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Abstract

We prove a combinatorial formula for the Hilbert series of the Garsia-Haiman

bigraded Sn-modules as weighted sums over standard Young tableaux in the hook

shape case. This method is based on the combinatorial formula of Haglund, Haiman

and Loehr for the Macdonald polynomials and extends the result of A. Garsia

and C. Procesi for the Hilbert series when q = 0. Moreover, we construct an

association of the fillings giving the monomial terms of Macdonald polynomials

with the standard Young tableaux.

1 Introduction

In 1988 [Mac88], Macdonald introduced a family of symmetric functions with two vari-
ables that are known as the Macdonald polynomials which form a basis for the space of
symmetric functions. Upon introducing these polynomials, Macdonald conjectured that
the coefficients of the plethystic Schur expansion of Macdonald polynomials are poly-
nomials in the parameters q and t with nonnegative integer coefficients. To prove this
positivity conjecture of Macdonald polynomials, Garsia and Haiman [GH93] introduced
certain bigraded Sn modules Mµ and Haiman proved [Hai01] that the bigraded Frobenius
characteristic F(Mµ), which by definition is simply the image of the bigraded character
of Mµ under the Frobenius map, is given by

FMµ
(X; q, t) = H̃µ(X; q, t),

where H̃µ(X; q, t) are the modified Macdonald polynomials [HHL05] and X = x1, x2, . . . .
For the Garsia-Haiman module Mµ, if we define Hh,k(Mµ) to be the subspace of Mµ
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spanned by its bihomogeneous elements of degree h in X and degree k in Y , we can write
a bivariate Hilbert series such as

HMµ
(q, t) =

n(µ)
∑

h=0

n(µ′)
∑

k=0

thqkdim(Hh,k(Mµ)).

Noting that the degree of the Sn character χλ is given by < pn
1 , sλ >, where < , > is the

usual inner product on symmetric functions and pk is the kth power sum, we may write

HMµ
(q, t) =< pn

1 ,FMµ
> .

Since FMµ
(X; q, t) = H̃µ(X; q, t), the coefficient of x1x2 · · ·xn of H̃µ(X; q, t) gives the

Hilbert series of Garsia-Haiman module Mµ. In this paper, we construct a combinatorial
way of calculating the Hilbert series of Mµ as a sum over all standard Young Tableaux
with shape µ when µ is a hook.

We should mention that in the hook case, the Garsia-Haiman modules have been
studied by Stembridge [Ste94], Garsia and Haiman [GH96], Allen [All02], Aval [Ava00],
and Adin, Remmel and Roichman [ARR08] and various bases have been constructed.
In 2004, Haglund, Haiman and Loehr proved a combinatorial formula for the monomial
expansion of H̃µ(X; q, t) given by [HHL05]

H̃µ(X; q, t) =
∑

σ:µ→Z+

qinv(µ,σ)tmaj(µ,σ)xσ (1.1)

where the definitions of inv(µ, σ) and maj(µ, σ) are given in Section 3. The Hilbert series
of Mµ can be easily calculated from the basis of the module or by the monomial expansion
formula (1.1) of Haglund, Haiman and Loehr, but we have to consider n! many objects
in any basis formula.

In this paper, we introduce a new combinatorial formula for this Hilbert series when µ
is a hook shape which can be calculated by summing terms over only the standard Young
tableaux of shape µ. Noting that the number of SYT’s of shape µ is n!/

∏

c∈µ h(c) where
h(c) = a(c)+ l(c)+1, obviously this combinatorial formula reduces the number of objects
that we need to consider to calculate the Hilbert series. This combinatorial formula is
motivated by the formula for the two-column shape case which is conjectured by Haglund
and proved by Garsia and Haglund [GH08]. Assaf and Garsia [AG09] used the recursion
derived by the combinatorial formula for the two-column case to find the kicking basis
of Mµ, and extended the result to find the kicking basis when µ has a hook shape. In
Section 5, we also introduce a way of finding the Haglund basis [ARR08] by using the
combinatorial construction of the hook case.

The outline of this paper is as follows. In Section 2, we define terms that are used in
this paper and introduce what Macdonald polynomials and Garsia-Haiman modules are.
In Section 3, we construct a combinatorial formula and prove it. In Section 4, we find
the correspondence between the terms in the formula of Haglund, Haiman and Loehr and
the combinatorial formula in Section 3. In Section 5, we find the basis of Garsia-Haiman
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modules by using the combinatorial construction and the correspondence introduced in
Section 4. In Section 6, we discuss the problem of extending the combinatorial formula
to general shapes.

2 Macdonald Polynomials and Bigraded Sn Modules

Given a sequence µ = (µ1, µ2, . . . ) of nonincreasing, nonnegative integers with
∑

i µi = n,
we say µ is a partition of n, denoted by either |µ| = n or µ ⊢ n. Let

dg(µ) = {(i, j) ∈ Z+ × Z+ : j 6 µi}

be its Young (or Ferrers) diagram, whose elements are called cells. For simplicity, we
henceforth write µ instead of dg(µ) when it will not cause confusion.

c
l
a aa′

l′

Figure 1: The arm a, leg l, coarm a′ and coleg l′ of a cell c.

Given a square c ∈ µ, define the leg (respectively coleg) of c, denoted l(c) (resp. l′(c)),
to be the number of squares in µ that are strictly above (resp. below) and in the same
column as c, and the arm (resp. coarm) of c, denoted a(c) (resp. a′(c)), to be the number
of squares in µ strictly to the right (resp. left) and in the same row as c. Also, if c has
coordinates (i, j), we let south(c) denote the square with coordinates (i− 1, j).

For each partition µ define

n(µ) =
∑

i>1

(i− 1)µi

A filling is a function σ : µ → [n] assigning integer entries to the cells of µ. A semi-
standard Young tableau is a filling which is weakly increasing along each row of µ and
strictly increasing up each column. A semi-standard Young tableau is standard if it is a
bijection from µ to [n] = {1, 2, . . . , n}. For a partition µ of n and a composition ν of n,
we define

SSYT(µ) = {semi-standard Young tableau T : µ→ N},
SSYT(µ, ν) = {SSYT T : µ→ N with entries 1ν1 , 2ν2, . . . },

SYT(µ) = {SSYT T : µ
∼
→ [n]} = SSYT(µ, 1n).

For T ∈ SSYT(µ, ν), we say T is a SSYT of shape µ and weight ν.
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2.1 Macdonald Polynomials

In 1988, Macdonald [Mac95] introduced a new basis of symmetric functions, denoted by
Pµ(X; q, t), X = x1, x2, . . . , which specializes to Schur functions, the Hall-Littlewood
symmetric functions, the Jack symmetric functions, the zonal symmetric functions, and
the elementary and monomial symmetric functions. With an appropriate analog of the
Hall inner product, Pµ(X; q, t) are uniquely characterized by certain triangularity and
orthogonality conditions. For each partition µ, define

hµ(q, t) :=
∏

c∈µ

(1 − qa(c)tl(c)+1).

