Theorem 5.2. Let c be a Coxeter element of W and let w ∈W . Then the following are
equivalent:

1. w is c-sortable.

2. Whenever r, s and t are reflections in W , with βs in the positive span of βr and βt

and ωc(βr, βt) > 0, then inv(w) ∩ {r, s, t} is either ∅, {r}, {r, s}, {r, s, t} or {t}.

One can define an analogous skew-symmetric form on V in the case of orientations
with cycles. Define ωΩ by ωΩ(α∨

r , αs) = ±Ars, where the positive sign is taken if r →Ω s
and the negative sign if s →Ω r. If there is no edge between r and s then Ars = 0, and
ωΩ(α∨

r , αs) = 0. The following is easily verified, by reduction to the acyclic case: When c
is replaced by Ω in either Theorem 5.1 or 5.2, the first condition still implies the second.
Unfortunately, the reverse implications are no longer valid. More precisely:

5Although this Coxeter group is of wild type, the B-matrix is mutation equivalent to the finite type
B3 matrix.
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Counter-example 5.3. There exists a Cartan matrix A, an orientation Ω of Γ and an
element w with reduced word a1a2 · · ·ak such that:

1. w is not Ω-sortable; but

2. For i < j, we have ωc(βti , βtj ) > 0, with strict inequality holding unless ti and tj
commute; and

3. Whenever r, s and t are reflections in W , with βs in the positive span of βr and βt

and ωc(βr, βt) > 0, then inv(w) ∩ {r, s, t} is either ∅, {r}, {r, s}, {r, s, t} or {t}.

The third condition in Counterexample 5.3 may appear to be hard to check. Fortu-
nately, it is redundant.

Proposition 5.4. If A, Ω, w and a1a2 · · ·ak are chosen so that condition (2) of Coun-
terexample 5.3 holds, then condition (3) holds as well.

Proof. In light of Lemma 2.4, we need only rule out the case where inv(w) ∩ {r, s, t} =
{s, t}. Let i and j be such that s = ti and t = tj. Since ωΩ(βs, βt) > 0, we have i < j.
Set w′ = a1a2 · · ·ai. Then inv(w′) ∩ {r, s, t} = {s}, contradicting Lemma 2.4.

Thus, to give a counter-example, we need only check conditions (1) and (2). Consider
a counter-example of rank 3 with B-matrix







0 1 −1

−1 0 3

1 −3 0







with simple reflections p, q and r. Then pqr is not Ω-sortable, as its support is a cycle.
But the corresponding inversion sequence is p, pqp, pqrqp with roots

β1 := βp = αp

β2 := βpqp = αp+ αq

β3 := βpqrqp = 4αp+3αq+αr

We have ωΩ(β1, β2) = 1, ωΩ(β1, β3) = 2, and ωΩ(β2, β3) = 1. All of these are positive, so
this is a counterexample.

Remark 5.5. The definition of ωΩ depends not only on Ω and on the Coxeter group W ,
but also on the choice of a Cartan matrix. To illustrate the effect of this choice, consider
a modification of the example above, with the entries 3 and −3 replaced by 2 and −2
respectively. The Coxeter group W is unchanged, pqr is still not Ω-sortable, and β1

and β2 are unchanged, while β3 becomes 3αp + 2αq + αr. We calculate ωΩ(β1, β2) = 1,
ωΩ(β1, β3) = 1, and ωΩ(β2, β3) = 0. Since pqp and pqrqp do not commute, condition (2)
of Counterexample 5.3 fails, and the modified example is not a counterexample.

Remark 5.6. A preprint version of this paper proposed a different counter-example. We
are grateful to the referee for pointing out that the earlier example was in error.
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