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Abstract

In this paper I introduce a new description of the crystal B(Λ0) of ŝlℓ. As in
the Misra-Miwa model of B(Λ0), the nodes of this crystal are indexed by partitions
and the i-arrows correspond to adding a box of residue i. I then show that the two
models are equivalent by interpreting the operation of regularization introduced by
James as a crystal isomorphism.

1 Introduction

The main goal of this paper is to give a combinatorial description of the crystal of the
basic representation of ŝlℓ. Misra and Miwa previously gave such a description which
involved ℓ-regular partitions, and which I will denote as regℓ. My description, denoted
laddℓ, satisfies the following properties:

• The nodes of laddℓ are partitions, and there is an i-arrow from λ to µ only when
the difference µ \ λ is a box of residue i.

• regℓ
∼= laddℓ and this crystal isomorphism yields an interesting bijection on the

nodes. The map being used for the isomorphism has been well studied [1], but
never before in the context of a crystal isomorphism.

• The partitions which are nodes of laddℓ can be identified by a simple combinatorial
condition.

1.1 Background and Previous Results

Let λ be a partition of n (written λ ⊢ n) and ℓ > 3 be an integer. We will use the
convention (x, y) to denote the box which sits in the xth row and the yth column of the
Young diagram of λ. P will denote the set of all partitions. An ℓ-regular partition is one
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in which no part occurs ℓ or more times. To each box (x, y) in a Young diagram of λ, the
residue of that box is the difference y − x taken modulo ℓ.

For two partitions λ and µ of n, we say that λ 6 µ if
∑i

j=1 λj 6
∑i

j=1 µj for all i.
This order is usually called the dominance order.

The hook length of the (a, c) box of λ is defined to be the number of boxes to the right
of or below the box (a, c), including the box (a, c) itself. It will be denoted hλ

(a,c). The

arm of the (a, c) box of λ is defined to be the number of boxes to the right of the box
(a, c), not including the box (a, c). It will be denoted arm(a, c).

1.1.1 Ladders

For any box (a, b) in the Young diagram of λ, the ladder of (a, b) is the set of all positions
(c, d) which satisfy c−a

d−b
= ℓ − 1 and c, d > 0.

Remark 1.1.1. The definition implies that two positions in the same ladder will share
the same residue. An i-ladder will be a ladder which has residue i.

Example 1.1.2. Let λ = (3, 3, 1), ℓ = 3. Then there is a 1-ladder which contains the
positions (1, 2) and (3, 1), and a different 1-ladder which has the position (2, 3) in λ and
the positions (4, 2) and (6, 1) not in λ. In the picture below, lines are drawn through the
different 1-ladders.
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1.1.2 Regularization

Regularization is a map which takes a partition to a p-regular partition. For a given λ,
move all of the boxes up to the top of their respective ladders. The result is a partition,
and that partition is called the regularization of λ, and is denoted Rλ. The following
theorem contains facts about regularization originally due to James [3] (see also [6]).

Theorem 1.1.3. Let λ be a partition. Then

• Rλ is ℓ-regular;

• Rλ = λ if and only if λ is ℓ-regular.

Regularization provides us with an equivalence relation on the set of partitions.
Specifically, we say λ ∼ µ if Rλ = Rµ. The equivalence classes are called regularization
classes, and the class of a partition λ is denoted RC(λ) := {µ ∈ P : Rµ = Rλ}.
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Example 1.1.4. Let λ = (2, 2, 2, 1, 1, 1) and let ℓ = 3. Then Rλ = (3, 3, 2, 1). Also,

RC(λ) = {(2, 2, 2, 1, 1, 1), (2, 2, 2, 2, 1), (3, 2, 1, 1, 1, 1),

(3, 2, 2, 2), (3, 3, 1, 1, 1), (3, 3, 2, 1)}.
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1.2 Summary of results from this paper

In Section 2 we recall the description of the crystal B(Λ0) of ŝlℓ involving ℓ-regular
partitions. In Section 3 we give our new description of the crystal B(Λ0). Section 4
gives a new procedure for finding an inverse for the map of regularization. Section 5
reinterprets the classical crystal rules in the combinatorial framework of the new crystal
rules. Section 6 contains the proof that the two descriptions of the crystal B(Λ0) are
isomorphic, an isomorphism being given by regularization.