Macdonald introduced the q, t-Kostka polynomials Kλµ(q, t) by the equation

Jµ(X; q, t) = hµ(q, t)Pµ(X; q, t) =
∑

λ

Kλµ(q, t)sλ[X(1 − t)],

where the square bracket stands for plethystic substitution. In short, sλ[A] means sλ ap-
plied as a Λ-ring operator to the expression A, where Λ is the ring of symmetric functions.
For a full account of plethysm, see [Hai99]. In attempt to prove the positivity conjecture,
Garsia and Haiman [GH93] introduced the modified Macdonald polynomials H̃µ(X; q, t)
as

H̃µ(X; q, t) =
∑

λ

K̃λµ(q, t)sλ[X],

where K̃λµ(q, t) := tn(µ)Kλµ(q, t−1). They conjectured [GH93] that H̃µ(X; q, t) can be
realized as the Frobenius image of bigraded character of certain modules Mµ under the
diagonal action of Sn. This is known as the n! conjecture, and by analyzing the algebraic
geometry of the Hilbert series of n points in the plane, Haiman [Hai01] proved the n!
conjecture and consequently the Macdonald positivity conjecture.

2.2 Garsia-Haiman Modules

Let µ be a partition and let (p1, q1), . . . , (pn, qn) denote the pairs (l′(c), a′(c)) of the cells
c of the diagram of µ arranged in lexicographic order. We set

△µ(X, Y ) = △µ(x1, . . . , xn; y1, . . . , yn) = det ‖ x
pj

i y
qj

i ‖i,j=1,...,n .

Example 2.1. For µ = (3, 1), {(pj, qj)} = {(0, 0), (0, 1), (0, 2), (1, 0)}, and

△µ = det









1 y1 y2
1 x1

1 y2 y2
2 x2

1 y3 y2
3 x3

1 y4 y2
4 x4
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This given, we let Mµ[X, Y ] be the space spanned by all the partial derivatives of
△µ(x, y). In symbols

Mµ[X, Y ] = L[∂p
x∂

q
y△µ(x, y)]

where ∂p
x = ∂p1

x1
· · ·∂pn

xn
, ∂p

y = ∂p1
y1
· · ·∂pn

yn
. The diagonal action of a permutation σ =

(σ1, . . . , σn) on a polynomial P (x1, . . . , xn; y1, . . . , yn) is defined by setting

σP (x1, . . . , xn; y1, . . . , yn) := P (xσ(1), . . . , xσ(n); yσ(1), . . . , yσ(n)).

Since σ△µ = ±△µ according to the sign of σ, the space Mµ necessarily remains invariant
under this action.
Note that, since △µ is bihomogeneous of degree n(µ) in x and n(µ′) in y, we have the
direct sum decomposition

Mµ = ⊕
n(µ)
h=0 ⊕

n(µ′)
k=0 Hh,k(Mµ),

where Hh,k(Mµ) denotes the subspace of Mµ spanned by its bihomogeneous elements of
degree h in x and degree k in y. Since the diagonal action clearly preserves bidegree, each
of the subspaces Hh,k(Mµ) is also Sn-invariant. Thus we see that Mµ has the structure of
a bigraded module. We can write a bivariate Hilbert series such as

Fµ(q, t) =

n(µ)
∑

h=0

n(µ′)
∑

k=0

thqkdim(Hh,k(Mµ)). (2.1)

In 2001, Haiman [Hai01] proved that the bigraded character of Mµ is given by

FMµ
(X; q, t) =

n(µ)
∑

h=0

n(µ′)
∑

k=0

thqkψ(Hh,k(Mµ)) = H̃µ(X; q, t)

where ψ is the Frobenius map sending the Specht module Sλ to the Schur function sλ.
Then the Hilbert series can be calculated by using the monomial expansion formula (1.1)
as a sum over n! permutations of n numbers, that is

Fµ(q, t) =
∑

σ∈Sn

qinv(µ,σ)tmaj(µ,σ).

For the definitions of inv(µ, σ) and maj(µ, σ), see Section 3.

2.3 Macdonald’s Construction

The combinatorial construction is based on the following fact known by Macdonald
[Mac95] and noticed by Haglund [Hag]. Upon the introduction of Macdonald polyno-
mials [Mac88], Macdonald defined another family of symmetric functions {Qµ(X; q, t)}
by

Qµ(X; q, t) =
h′µ(q, t)

hµ(q, t)
Pµ(X; q, t)
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where hµ(q, t) :=
∏

c∈µ(1 − qa(c)tl(c)+1) and h′µ(q, t) :=
∏

c∈µ(1 − qa(c)+1tl(c)), and so

Jµ(X; q, t) = hµ(q, t)Pµ(X; q, t) = h′µ(q, t)Qµ(X; q, t).

Noting that Pµ(X; 0, t) = Pµ(X; t) are the Hall-Littlewood polynomials, there are corre-
sponding symmetric functions Qµ(X; 0, t) = Qµ(X; t) which can be independently defined
by

Qµ(X; t) = bµ(t)Pµ(X; t)

where
bµ(t) =

∏

i>1

ϕmi(µ)(t)

and mi(µ) denotes the number of times i occurs as a part of µ and ϕr(t) = (1 − t)(1 −
t2) · · · (1 − tr). In [Mac95, Ch. III, (5.11)], Macdonald proved the following. Let T
be a semistandard tableau of shape µ and weight ν. Then T determines a sequence of
partitions (µ(0), . . . , µ(r)) such that 0 = µ(0) ⊂ µ(1) ⊂ · · · ⊂ µ(r) = µ and such that each
µ(i) − µ(i−1)is a horizontal strip filled with i. Let

ϕT (t) =

r
∏

i=1

ϕµ(i)/µ(i−1)(t),

then
Qµ(X; t) =

∑

T∈SSYT(µ)

ϕT (t)xT . (2.2)

Then the Macdonald polynomials

Hµ(X; q, t) = Jµ

[

X

1 − t
; q, t

]

=
∑

λ

Kλµ(q, t)sλ[X]

satisfy

Hµ(X; 0, t) =
1

(1 − t)n

∑

T∈SSYT(µ)

ϕT (t)xT

when q = 0, and the Hilbert series become

F̃µ′(0, t) =
1

(1 − t)n

∑

T∈SYT(µ)

ϕT (t). (2.3)

