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Abstract

It is already known that for very small edge cuts in graphs, the crossing number
of the graph is at least the sum of the crossing number of (slightly augmented)
components resulting from the cut. Under stronger connectivity condition in each
cut component that was formalized as a graph operation called zip product, a similar
result was obtained for edge cuts of any size, and a natural question was asked,
whether this stronger condition is necessary. In this paper, we prove that the relaxed
condition is not sufficient when the size of the cut is at least four, and we prove that
the gap can grow quadratically with the cut size.

1 Introduction

Crossing number of graphs (see [13] for basic definitions) has been extensively studied for
about sixty years and is still a notorious problem in graph theory. While determining or
bounding the crossing number of graphs used to be the main issue at the beginning, the
focus is now shifting to structural aspects of the crossing number problem. These include
the study of several variants of crossing number [5, 8, 18, 19, 21, 22], crossing-critical
graphs [9, 23, 24], or the properties of drawings with a bounded number of crossings per
edge [20].

Very early at the development of the crossing number theory, Leighton realized that
cuts in graphs play an important role in determining the crossing number of a graph.
Combining them with the Lipton-Tarjan planar separator theorem [17], he used edge
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cuts in graphs to provide upper bounds on crossing numbers [1], whereas in the bisection
method [15, 16], he used this structure to derive lower bounds for the crossing number.

Both the upper and the lower bound arising from graph cuts are general methods that
apply to every graph, but neither provides the sharpness needed to yield exact bounds.
This issue was resolved by the introduction of the zip product of graphs in [2, 3], which led
to exact crossing number of several two-parameter graph families, most general being the
crossing number of the Cartesian product of any sub-cubic tree with any star K1,n. This
family includes, as a subfamily, the product of any path and any star, resolving a long-
standing conjecture by Jendról and Ščerbova in [12]. Besides, it has also been helpful
for other works concerning exact crossing numbers (as in [25, 26]), but also regarding
crossing-critical graphs (see [4, 10]). It is natural to ask about its behavior with respect
to other graph invariants.

The zip product approach, however, assumes a technical condition of having two co-
herent bundles in the zipped graphs (we formalize this condition later). In this paper, we
examine the possible weakenings of this condition and prove that having only one bundle
in each graph is not sufficient to establish superadditivity of crossing number with regard
to the zip product. Moreover, we are able to achieve any gap between both quantities
and show that the gap can grow quadratically with the number of edges involved in the
zip product.

In the first section, we state the definitions of zip product and bundles and recall
precedent results. In the second part, we describe the families of graphs that we use in
the proof of our main result. In the last section, we point out a contradiction of our results
with some arguments of Chimani, Gutwenger, and Mutzel [7]. These contradictions do
not disprove their results, but only render their argument invalid.

2 The zip product

For i = 1, 2, let Gi be a simple graph (we will see how zip product can be extended for
multiple edges) and vi ∈ V (Gi) such that both v1 and v2 have the same degree d. Let
Ni = NGi

(vi) be the set of neighboring vertices of vi in Gi, and let σ : N1 → N2 be a
bijection. We call σ a zip function of the graphs G1 and G2 at vertices v1 and v2. The zip

product of G1 and G2 according to σ is the graph G1 ⊙σ G2 obtained from the disjoint
union of G1 − v1 and G2 − v2 after adding edges uσ(u) for any u ∈ N1. With G1 v1

⊙v2
G2,

we denote the set of graphs that can be obtained as G1 ⊙σ G2 for some bijection σ between
the neighborhoods of G1 and G2.

Let v ∈ V (G) be a vertex of degree d in G. A bundle of v is a set B of d edge-disjoint
paths from v to some vertex u ∈ V (G), u 6= v. Vertex v is the source of the bundle and
u is its sink. Other vertices on the paths of B are internal vertices of the bundle. Let
Ĕ(B) = E(B)∩E(G− v) denote the set of edges of B that are not incident with v. They
are called distant edges of B. Two bundles B1 and B2 of v are coherent if their sets of
distant edges are disjoint.

The following result was established in [3]:
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Theorem 2.1 [3] For i = 1, 2, let Gi be a graph, vi ∈ V (Gi) a vertex of degree d, and

Ni = NGi
(vi). Also assume that vi has two coherent bundles Bi,1 and Bi,2 in Gi. Then,

cr(G1 ⊙σ G2) > cr(G1) + cr(G2) for any bijection σ : N1 → N2.