2 Classical Description of regℓ

2.1 Introduction

In this section, we recall a description of the crystal graph B(Λ0) first described by Misra
and Miwa [10].

2.2 Crystals

We start by giving a notion of a crystal. Informally, we will say that a crystal of ŝlℓ is a
set B together with operators ẽi, f̃i : B → B∪{0} for each i ∈ {0, 1, . . . , ℓ−1} satisfying:

• ẽia = b if and only if f̃ib = a for a, b ∈ B.

• For each b ∈ B and i ∈ {0, 1, . . . , ℓ − 1} there exists an n such that f̃n
i b = ẽn

i b = 0.

We view the crystal B as a graph with nodes coming from B and an i colored directed
edge from a to b whenever f̂ia = b.
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Remark 2.2.1. The crystal we study, B(Λ0) can be interpreted as the crystal basis of

the basic representation V (Λ0) of ŝlℓ. It is not the intention of the author to give a full
description of the theory of crystal basis; such definitions can be found in Hong and Kang’s
book [2] or in the work of Kashiwara [7]. Instead, I will focus a well known combinatorial
description of B(Λ0) and give a combinatorial isomorphism to my own combinatorial
construction.

2.3 Classical description of the crystal regℓ

We look at the crystal B(Λ0) of the irreducible highest weight module V (Λ0) of the

affine Lie algebra ŝlℓ (also called the basic representation of ŝlℓ). In the Misra-Miwa
description, the nodes of regℓ are ℓ-regular partitions. The set of nodes will be denoted
B := {λ ∈ P : λ is ℓ-regular}. We will describe the arrows of regℓ below.

We view the Young diagram for λ as a set of boxes, with the residue b − a mod ℓ
written into the box (a, b). A position in λ is said to be a removable i-box if it has residue
i and after removing that box the remaining diagram is still a partition. A position not
in λ is an addable i-box if it has residue i and adding that box to λ yields a partition.

For a fixed i, (0 6 i < ℓ), we place − in each removable i-box and + in each addable
i-box. The i-signature of λ is the word of + and −’s in the diagram for λ, written from
bottom left to top right. The reduced i-signature is the word obtained after repeatedly
removing from the i-signature all adjacent pairs −+. The resulting word will now be of
the form + · · · + + + − − − · · ·−. The positions corresponding to −’s in the reduced
i-signature are called normal i-boxes, and the positions corresponding to +’s are called
conormal i-boxes. εi(λ) is defined to be the number of normal i-boxes of λ, and ϕi(λ) is
defined to be the number of conormal i-boxes. If there are any − signs in the reduced
i-signature, the position corresponding to the leftmost one is called the good i-box of
λ. If there are any + signs in the reduced i-signature, the position corresponding to
the rightmost one is called the cogood i-box. All of these definitions can be found in
Kleshchev’s book [8].

We recall the action of the crystal operators on B. The crystal operator ẽi : B
i
−→

B∪{0} assigns to a partition λ the partition ẽi(λ) = λ\x, where x is the good i-box of λ. If
no such box exists, then ẽi(λ) = 0. It can be easily shown that εi(λ) = max{k : ẽk

i λ 6= 0}.

Similarly, f̃i : B
i
−→ B∪{0} is the operator which assigns to a partition λ the partition

f̃i(λ) = λ ∪ x, where x is the cogood i-box of λ. If no such box exists, then f̃i(λ) = 0. It

can be easily shown that ϕi(λ) = max{k : f̃k
i λ 6= 0}.

For i ∈ Z/ℓZ, we write λ
i
−→ µ to stand for f̃iλ = µ. We say that there is an i-arrow

from λ to µ. Note that λ
i
−→ µ if and only if ẽiµ = λ. A maximal chain of consecutive i-

arrows will be called an i-string. We note that the empty partition ∅ is the unique highest
weight node of the crystal ( i.e. it is the unique ℓ-regular partition satisfying ẽi∅ = 0 for
every i ∈ Z/ℓZ.) For a picture of a part of this crystal graph, see [9] for the cases ℓ = 2
and 3.