This gives a combinatorial construction of the t factor of the Hilbert series of Garsia-
Haiman modules when q = 0. This is true for any general shape of µ. Based on (2.3), the
combinatorial formula for the Hilbert series for the two column case was constructed by
Garsia and Haglund [GH08]. We consider a hook case in this paper.
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2.4 Two Column Case

Garsia and Haglund [GH08] proved that when µ = (2b, 1a−b), the Hilbert series Fµ(q, t)
has the combinatorial formula

Fµ(q, t) =
∑

T∈SYT(µ)

∏

i∈T

[di(T )]t
∏

i in the second
column of T

(q + tbi(T ))

where the sum is over all standard Young tableaux of shape µ, di(T ) is the number of
rows of length equal to the length of the row of i in the tableau obtained by removing all
the entries j > i from T , the second product is over entries in the second column of T ,
and bi(T ) denotes the number of entries j > i in the first column of T . This combinatorial
construction gives the following recursion of Fµ(q, t)

F2b1a−b(q, t) = [b]t(1 + q)F2b−11a−b+1(q, t) + [a− b]tt
bF2b1a−b−1(q/t, t)

and since Fµ(q, t) = ∂n
p1
H̃µ[X; q, t], this recursion suggests the Frobenius characteristic

recursion

∂p1H̃2b1a−b(q, t) = [b]t(1 + q)H̃2b−11a−b+1(q, t) + [a− b]tt
bH̃2b1a−b−1(q/t, t). (2.4)

Assaf and Garsia [AG09] applied (2.4) to find the kicking basis of Mµ when µ is a column
shape as well as when µ is a hook shape.

3 The Formula

We begin by recalling definitions of q-analogs :

[n]q = 1 + q + · · ·+ qn−1,

[n]q! = [1]q · · · [n]q.

A descent of a filling σ of µ is a pair of entries σ(u) > σ(v), where the cell u is
immediately above v. Define

Des(σ, µ) = {u ∈ µ : σ(u) > σ(v) a descent},

and
maj(σ, µ) =

∑

u∈Des(σ,µ)

(leg(u) + 1).

Three cells u, v, w ∈ µ are said to form a triple if they are situated as shown below.

v
u w
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namely, v is directly below u, and w is in the same row as u, to its right. Let σ be a filling
and let x, y, z be the entries of σ in the cells of a triple (u, v, w).

x
y z

If a path starting from the smallest entry to the largest entry rotates in a counter clockwise
way, then the triple is called an inversion triple. Otherwise, it is called a coinversion triple.
Define

inv(σ, µ)= number of inversion triples of σ,
coinv(σ, µ) = number of coinversion triples of σ.

For convenience, we make a transformation to define F̃µ′(q, t) by

F̃µ′(q, t) = tn(µ)Fµ

(

1

t
, q

)

,

where n(µ) =
∑

i>1(i− 1)µi. We note that by modifying the inv(µ, σ) statistics, we get

F̃µ′(q, t) =
∑

σ∈Sn

qmaj(σ,µ′)tcoinv(σ,µ′).

Now, for a hook µ′ = (n − s, 1s), we define a combinatorial formula for the Hilbert
series as a sum over standard Young tableaux of shape µ′ by setting

Gµ(q, t) = qn(µ)G̃µ′

(

t,
1

q

)

,

where G̃µ′(q, t) is defined by

G̃µ′(q, t) :=
∑

T∈SYT(µ′)

n
∏

i=1

[ai(T )]t · [s]q!

(

1 +

s
∑

j=1

qjtbj(T )

)

. (3.1)

Here ai(T ) is the the number of columns of height equal to the height of the column of i
in the tableau obtained by removing all the entries j > i from T , and bj(T ) is the number
of cells in the first row with column height 1 (i.e., strictly to the right of the (1, 1) cell)
with bigger element than the element in the (s− j+2, 1) cell. Then we have the following
theorem :

Theorem 3.1.

F̃(n−s,1s)′(q, t) = G̃(n−s,1s)′(q, t),

and so
F(s+1,1n−s−1)(q, t) = G(s+1,1n−s−1)(q, t).
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Example 3.2. Let µ = (2, 1). To calculate F̃(2,1)(q, t) =
∑

σ∈S3
qmaj(σ,µ′)tcoinv(σ,µ′), we must

consider the following tableaux.

1
2 3

1
3 2

2
1 3

2
3 1

3
1 2

3
2 1

From the above tableaux, reading from the left, we get

F̃(2,1)(q, t) = t+ 1 + qt+ 1 + qt+ q = 2 + q + t+ 2qt. (3.2)

To compute G̃(2,1)(q, t), we need only consider the following two standard tableaux.

2
1 3=T1 ,

3
1 2=T2

We calculate ai(Tk), bj(Tk), for 1 6 i 6 3, j = 1, k = 1, 2 :

ai(T1) : 1
[1]t

→ 1
2

[1]t
→

2
1 3
[1]t

⇒

3
∏

i=1

[ai(T1)]t = [1]t, b1(T1) = 1

⇒ [1]t · (1 + qt)

ai(T2) : 1
[1]t

→ 1 2
[2]t

→
3
1 2
[1]t

⇒
3
∏

i=1

[ai(T2)]t = [2]t, b1(T2) = 0

⇒ (1 + t) · (1 + q).

So,

G̃(2,1)(q, t) = 1 · (1 + qt) + (1 + t)(1 + q)

= 2 + q + t+ 2qt.

We can check that F̃(2,1)(q, t) = G̃(2,1)(q, t) which implies F(2,1)(q, t) = G(2,1)(q, t).

The basic idea of the proof of Theorem 3.1 is to show Fµ(q, t) and Gµ(q, t) satisfy the
same recursion in the hook case.

Proof. We first note the Garsia-Haiman recursion for the Hilbert series of the hooks
[GH96] : for µ = (s+ 1, 1n−s−1),

Fµ(q, t) = [n− s− 1]tF(s+1,1n−s−2)(q, t) +

(

n− 1

s

)

tn−s−1[n− s− 1]t![s]q! (3.3)

+ q[s]qF(s,1n−s−1)(q, t).

We derive the recursion formula for G̃µ′(q, t) over standard tableaux by fixing the position
of the cell with the largest number n :

n

n
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Let’s first start from a SYT of shape (n− s, 1s−1) and say

G̃(n−s,1s−1)(q, t) =
∑

T∈SYT((n−s,1s−1))

n−1
∏

i=1

[ai(T )]t · [s− 1]q!