Note that, as stated above, the zip product is defined to involve vertices that have no
incident multiple edges. However, the reader shall have no difficulty establishing the same
result for graphs with multiple edges: if the edges in each multiple edge are subdivided,
the crossing number is preserved and the resulting graph is simple. The zip product is
done using these simple graphs. We suppress the degree-two edges after the zip product,
and obtain back the multiple edges. In this manner, the new vertices of the subdivision
play only the role of placeholders for specifyin the matching between multigraphs G1 and
G2, whereas the coherent bundles of vi in Gi are allowed to share (multi)edes incident
with vi.

3 Two families of graphs

We define two families of graphs with specific crossing number, such that in each a chosen
vertex has a single bundle.

Definition 3.1 Given any integer p > 4, let p = 4k + r. Let K = K2,4 with bipartition

ai, i = 1, 2 and bj, j = 1, 2, 3, 4. The graph Hk,r is obtained from K with the following

steps:

1. adding a cycle C = b1b2b3b4,

2. subdividing the edge a1bi with xi, i = 1, 3,

3. adding the edge x1x3,

4. replacing every edge with k parallel edges,

5. adding r more edges to the multiedges aib4, i = 1, 2.

Figure 1(a) depicts H3,1.

Lemma 3.2 For k > 1 and r ∈ {0, 1, 2, 3}, cr(Hk,r) = k2.

Proof. It is easy to find a subdivision of K3,3 in H1,r, thus cr(H1,r) > 1. Figure 1(a) gives
a natural way of drawing H1,0 with 1 crossing, establishing cr(H1,0) = 1. Furthermore,
it is obvious that cr(Hk,0) = k2 cr(H1,0) = k2. Since Hk,0 is a subgraph of Hk,r, we
have cr(Hk,r) > cr(Hk,0). On the other hand, one can alter an optimal drawing of Hk,0

to a drawing of Hk,r with the same number of crossings, as in Figure 1(a), concluding
cr(Hk,r) = cr(Hk,0) = k2.
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(b) Graph G3,1

Figure 1: Two families of graphs: Gk,r and Hk,r

Definition 3.3 Given any integer p > 4, let p = 4k + r. Let K = K2,4 with bipartition

ai, i = 1, 2 and bj, j = 1, 2, 3, 4. The graph Gk,r is obtained from K with the following

steps:

1. adding a cycle C = b1b2b3b4,

2. subdividing the edge a1bi twice, with xi, yi, i = 1, 3,

3. adding the edges x1y3 and x3y1,

4. replacing every edge with k parallel edges,

5. adding r more edges to the multiedges aib4, i = 1, 2.

Figure 1(b) depicts G3,1.

Lemma 3.4 For k > 1 and r ∈ {0, 1, 2, 3}, cr(Gk,r) = 2k2.

Proof. The subgraph G1,0 contains a subdivision of a graph, obtained from K3,4 by
splitting two vertices of degree 4. This graph has crossing number two [6], and the drawing
in Figure 1(b) gives a way of drawing G1,0 establishing cr(G1,0) = 2. By construction,
cr(Gk,0) = k2 cr(G1,0) = 2k2. Furthermore, it is easy to modify the optimal drawing of
Gk,0 to a drawing of Gk,r with the same number of crossings as in Figure 1(b). As Gk,r

has Gk,0 as a subgraph, we have cr(Gk,r) = cr(Gk,0) = 2k2.
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4 The Zip Product Gap

Proposition 4.1 For i = 1, 2, let Gi be a graph such that vi ∈ V (Gi) of degree d has

one bundle Bi in Gi, σ a bijection among neighborhoods of v1 and v2. If there exists an

optimal drawing D of G1 ⊙σ G2, such that no edge of G1 − v1 crosses an edge of G2 − v2,

then cr(G1 ⊙σ G2) > cr(G1) + cr(G2).

Proof. Without loss of generality, we may assume that each Gi is connected. Due to
the bundles, Gi − vi is connected, too. Let Di be obtained from D[(Gi − vi) ∪ B3−i]
by contracting any of its faces whose boundary contains only segments of edges of B3−i.
Then Di is a drawing of Gi, with the contracted region representing the vertex vi.

Clearly, each crossing of Di appears in D, and by assumption, no crossing of D appears
in both D1 and D2. Thus cr(G1 ⊙σ G2) = cr(D) > cr(D1) + cr(D2) > cr(G1) + cr(G2).

The following theorem establishes that in general, one bundle at each vertex used in
the zip product does not suffice for preservation of the crossing number:

Theorem 4.2 For any d > 4, there exist graphs Gi, i = 1, 2, such that Gi has a vertex

vi with a bundle in Gi, dGi
(vi) = d, and there is a graph G ∈ G1 v1

⊙v2
G2, such that

cr(G) < cr(G1) + cr(G2).

Proof. Let d = 4k + r and set G1 = Hk,r, G2 = Gk,r, and let vi, i = 1, 2, be the vertex
a1 from the definition of the respective graph. Then cr(G1) = k2, cr(G2) = 2k2.