For the rest of this paper, ϕ = ϕi(λ) and ε = εi(λ).
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Figure 1: The first 6 levels of regℓ for ℓ = 3

3 The Ladder Crystal: laddℓ

3.1 The ladder crystal

For 0 6 i < ℓ, we define operators f̂i (and êi) acting on partitions, taking a partition
of n to a partition of n + 1 (resp. n − 1) (or 0) in the following manner. Given λ ⊢ n,
first draw all of the i-ladders of λ onto its Young diagram. Label any addable i-box with
a +, and any removable i-box with a −. Now, write down the word of +’s and −’s by
reading from leftmost i-ladder to rightmost i-ladder and reading from top to bottom on
each ladder. This is called the ladder i-signature of λ. From here, cancel any adjacent
−+ pairs in the word, until you obtain a word of the form + · · ·+ − · · ·−. This is called
the reduced ladder i-signature of λ. All positions associated to a − in the reduced ladder
i-signature are called ladder normal i-boxes and all positions associated to a + in the
reduced ladder i-signature are called ladder conormal i-boxes. The position associated to
the leftmost − is called the ladder good i-box and the position associated to the rightmost
+ is called the ladder cogood i-box. Then we define f̂iλ to be the partition obtained by
adding the ladder cogood i-box to λ. If no such box exists, then f̂iλ = 0. Similarly, êiλ is
the partition λ with the ladder good i-box removed. If no such box exists, then êiλ = 0.
We then define ϕ̂i(λ) to be the number of ladder conormal i-boxes of λ and ε̂i(λ) to be
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the number of ladder normal i-boxes. It can be shown that ϕ̂i(λ) = max{k : f̂k
i λ 6= 0}

and that ε̂i(λ) = max{k : êk
i λ 6= 0}. For the rest of the paper, ϕ̂ = ϕ̂i(λ) and ε̂ = ε̂i(λ).

Remark 3.1.1. The only difference between f̂i and f̃i is in how the boxes are ordered.
f̃i reads boxes from bottom to top whereas f̂i reads boxes down ladders, starting with the
leftmost ladder.

We now define laddℓ to be the connected component obtained by starting with the
empty partition and using the crystal operators f̂i.

Remark 3.1.2. It remains to be shown that this directed graph is a crystal. To see this,
we will show that it is isomorphic to regℓ.

Remark 3.1.3. Those who study crystals know that they also have a weight function
assigned to the nodes of the graph. Here, just as in the classical description regℓ, the
weight of a partition λ is given by wt(λ) = Λ0 −

∑
i aiαi, where ai denotes the number of

boxes of λ of residue i.

Example 3.1.4. Let λ = (5, 3, 1, 1, 1, 1, 1) and ℓ = 3. Then there are four addable 2-
boxes for λ. In the leftmost 2-ladder (containing position (2,1)) there are no addable (or
removable) 2-boxes. In the next 2-ladder (containing position (1,3)) there is an addable
2-box in position (3,2). In the next 2-ladder (containing position (2,4)), there are two
addable 2-boxes, in positions (2,4) and (8,1). In the last drawn 2-ladder (containing
position (1,6)) there is one addable 2-box, in position (1,6). There are no removable
2-boxes in λ. Therefore the ladder 2-signature (and hence reduced ladder 2-signature)
of λ is +(3,2) +(2,4) +(8,1)+(1,6) (Here, we have included subscripts on the + signs so

that the reader can see the correct order of the +’s). Hence f̂2λ = (6, 3, 1, 1, 1, 1, 1),

(f̂2)
2λ = (6, 3, 1, 1, 1, 1, 1, 1), (f̂2)

3λ = (6, 4, 1, 1, 1, 1, 1, 1) and (f̂2)
4λ = (6, 4, 2, 1, 1, 1, 1, 1).

(f̂2)
5λ = 0.
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From this description, it is not obvious that this is a crystal. However, we will soon
show that it is isomorphic to regℓ.

We end this section by proving a simple property of êi and f̂i.
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Figure 2: The first 6 levels of laddℓ for ℓ = 3

Lemma 3.1.5. êiλ = µ if and only if f̂iµ = λ.