(

1 +

s−1
∑

j=1

qjtbj(T )

)

(3.4)

and put the cell with n on the top of the first column. Then, since there is no other column
with height s + 1, adding the cell with n on the top of the first column gives an(T ) = 1
which doesn’t change the first factor of (3.4). The change of the first column height from
s − 1 to s will give an additional factor [s]q. The top cell in the first column with n
has t power 0 since n is the largest number, and it does not change t-statistics for the

cells below the cell with n, so
(

1 +
∑s−1

j=1 q
jtbj(T )

)

changes to
(

1 + q +
∑s

j=2 q
jtbj−1(T )

)

.

Hence, for the first tableau with n on the top of the first column, the formula becomes

∑

T∈SYT((n−s,1s−1))

n−1
∏

i=1

[ai(T )]t · [s]q!

[

1 + q

(

1 +
s−1
∑

j=1

qjtbj(T )

)]

=





∑

T∈SYT(n−s,1s−1)

n−1
∏

i=1

[ai(T )]t · [s]q!



+ q[s]qG̃(n−s,1s−1)(q, t)

and in terms of G̃(n−s,1s−1)(q, t), this is equal to

[s]q!G̃(n−s,1s−1)(0, t) + q[s]qG̃(n−s,1s−1)(q, t). (3.5)

In the second tableau case, we start from a SYT of shape (n− s− 1, 1s) and add the
cell with n to the end of the first row. Adding a cell with n to the end of the first row
increases the number of columns with height 1 from n−s−2 to n−s−1, so it contributes
the t factor [an(T )]t = [n − s − 1]t. Since it doesn’t affect the first column, [s]q! stays,
but having the largest number n in the first row increases all the bj(T )’s by 1. In other
words, if we let the formula for the SYT of shape (n− s− 1, 1s) be

G̃(n−s−1,1s)(q, t) =
∑

T∈SYT((n−s−1,1s))

n−1
∏

i=1

[ai(T )]t · [s]q!

(

1 +
s
∑

j=1

qjtbj(T )

)

then by adding the cell with n in the end of the first row, it changes to

∑

T∈SYT(n−s−1,1s)

[n− s− 1]t ·

n−1
∏

i=1

[ai(T )]t · [s]q!

(

1 +

s
∑

j=1

qjtbj(T )+1

)

=
∑

T∈SYT(n−s−1,1s)

[n− s− 1]t ·

n−1
∏

i=1

[ai(T )]t · [s]q!

[

t

(

1 +

s
∑

j=1

qjtbj(T )

)

+ (1 − t)

]

.
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In terms of G̃(n−s−1,1s), this can be expressed as

t[n− s− 1]tG̃(n−s−1,1s)(q, t) + (1 − t)[n− s− 1]t[s]q!G̃(n−s−1,1s)(0, t). (3.6)

By adding (3.5) and (3.6), we get the following recursive formula for G̃(n−s,1s)(q, t) :

G̃(n−s,1s)(q, t) = q[s]qG̃(n−s,1s−1)(q, t) + t[n− s− 1]tG̃(n−s−1,1s)(q, t)

+[s]q!(G̃(n−s,1s−1)(0, t) + (1 − tn−s−1)G̃(n−s−1,1s)(0, t)).

To compare this to the recursion of Fµ(q, t) (3.3), we do the transformation Gµ(q, t) =

qn(µ)G̃µ′

(

t, 1
q

)

and we get the recursion formula for Gµ(q, t)

G(s+1,1n−s−1)(q, t) = q[s]qG(s,1n−s−1)(q, t) + [n− s− 1]tG(s+1,1n−s−2)(q, t)

+[s]q!{G(s,1n−s−1)(0, t) + (tn−s−1 − 1)G(s+1,1n−s−2)(0, t)}. (3.7)

We calculate the last two terms in (3.7).

Lemma 3.3.

[s]q!{G(s,1n−s−1)(0, t) + (tn−s−1 − 1)G(s+1,1n−s−2)(0, t)} = [n− s− 1]t![s]q!

(

n− 1

s

)

tn−s−1.

Proof. We use (3.4) and do the transformation Gµ(q, t) = qn(µ)G̃µ′

(

t, 1
q

)

to calculate

G(s,1n−s−1)(0, t) and G(s+1,1n−s−2)(0, t) when q = 0. We have

G(s,1n−s−1)(q, t) = [n− s− 1]t!t
n−s−1[s− 1]q!

×

n−s+1
∑

j1=2

· · ·

n−1
∑

js−1=js−2+1

[j1 − 1]t
tj1−2

(

1 + qt−(n−s−js−1) + · · ·+ qs−1t−(n−1−j1−(s−2))
)

.

Then for G(s,1n−s−1)(0, t), we get

G(s,1n−s−1)(0, t) = [n− s− 1]t!t
n−s−1

n−s+1
∑

j1=2

· · ·
n−1
∑

js−1=js−2+1

[j1 − 1]t
tj1−2

= [n− s− 1]t!t
n−s−1

n−s+1
∑

j1=2

[j1 − 1]t
tj1−2





n−s+2
∑

j2=j1+1

· · ·
n−1
∑

js−1=js−2+1

1





= [n− s− 1]t!t
n−s−1

n−s+1
∑

j1=2

[j1 − 1]t
tj1−2

(

n− s− j1
s− 2

)

= [n− s− 1]t!t
n−s−1

n−1
∑

i=s

(

i− 1

s− 1

)

t−(n−1−i)

= [n− s− 1]t!

n−1
∑

i=s

(

i− 1

s− 1

)

ti−s.
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Similarly, we get

G(s+1,1n−s−2)(0, t) = [n− s− 2]t!

n−1
∑

i=s+1

(

i− 1

s

)

ti−s−1.

Hence,

[s]q!{G(s,1n−s−1)(0, t) + (tn−s−1 − 1)G(s+1,1n−s−2)(0, t)}

= [s]q!

{

[n− s− 1]t!
n−1
∑

i=s

(

i− 1

s− 1

)

ti−s + (tn−s−1 − 1)[n− s− 2]t!
n−1
∑

i=s+1

(

i− 1

s

)

ti−s−1

}

= [s]q![n− s− 1]t!

{

n−1
∑

i=s

(

i− 1

s− 1

)

ti−s + (t− 1)

n−1
∑

i=s+1

(

i− 1

s

)

ti−s−1

}

= [s]q![n− s− 1]t!

{

n−1
∑

i=s

(

i− 1

s− 1

)

ti−s +

n−1
∑

i=s+1

(

i− 1

s

)

ti−s −

n−1
∑

i=s+1

(

i− 1

s

)

ti−s−1

}

= [s]q![n− s− 1]t!

(

n− 1

s

)

tn−s−1.

Thus the recursion formula for Gµ(q, t) simplifies to

G(s+1,1n−s−1)(q, t) = q[s]qG(s,1n−s−1)(q, t) + [n− s− 1]tG(s+1,1n−s−2)(q, t) (3.8)

+[n− s− 1]t![s]q!