(a) G1,1 ⊙ H1,1 (b) Better drawing of
G1,1 ⊙ H1,1

Figure 2: G1,1 ⊙ H1,1
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The graph G in Figure 2(a) is clearly an element of G1 v1
⊙v2

G2. Its better drawing in
Figure 2(b) establishes cr(G) 6 2k2 < 3k2 = cr(G1) + cr(G2).

Combining Theorem 4.2 with Proposition 4.1, we obtain the following:

Corollary 4.3 For any d > 4, there exist graphs Gi, i = 1, 2, such that Gi has a vertex

vi with a bundle, dGi
(vi) = d, and a graph G ∈ G1 v1

⊙v2
G2, such that some edge of G1−v1

crosses some edge of G2 − v2 in any optimal drawing of G.

Let graphs G1 and G2 be d-compatible, if each Gi contains a vertex vi of degree d,
such that vi has a bundle in Gi. Define

g(d) = max
G1,G2

[cr(G1) + cr(G2) − cr(G)],

where the maximum runs over all d-compatible pairs G1, G2 and all graphs G ∈ G1 v1
⊙v2

G2.
The proof of Theorem 4.2 establishes the following corollary:

Corollary 4.4 Let g(d) be defined as above. Then g(d) = Ω(d2).

Thus, we have a lower bound on the possible crossing number gap between the two
original graphs and their zip product in terms of the size of the edge cut between the
zipped graphs. An upper bound, on the other hand, is far from clear, as the edges of the
two bundles can possibly cross each other arbitrarily often in an optimal drawing of the
zip product, and optimal drawings of the original graphs can have different structure than
the corresponding subdrawings of optimal drawings of the zipped graph. We summarize
this discussion in the following problem:

Problem 4.5 Find an upper bound on g(d). Is g(d) = O(d2)?

Theorem 2.1 establishes that if the vertices involved in the zip product have two
coherent bundles, then the crossing number is preserved. On the other hand, Theorem
4.2 establishes that whenever their degree is at least four, just one bundle at each vertex
is in general not enough. We denote by cr(G1 v1

⊙v2
G2) the maximum cr(G) taken over all

G in G1 v1
⊙v2

G2. It is easy to see that, if d = 1, then cr(G1 v1
⊙v2

G2) = cr(G1) + cr(G2).
For d = 2, Leaños and Salazar established the same result in [14]. Therefore, two natural
problems remain open:

Problem 4.6 Let G1, G2 be graphs, such that Gi has a vertex vi with a bundle in Gi and

dGi
(vi) = 3. Is cr(G1 v1

⊙v2
G2) > cr(G1) + cr(G2)?

Problem 4.7 Let G1, G2 be graphs, such that Gi has a vertex vi with dGi
(vi) = d.

Assume that v1 has two coherent bundles in G1, but v2 has just one bundle in G2. Is

cr(G1 v1
⊙v2

G2) > cr(G1) + cr(G2)?
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5 Some more open problems

In [7], the authors claim to have proved that if C ⊆ E(G) is a minimum s, t-cut in a graph
G and Gs and Gt are the components of G − C, then there exists an optimal drawing
of G in which no edge of Gs crosses an edge of Gt. Since C is a minimum s, t-cut in
G, G can be considered a zip product of graphs Gx

s and G
y
t , respectively obtained from

Gs and Gt by adding a vertex x or y and connecting it to the endvertices of C in Gs or
Gt. By Menger’s theorem, x and y each has a bundle in the respective graph, yielding
a contradiction to Corollary 4.3. Upon closer examination, the aforementioned result is
supposed to follow from a proof, which contains invalid arguments. Thus Corollary 4.3
presents counterexamples to that claim.

Nevertheless, the paper [7] contains several original ideas, which could perhaps lead to
a solution of Problems 4.6 or 4.7. Although our counterexample shows that the proof in [7]
has a flaw, it does not disprove any of the main statements in that paper. These thus share
the fate of the oldest result in the field of crossing numbers, the (still open) Zarankiewicz
conjecture [11, 27]. We state them for the sake of completeness. In the following problem,
a planarization of G is a graph, obtained from a drawing of G by replacing every crossing
with a vertex. A crossing minimal planarization is a planarization, obtained from an
optimal drawing.

Problem 5.1 ([7]) Let G be a connected graph and let s and t be two distinct vertices in

G. Then there exists a crossing minimal planarization P of G, such that the size of the

minimum s, t-cut in P is the same as the size of the minimum s, t-cut in G. Moreover,

any crossing minimum planarization of G can be transformed into a crossing minimum

planarization of G with the above property in linear time.
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