Proof. Suppose f̂iµ = λ. It is enough to show that the ladder i-good box of λ is the
ladder i-cogood box of µ. This is true because adding the i-cogood box of µ does not
cause cancellation in the reduced ladder i-signature (if it did, then there would have been
a + in the reduced ladder i-signature to the right of the cogood position). Thus êiλ = µ.
The other direction is similar.

4 Deregularization

The goal of this section is to provide a method for finding the smallest partition in
dominance order in a given regularization class. It is nontrivial to show that a smallest
partition exists. We use this result to show that our new description of the crystal B(Λ0)
has nodes which are least dominant in their regularization classes. All of the work of this
section is inspired by Brant Jones of UC Davis, who gave the first definition of a locked
box.

4.1 Locked Boxes

Finding all of the partitions which belong to a regularization class is not easy. The
definition of locked boxes below formalizes the concept that some boxes in a partition
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cannot be moved down their ladders if one requires that the new diagram remain a
partition.

Definition 4.1.1. For a partition λ, we label boxes of λ as locked by the following
procedure:

1. If a box x has a locked box directly above it (or is on the first row) and every
unoccupied position in Lx, lying below x, has an unoccupied position directly above
it then x is locked. Boxes locked for this reason are called type I locked boxes.

2. If a box y is locked, then every box to the left of y in the same row is also locked.
Boxes locked for this reason are called type II locked boxes.

Boxes which are not locked are called unlocked.

Remark 4.1.2. Locked boxes can be both type I and type II.

Example 4.1.3. Let ℓ = 3 and let λ = (7, 5, 4, 3, 1, 1). Then labelling the locked boxes for
λ with an L and the unlocked boxes with a U yields the picture below.

L L L L L L L

L L L L U

L L U U

L L U

L

L

The following lemmas follow from the definition of locked boxes.

Lemma 4.1.4. If (a, b) is locked and a > 1 then (a − 1, b) is locked. Equivalently, all
boxes which sit below an unlocked box in the same column are unlocked.

Proof. If (a, b) is a type I locked box then by definition (a − 1, b) is locked. If (a, b) is a
type II locked box and not type I then there exists a c with c > b such that (a, c) is a
type I locked box. But then by definition of type I locked box, (a − 1, c) is locked. Then
(a − 1, b) is a type II locked box.

Lemma 4.1.5. If there is a locked box in position (a, b) and there is a box in position
(a − ℓ + 1, b + 1) then the box (a − ℓ + 1, b + 1) is locked.

Proof. To show this, suppose that (a − (ℓ − 1), b + 1) is unlocked. Then let (c, b + 1) be
the highest unlocked box in column b + 1. The fact that (c, b + 1) is unlocked implies
that there is an unoccupied position below it, on the same ladder with a box immediately
above it. Then the box (c + ℓ − 1, b) violates the type I locked condition, and it will not
have a locked box directly to the right of it ((c, b + 1) is unlocked, so (c + ℓ− 1, b + 1) will
be unlocked if it is occupied, by Lemma 4.1.4). Hence (c + ℓ − 1, b) is unlocked, so (a, b)
must be unlocked since it sits below (c + ℓ − 1, b) (by Lemma 4.1.4), a contradiction.
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For two partitions λ and µ in the same regularization class, there may be many ways
to move the boxes in λ on their ladders to obtain µ. We define an arrangement of µ from
λ to be a bijection which assigns each box in the Young diagram of λ to a box in the same
ladder of the Young diagram of µ. An arrangement will be denoted by a set of ordered
pairs (x, y) with x ∈ λ and y ∈ µ, where both x and y are in the same ladder, and each
x ∈ λ and y ∈ µ is used exactly once. Such a pair (x, y) denotes that the box x from λ
is moved into position y in µ. We also introduce an ordering of boxes on each ladder; for
two positions x and y on the same ladder, we say that x ≺ y if the position x lies below
y on the ladder which they share.

Remark 4.1.6. We introduce the notation B(p) to denote the position paired with p in
an arrangement B, i.e. (p,B(p)) ∈ B.