(

n− 1

s

)

tn−s−1.

We compare two recursions (3.3) and (3.8), and confirm that Fµ(q, t) and Gµ(q, t) both
satisfy the same recursion. Based on the fact that F(1)(q, t) = G(1)(q, t), we conclude that

Fµ(q, t) = Gµ(q, t), which also implies F̃µ′(q, t) = G̃µ′(q, t). This finishes the proof.

Remark 3.4. We can define a combinatorial construction for Gµ(q, t) directly

Gµ(q, t) =
∑

T∈SYT(µ)

n
∏

i=1

[ai(T )]t[µ1 − 1]q!

(

µ1−1
∑

j=1

qj−1tbj(T ) + qµ1−1

)

(3.9)

where ai(T ) is the number of rows of length equal to the length of the row of i in the
tableau obtained by removing all the entries j > i from T , and bj(T ) counts the number
of cells in the first column in rows strictly above the cell (1, 1) with bigger numbers than
the element in the cell (1, j + 1).
The main reason for applying the modification G̃µ′(q, t) = tn(µ)Gµ

(

1
t
, q
)

is because the
combinatorial construction for Gµ(q, t) does not give the recursion from the construction
directly.

Remark 3.5. This factorization form in the hook case was independently noticed by Morita
[Mor08, Proposition 13].
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4 Association with the Fillings

In this section, we find the correspondence between a group of fillings and one standard
Young tableau giving the same polynomial for the Hilbert series. In other words, we
construct a way of grouping permutations {σ1, . . . , σk}, σi ∈ Sn, so that

k
∑

i=1

qinv(µ,σi)tmaj(µ,σi) =
n
∏

i=1

[ai(T )]t[µ1 − 1]q!

(

µ1−1
∑

j=1

qj−1tbj(T ) + qµ1−1

)

(4.1)

where T is a standard Young tableau of shape µ and the right hand side is the polynomial
summed over SYT(µ) in (3.9).

In Section 4.1, we introduce a grouping table as a way to construct a grouping of fillings
and we modify the Garsia-Procesi tree [GP92] so that we can find one standard Young
tableau corresponding to one group of fillings. This procedure will give a correspondence
satisfying (4.1).

4.1 Grouping Table

For the general hook of shape µ = (s, 1n−s), the way that we make the grouping table is the
following : we start by putting the numbers from 1 to n on the top of the table. We choose
s numbers between 1 and n− (k− 1) including 1 and n− (k− 1), where k changes from 1
to n− s+1. Say 1, a1, . . . , as−2, n− (k−1) are chosen. In the grouping table, we place ×
marks under the numbers which are chosen and we place ◦ under the unchosen ones. In
the next line, we place × marks under the numbers 2, a1 +1, . . . , as−2 +1, n− (k− 1)+1.
We keep making lines with the numbers increasing by 1 at a time until the largest number
n−(k−1)+j becomes n, after repeating j times. Then this procedure will generate k lines
and these k lines are considered as one set which will correspond to one standard Young
tableau. We repeat this procedure in all possible

(

n−k−1
s−2

)

ways, where 1 6 k 6 n− s+ 1
and this completes the construction. Table 1 is an example of the grouping table for
µ = (3, 1, 1), where n = 5, s = 3.

Given one set of k lines in the grouping table, we read out the fillings in the following
way. In µ = (s, 1n−s), we place the s chosen numbers in the first row and permute in all
possible ways, and put the n − s unchosen numbers in the first column above (1, 1) cell
and permute in all possible ways. Combining the separate fillings for the first row and
the first column (not including (1, 1) cell) gives one set of fillings. Repeat the same thing
with different choices if there are more than one line in one set. From one k-lined set, we
get k · s!(n− s)! fillings. For instance, in Table 1, from the first line

1 2 3 4 5
× × ◦ ◦ ×

we get 12 different fillings

4
3
1 2 5

4
3
1 5 2

3
4
1 2 5

3
4
1 5 2 ,

4
3
2 1 5

4
3
2 5 1

3
4
2 1 5

3
4
2 5 1
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1 2 3 4 5
× × ◦ ◦ ×
× ◦ × ◦ ×
× ◦ ◦ × ×
× × ◦ × ◦
◦ × × ◦ ×
× ◦ × × ◦
◦ × ◦ × ×
× × × ◦ ◦
◦ × × × ◦
◦ ◦ × × ×

Table 1: The grouping table for µ = (3, 1, 1).

4
3
5 1 2

4
3
5 2 1

3
4
5 1 2

3
4
5 2 1 .

An advantage of having the grouping table is that we do not have to calculate qinv(µ,σi)

×tmaj(µ,σi) for all σi’s coming from one set of fillings, for we can read out the polynomial
in the right hand side of (4.1) directly from the grouping table. One k-lined set would
give

[s− 1]q![n− s]t![k]t

(

s
∑

j=1

qj−1tb(r
k
j )

)

, (4.2)

where rk
j ’s are the chosen numbers in the last line of the set and b(rk

j ) is the number of
unchosen numbers which are bigger than rk

j (or, number of ◦’s to the right of rk
j ). Full

explanation for the proof of (4.2) is given in Proposition 4.3. We give the precise proof
that this result is exactly the right hand side of (4.1) in Proposition 4.2 and Proposition
4.3.

4.2 Modified Garsia-Procesi Tree

By using the grouping table, we can connect a group of fillings to a polynomial coming
from the combinatorial construction in (3.9) corresponding to one standard Young tableau.
Namely, we associate a SYT to a group of lines in the grouping table such that (4.2)
coincides with the right hand side of (4.1), for the corresponding SYT. However, it does
not explicitly determine what the corresponding standard Young tableau is. To specify
the described correspondence, we consider the Garsia-Procesi tree [GP92] that was used to
find the basis of certain graded Sn modules which has a character related to the Kostka-
Foulkes polynomials Kλµ(t). Garsia and Procesi used their tree to find a basis of the
graded Sn module, but since we are calculating the Hilbert series, we just recall how we
construct the tree to find the Hilbert series. The Young diagram of µ is the root of the
tree, and children are obtained by removing one corner square. We put multiple edges as
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many as the number of squares of arm 0 in the same column of the square to be removed.
We keep removing corner squares one at each level until only one square is left. Then we
assign appropriate weights on branches of the tree so that we get

∑

λ⊢n

K̃λµ(t)fλ =
∑

T∈SYT(µ)

W (T )

where K̃λµ(t) = K̃λµ(0, t) are the modified Kostka-Foulkes polynomials, fλ is the number
of standard Young tableaux of shape λ, and W (T ) is a polynomial which can be defined
as follows. Given a partition µ we assign a weight w(c) to each corner square c according
to the following rule. If the coordinates of c are (i, µi) and m is the multiplicity of µi in
µ then w(c) = ti−m + ti−m+1 + · · · ti−2 + ti−1. Finally, for a standard Young tableau T
we set W (T ) equal to the product of the weights of each of its entries, here the weight of
entry s in T is taken to be the weight of the corner square containing s in the partition
obtained from the shape of T by removing all the squares containing entries bigger than
s. We give an example of the Garsia-Procesi tree for (2, 1, 1) in Figure 2.