Example 4.1.7. λ = (3, 3, 1, 1, 1) and µ = (2, 2, 2, 2, 1) are in the same regularization
class when ℓ = 3 (see Example 1.1.4). One possible arrangement of µ from λ would be

B = {((1, 1), (1, 1)), ((1, 2), (1, 2)), ((1, 3), (5, 1)), ((2, 1), (2, 1)),

((2, 2), (2, 2)), ((2, 3), (4, 2)), ((3, 1), (3, 1)), ((4, 1), (4, 1)), ((5, 1), (3, 2))}.

This corresponds to moving the labeled boxes from λ to µ in the corresponding picture
below. Note that B((5, 1)) ≻ (5, 1), B((1, 3)) ≺ (1, 3) and B((2, 3)) ≺ (2, 3).

1 2 3

4 5 6

7

8

9

1 2

4 5

7 9

8 6

3

4.2 Finding the smallest partition in a regularization class

For any partition λ, to find the smallest partition (with respect to dominance order) in
a regularization class we first label each box of λ as either locked or unlocked as above.
Then we create a new diagram Sλ which moves all unlocked boxes down their ladders,
while keeping these unlocked boxes in order (from bottom to top), while locked boxes do
not move. It is unclear that this procedure will yield the smallest partition in RC(λ),
or even that Sλ is a partition. In this subsection, we resolve these issues. To shorten
notation, we will use Lx to denote the ladder which a box x sits in.

Proposition 4.2.1. Let λ and µ be partitions in the same regularization class. Then
there exists an arrangement D of µ from λ such that for any locked box x of λ, D(x) � x.

Proof. To find a contradiction, we suppose that for any arrangement C of µ from λ there
must be a locked box a such that C(a) ≺ a. Among all of these boxes, we label a box
xC which is in the highest row and in the furthest right column amongst the boxes in the
highest row.
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Among all arrangements of µ from λ, let D be one which has xD in the lowest row,
and amongst all such in the lowest row also has the leftmost column. Let x = xD.

We will exhibit a box w on Lx, such that D(w) � x and either w ≺ x or w ≻ x
and is unlocked. If such a box exists, then letting A = (D \ {(x,D(x)), (w,D(w))}) ∪
{(x,D(w)), (w,D(x))} will yield a contradiction, as xA will be in a position to the left of
and/or below x, which contradicts our choice of D.

If there exists a w in Lx, w ≺ x, with D(w) � x in µ then we are done. So now we
assume:

D(w) ≺ x for every w ≺ x. (*)

There are two cases to consider:

Case I: x is a type II locked box and not a type I locked box.
In this case, there is a locked box directly to the right of x (definition of a type II

lock), which we label y.
If D(y) = y then some box w must satisfy D(w) = x. The assumption implies that

w ≻ x, so w is unlocked (because x = xD was the highest locked box which moved down
according to D) and we are done.

If D(y) 6= y then D(y) ≻ y (since it is to the right of x and locked). If x̃ ≻ x, is at the
end of its row, then x̃ is unlocked (it is not a type II lock because there are no boxes to
the right of it, and it can’t be a type I lock because x is not a type I lock and Lemma 4.1.4
implies that there is an empty position in Lx directly below a box). If D(x̃) � x, then
we could use w = x̃ and be done. So otherwise we assume all such x̃ satisfy D(x̃) ≺ x.

Similarly, if x̂ ≻ x which is directly to the left of a box ŷ in Ly, and D(ŷ) ≺ y, then
x̂ must be unlocked (it’s not a type II lock because ŷ is unlocked, being above x, and its
not a type I lock because x is not). If D(x̂) � x, then we could use w = x̂ and be done.
So we assume that all such x̂ satisfy D(x̂) ≺ x.

Assuming we cannot find any w by these methods, we let

• k denote the number of boxes w ≻ x in λ,

• j denote the number of boxes w ≻ y, in λ,

• k′ denote the number of boxes w ≻ x, in µ,

• j′ denote the number of boxes w ≻ y, in µ,

• m denote the number of boxes w ≻ y, in λ which satisfy D(b) ≺ b (i.e. the number
of boxes which are of the form ŷ above).

The number of boxes of the form x̃ is then k−j. Also, j′ > j−m+1, since the m boxes
need not move below x, but the box in y moves above x. k′ 6 k − m − (k − j) = j − m
since the number of boxes in ladder x will go down by at least m for the boxes of the form
x̂ and k − j for the boxes of the form x̃ (due to (*)). Hence k′ 6 j −m < j −m + 1 6 j′.

the electronic journal of combinatorics 17 (2010), #R97 10



This is a contradiction, as there must be at least as many boxes w ≻ x on the ladder of
x as there are v ≻ y on the ladder of y for µ to be a partition.