1

�� t
!!

t2

��

1

��

t

��

t2

��

1

��

t





1

��

t





1

��

t





1

��

Figure 2: The Garsia-Procesi tree for µ = (2, 1, 1).

Then we get the Hilbert series as a sum of the following polynomials

w( 1 4
2
3

) = (1 + t+ t2)(1 + t),

w( 1 3
2
4

) = (t+ t2)(1 + t),

w( 1 2
3
4

) = (t+ t2)(t)

which is the right hand side of (3.9) when q = 0. The paths from the leaves can be
identified with standard Young tableaux of shape µ. As we trace back the tree, we fill the
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added cell by i, where i changes from 1 to n. Noting that the Garsia-Procesi tree gives the
Hilbert series of Mµ when q = 0, we modify the tree so that we can recover q-statistics.

Given the polynomials of the form [s−1]q![n−s]t![k]t

(

∑s
j=1 q

j−1tb(rj)
)

from the group

of fillings, we modify the Garsia-Procesi tree [GP92] and use it to find the corresponding
standard Young tableau. We modify the Garsia-Procesi tree as follows. The way of
putting multiple edges are the same to the construction of the original Garsia-Procesi
tree. The k-multiple edges would have the weight 1, t, . . . , tk−1. For the q-statistics, in
the beginning of the tree, we put 0’s above the cells in the first row to the right of the
(1, 1) cell. As we go down one branch in the tree, if a cell in the first column is removed,
then we increase the numbers above the first row by 1. And if a cell in the first row is
removed, the number above that removed cell will be fixed. For the running example of
µ = (3, 1, 1), the modified Garsia-Procesi tree is given in the Figure 3. In the last leaves

0 0

1

�� 1

))

t

$$

0 0

1

�� 1
$$

t

��

1 1

1

��

1

��

0 0

1

��

t

��

t2

��

1 0

1

��

1





1 1

1

��

1

��

2 2

1

��

0 0

1

��

t

��

1 0

1

��

t

��

2 0

1

��

1 1

1

��

t

��

2 1

1

��

2 2

1

��
0 0 1 0 2 0 1 1 2 1 2 2

Figure 3: The modified Garsia-Procesi tree for µ = (3, 1, 1).

of the tree, we compare the fixed s − 1 many numbers reading from left to right which
were above the first row (to the right of (1, 1) cell) to b(r1), . . . , b(rs−1). The leaf having
b(r1), . . . , b(rs−1) to the right is the starting point for constructing the standard tableau
and we trace back the tree. We put 1 in the starting leaf and follow up the path and put
2 in the added cell. We fill the tableau as we trace back up the tree putting the next
element in the added cell. For example, from the first line of the grouping table in Table
1 we get the polynomial

(1 + t)(1 + q)(t2 + qt2 + q2).

We look for b(r1), b(r2) = 2, 2 in the bottom leaves of Figure 3 which is the right end leaf
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and as we trace back the tree, we fill the diagram with numbers from 1 to n = 5 :

1 → 1 2 → 1 2 3 → 1 2 3
4

→ 1 2 3
4
5

The final tableau is the corresponding standard Young tableau which gives the same
polynomial by the combinatorial construction in (3.9).

Remark 4.1. We can find the polynomials for the Hilbert series corresponding to standard
Young tableaux by just considering the modified Garsia-Procesi tree. We start from one
last leaf in the bottom of the tree. The numbers to the right of the cell (the last leaf in the
tree) give b(r1), . . . , b(rs−1) from left to right which makes the factor (

∑s−1
j=1 q

j−1tb(rj) +qs).
We trace back the tree and pick up the weights on the paths. If there are multiple edges
with weights 1, t, . . . , tk, then we pick up (1 + t + · · · + tk) from that path. We multiply
the contributions along the path from the bottom to top of the tree and multiply [s]q!
then this gives one polynomial corresponding to one standard Young tableau.
For instance, from the right end path in Figure 3, we get (t2 + qt2 + q2) · 1 · 1 · 1 · (1 + t)
and we multiply [2]t! = (1 + q) and get

(1 + t)(1 + q)(t2 + qt2 + q2).

We give the proof that the grouping table and the modified Garsia-Procesi tree give a
bijection between sets of fillings and standard Young tableaux of shape µ. We first prove
that the grouping table gives the Hilbert series of Garsia-Haiman modules.

Proposition 4.2. The grouping algorithm generates all the n! fillings of µ.

Proof. By the construction the grouping table, we do not count the same filling multiple
times, so we only need to check that the number of fillings that are counted in the grouping
table is n!. From the permutations on the first column and the first row not including
(1, 1) we count (s−1)!(n−s)!. In the grouping table, there are

(

n−k−1
s−2

)

many k-lined sets
and in each line there are s different choices for the element in the cell (1, 1). We add
them up to get the number of fillings that the grouping table counts :

s(s− 1)!(n− s)!

n−s+1
∑

k=1

k

(

n− k − 1

s− 2

)

= s!(n− s)!

n−s+1
∑

k=1

k

(

n− k − 1

s− 2

)

.

Therefore, we want to show the following identity

(

n

s

)

=
n−s+1
∑

k=1

k

(

n− k − 1

s− 2

)

. (4.3)

Note the known identity
n
∑

j=k

(

j

k

)

=

(

n+ 1

k + 1

)

. (4.4)
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Then, by applying (4.4) twice, the right hand side of (4.3) becomes

n−s+1
∑

k=1

k

(

n− k − 1

s− 2

)

=
n−s+1
∑

j=1

n−s+1
∑

k=1

(

n− k − 1

s− 2

)

=
n−s+1
∑

k=1

[

n−k−1
∑

j=s−2

(

j

s− 2

)

]

=
n−s+1
∑

k=1

(

n− k

s− 1

)

=

n−1
∑

j=s−1

(

j

s− 1

)

=

(

n

s

)

,

which is the left hand side of (4.3). This shows that we considered all n! possible fillings,
hence the grouping table gives the Hilbert series of Mµ.

In Proposition 4.2 we confirm that the grouping table gives the Hilbert series of Mµ.
In the following proposition, we show that each k-lined set in the grouping table, for
k 6 1 6 n− s+ 1, gives the set of fillings corresponding to one standard Young tableau.

Proposition 4.3. The identity (4.1) holds, where the left hand side is determined by
the grouping algorithm, and the SYT T in the right hand side is given by the modified
Garsia-Procesi tree.

Proof. We show that if we add up all the terms qinv(µ,σi)tmaj(µ,σi) for σi’s coming from
one k-lined set of the grouping table, we get a polynomial of the type

∏n
i=1[ai(T )]t[s −

1]q!
(

∑s−2
j=1 q

j−1tbj(T ) + qs−1
)

for a standard Young tableau T of shape µ where µ =

(s, 1n−s), which is the right hand side of (4.1).
Recall the way that we get the fillings from one set of the grouping table. First, we place
s chosen numbers in the first row in all possible ways, and n− s unchosen numbers in the
first column above the (1, 1) cell in all possible ways and combine them to get all possible
fillings. We note the following fact first.

Lemma 4.4. For a given n + 1 numbers {σ1, . . . , σk, k, σk+1, . . . , σn}, σ1 < σ2 < · · · <
σk < k < σk+1 < · · · < σn, we consider all the possible fillings for one column tableau
(1n+1) with permutations of {σ1, . . . , σk, σk+1, . . . , σn} fixing k in the bottom (1, 1) cell.
Then we have

∑

σ∈Sn

k in (1, 1) cell

tmaj(σ) = tn−k[n]t!. (4.5)

Note that n− k is the number of elements which are bigger than k in the (1, 1) cell.

Proof. Without considering k in the bottom cell, for the permutations σ ∈ Sn of n numbers
{σ1, . . . , σk, σk+1, . . . , σn},

∑

σ∈Sn
tmaj(σ) = [n]t! which is known by Stanley [Sta99, p.364].

We prove (4.5) by induction. If n = 1, then, If σ1 < k, then it doesn’t contribute any maj
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statistic, and if σ1 > k, then it gives 1 to the maj, so tmaj(σ) = t = t[1]t.
We assume that (4.5) holds for µ = (1n). We calculate

∑

σ∈Sn

k in (1, 1) cell
tmaj(σ) by varying the

number which comes right above k in the bottom cell. If σ1 is right above k, then it does
not contribute to maj, and by the induction hypothesis,

∑

σ∈Sn−1,σ1∈(2,1)

k in (1, 1) cell

tmaj(σ) = tn−1[n− 1]t!.

k doesn’t contribute any maj if we vary the numbers in the cell (2, 1) within {σ1, . . . , σk},
and the exponent of t multiplied to [n− 1]t! decreases by 1 as σi increases. Now, if σk+1

comes in the cell (2, 1), then σk+1 and k will make a descent and so σk+1 gives n to maj.
So,

∑

σ∈Sn−1,σk+1∈(2,1)

k in (1, 1) cell

tmaj(σ) = t2n−k−1[n− 1]t!.

As σi changes in {σk+1, . . . , σn}, σi and k make a descent so σi contributes n, and the
exponent of t decreases by 1 as σi increases. Finally, we add up all possible cases, and get

∑

σ∈Sn
k in (1, 1) cell

tmaj(σ) = [n− 1]t!(t
n−1 + · · · + tn−k + t2n−k−1 + · · ·+ tn)

= tn−k[n− 1]t!(1 + t+ · · ·+ tk−1 + tk + · · · + tn−1)

= tn−k[n− 1]t![n]t = tn−k[n]t!.

Since the major and inversion statistics are equidistributed over the symmetric group
[Mac13], we have that

∑

σ∈Ss−1

qinv(σ) = [s− 1]q!.

Thus, the permutations of s− 1 elements in the first row not including the (1, 1) cell give
[s−1]q! factor, and the permutations of n−s elements in the first column above the (1, 1)
cell give [n − s]t! factor. So summing up qinv(µ,σi)tmaj(µ,σi) for σi’s coming from one line
of the grouping table gives qa(rj)tb(rj)[n− s]t![s− 1]q!, where rj ’s are the chosen numbers,
r1 < r2 < · · · < rs, and a(rj) and b(rj) are determined by the element rj in the (1, 1) cell
as follows. In the grouping table, a(rj) counts the number of chosen numbers strictly less
than rj (or, number of ×’s to the left of rj) since rj makes an inversion triple with those
numbers, and b(rj) counts the number of unchosen numbers strictly bigger than rj (or,
the number of ◦’s to the right of rj) which is the contribution to maj by rj by Lemma
4.4. Notice that by the way of constructing the k-lines sets in the grouping table, all lines
in the same set share the factor (

∑s
j=1 q

a(rj)) and b(rj)’s uniformly decrease by 1 as line
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goes down. In other words, if we let ri
j, r

i
1 < · · · < ri

s, be the chosen numbers in the ith

line in one k-lined set, then

s
∑

j=1

qa(rp
j ) =

s
∑

j=1

qa(rq
j ), for any 1 6 p, q 6 k

and
b(rp

j ) = 1 + b(rp+1
j ), for 1 6 p 6 k − 1, 1 6 j 6 s.

Also, notice that a(ri
j) = j − 1 for any 1 6 i 6 k by the construction of the grouping

table. Hence, summing up qinv(µ,σi)tmaj(µ,σi) for all σi’s coming from one set of fillings gives
(4.2) where the rk

j ’s, r
k
1 < · · · < rk

s , are the chosen numbers in the last line of one k-lined
set. Since rk

j ’s are in the last line of one set, rk
s = n and this gives b(rk

s ) = 0. So (4.2) is
equal to

[n− s]t![s− 1]q![k]t

(

s−1
∑

j=1

qj−1tb(r
k
j ) + qs−1

)

. (4.6)

Note that there are
(

n−k−1
s−2

)

many k-lined sets in the grouping table.
Now we find a standard Young tableau which could have (4.6) as a result the com-

binatorial calculation as defined in (3.9). Given a sequence of b(rk
j )’s, j = 1, . . . , s − 1,

T = 1

2

·
·
·

k

α1

·
·
·

αn−s−k+1

k+1 β1 · · · βs−2

consider a standard Young tableau T of a shape µ = (s, 1n−s) with the filling αn−s−k+1 >
· · · > α1 > k > k − 1 > · · · > 2 > 1 < k + 1 < · · · < β1 < · · · < βs−2, reading from the
top to bottom, from left to right in the same row, such that

b(rk
1) = |{αi : αi > k + 1, 1 6 i 6 n− s− k + 1}|,

b(rk
j ) = |{αi : αi > βj, 1 6 i 6 n− s− k + 1}|, for 2 6 j 6 s− 1.

Then by the choice of the filling of T ,

n
∏

i=1

[ai(T )]t = [1]t × · · · × [k]t × [k]t × · · · × [n− s]t = [n− s]t![k]t,
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s−1
∑

j=1

qj−1tbj(T ) =
s−1
∑

j=1

qj−1tb(r
k
j ).

Hence,

n
∏

i=1

[ai(T )]t[s− 1]q!

(

s−1
∑

j=1

qj−1tbj(T ) + qs−1

)

(4.7)

= [n− s]t![k]t[s− 1]q!

(

s−1
∑

j=1

qj−1tb(r
k
j ) + qµ1−1

)

.

Since there are
(

n−k−1
s−2

)

choices for the numbers (α1, . . . , αn−s−k+1; β1, . . . , βs−2) for the
filling of a standard tableau T of shape µ = (s, 1n−s), for each k-lined set in the grouping
table, we can find one and only one standard Young tableau satisfying (4.7). This finishes
the proof.

5 Haglund Basis

It is worth of noting that we can realize the Haglund basis [ARR08, Corollary 1.7] of
Mµ by extending the grouping table. Adin, Remmel and Roichman [ARR08] studied
the Garsia-Haiman Modules for hook shapes and found several bases of the modules
including the Haglund basis. The construction of the Haglund basis is based on the
combinatorial interpretation of Haglund, Haiman and Loehr [HHL05] for the modified
Macdonlad polynomials.
The decent set of a permutation π ∈ Sn is

Des(π) := {i : π(i) > π(i+ 1)}.

For every integer 1 6 k 6 n and permutation π ∈ Sn define

d
(k)
i (π) :=







|Des(π) ∩ {i, . . . , k − 1}|, if 1 6 i < k;
0, if i = k;
|Des(π) ∩ {k, . . . , i− 1}|, if k < i 6 n.

,

inv
(k)
i (π) :=







|j : i < j 6 k and π(i) > π(j)}|, if 1 6 i < k;
0, if i = k;
|{j : k 6 j < i and π(j) > π(i)}|, if k < i 6 n.

Then the (n− s+ 1)th Haglund monomial is defined by

c(n−s+1)
π :=

n−s
∏

i=1

x
d
(n−s+1)
i (π)

π(i) ·

n
∏

i=n−s+2

y
inv

(n−s+1)
i (π)

π(i) .

Theorem 5.1. [ARR08] {c
(n−s+1)
π : π ∈ Sn} forms a basis for the Garsia-Haglund module

M(s,1n−s).
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We extend the grouping table by specifying the element placing in the (1, 1) cell
to construct the Haglund monomial basis. We consider one line in the grouping table
and let c be one of the chosen numbers which comes in the (1, 1) cell, and r1, . . . , rs−1,
r1 < · · · < rs−1, be the rest of the chosen numbers, and p1, . . . , pn−s, p1 < · · · < pn−s, be
the unchosen numbers. Then

(

[n− s]xpn−s
· [n− s− 1]xpn−s−1

· · · [1]xp1
·

n−s
∏

i=1

xpi
χ(pi > c)

)

×

(

[s− 1]yr1
· [s− 1]yr2

· · · [1]yrs−1
·

s−1
∏

i=1

yri
χ(ri < c)

)

,

where χ(Q) = 1 if Q is true and χ(Q) = 0 if Q is false, gives (n−s)!(s−1)! monomial basis

elements forM(s,1n−s) which correspond to {c
(n−s+1)
π } for all π’s corresponding to the filings

coming from one line of the grouping table. Note that since each line has s choices for the
element c in the (1, 1) cell, each line of the grouping table gives (n−s)!(s−1)!s = (n−s)!s!
monomial elements, and there are k lines on one k-lined set, and there are

(

n−k−1
s−2

)

many
k-lines sets, for 1 6 k 6 n− s + 1, by the calculation in the proof of Proposition 4.2 we
can see that we get n! monomial basis elements by this construction.

For instance, in the grouping table of µ = (3, 1, 1), Table 1, the first line

1 2 3 4 5
× × ◦ ◦ ×

gives

(1 + x4)x3x4 · (1 + y2) when 1 comes in the (1, 1) cell,

(1 + x4)x3x4 · (1 + y2)y1 when 2 comes in the (1, 1) cell, and

(1 + x4) · (1 + y2)y1y2 when 5 comes in the (1, 1) cell.

We can check that these are consistent with {c
(n−s+1)
π } where π’s are the permutations

corresponding to the fillings coming from the line × × ◦ ◦ × of the grouping table. The
checking is straightforward since both constructions are based on the same combinatorial
formula of Haglund, Haiman and Loehr [HHL05] for the Macdonald polynomials.

6 Generalization to a general shape µ

In this section, we are to discuss the challenges of extending the combinatorial construction
for the Hilbert series of Garsia-Haiman modules to arbitrary shapes. We recall that in
Section 2.3, when q = 0 the Hilbert series becomes

F̃µ′(0, t) =
1

(1 − t)n

∑

T∈SYT(µ)

ϕT (t). (6.1)
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and this gives the combinatorial construction of

G̃µ′(0, t) =
∑

T∈SYT(µ′)

n
∏

i=1

[ai(T )]t, (6.2)

when q = 0. Since (2.2) is true for general shape of µ, by (6.1), the Hilbert series of Mµ

for any shape of µ would have the form in (6.2) when q = 0.
Hence, the natural thing to ask is whether one can find a similar combinatorial con-

struction for the Hilbert series ofMµ for general µ’s as a sum over standard Young tableaux
of shape µ which is consistent with (6.1) and (6.2) when q = 0.

Example 6.1. When µ = (3, 2) (or µ′ = (2, 2, 1)), the Hilbert series could be expressed as
a sum of factorized polynomials in the second column of the Table 2.

SYT(µ′) Hilbert series F̃µ′(q, t)

1 3
2 4
5

1 2
3 5
4

(1 + t)(1 + q)2(1 + q + q2t), (1 + t)(1 + q)2(1 + qt+ q2t)

1 3
2 5
4

1 4
2 5
3

(1 + qt)(1 + q)(1 + q + q2t), (1 + qt)(1 + q)(1 + qt+ q2t)

1 2
3 4
5

(1 + t)2(1 + q)2(1 + q + q2)

Table 2: The Hilbert series for µ′ = (2, 2, 1)

The standard Young tableaux in the first column of the Table 2 are the possible
standard Young tableaux corresponding to the polynomials in the right hand side, which
are consistent with the combinatorial construction

∏n
i=1[ai(T )]t, where T ∈ SYT(µ′), as

defined in (3.1) when q = 0. Even though it seems that F̃(3,2)′(q, t) can be expressed as
a sum of factorized polynomials over standard Young tableaux of shape (3, 2)′ = (2, 2, 1),
we haven’t been successful to find the appropriate q-statistics.
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