Case II: x is a type I locked box.
We give x coordinates (a, b).
Since (a, b) is a type I lock, the number of boxes y � (a, b) which are in λ must be

strictly greater than the number of boxes z ≺ (a− 1, b) which are in λ. Since D((a, b)) ≺
(a, b), some box p ≻ (a − 1, b) satisfies D(p) ≺ p (since no box y ≺ (a, b) satisfies
D(y) ≻ (a, b), by (*)). Since (a, b) is the highest locked box for which D((a, b)) ≺ (a, b),
p must be an unlocked box.

The existence of p implies that there is an empty position q ≻ (a − 1, b) in λ. This is
implied by Lemma 4.1.5 above, since if every position r ≻ (a − 1, b) was occupied, then
all of those boxes would be locked.

Let m be the column which contains the lowest such empty position, which has
coordinates (a − 1 − (m − b)(ℓ − 1), m). Let (c1, d1) be the highest empty position for
which (c1, d1) ≺ (a, b) (we know a position must exist since D((a, b)) ≺ (a, b) and (*)
implies that all other positions r ≺ (a, b) satisfy D(r) ≺ (a, b)). Since (a, b) is a type I
lock, (c1 − 1, d1) is also an empty position. We know that (a − 1, b) is locked since (a, b)
is a type I lock. If (a − 1, b) is also a type I lock then the position (c1 − 2, d1) must also
be empty. Continuing this, if (a − k, b) were a type I lock for every 0 6 k 6 ℓ − 2 then
(c1 − (ℓ − 1), d1) would have to be empty, but this would contradict the fact that there
should be a box in (c1 − (ℓ− 1), d1 + 1) since it is in L(a, b) and (c1, d1) was chosen to be
the the highest empty position on L(a, b) below (a, b).

So there exists a k1 so that (a−k1, b) is a type II lock, with k1 6 ℓ−2. Since (a−k1, b)
is a type II lock, there exists a type I locked box in a position (a−k1, n1) with b < n1 < m.
Let (c2, d2) ≺ (a − k1, n1) denote the highest empty position ((c2, d2) exists because the
position in column d1 on L(a − k1, n1) is empty). Since (a − k1, n1) is a type I lock, the
postition (c2 − 1, d2) is also empty. Continuing as above, if (a − k1 − k, n1) were a type
I lock for 0 6 k 6 ℓ − 2, then (c2 − (ℓ − 1), d2) would be empty, which contradicts our
choice of (c2, d2). Hence there exists a k2 6 ℓ − 2 so that (a − k1 − k2, n1) is a type
II lock. This implies that there is a type I lock in some position (a − k1 − k2, n2) with
n1 < n2 < m. Continuing this, we get a sequences for k and n with each ki 6 ℓ − 2 and
b < n1 < n2 < · · · < ni < m.

I claim that each of the boxes (a −
∑

i ki, ni) are in a ladder below the ladder of
(a − 1, b). If this is the case then the sequences for k and n would eventually have to
produce a type I locked box in column m or greater, below row a−1−(m−b)(ℓ−1). This
contradicts that λ is a partition, since there is no box is position (a−1−(m−b)(ℓ−1), m).

To show the claim, we just note that each successive type I locked box comes from
moving up at most ℓ − 2 and to the right at least one position. These are clearly in a
ladder below the ladder of (a − 1, b), since ladders move up ℓ − 1 boxes each time they
move one box to the right. In particular, because (a −

∑
ki, nj) stay in a ladder on or

below L(a − 1, b), a −
∑

ki > ℓ − 1, so that each of the boxes (a −
∑

ki, nj) are well
defined (not above row 1).
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Corollary 4.2.2. Fix n ∈ N. Suppose for any partition µ ⊢ n, Sµ is also a partition.
Then Sλ is the smallest partition (in dominance order) in the regularization class of λ.
Futhermore, all boxes of Sλ are locked.

Proof. Let µ be any partition in the regularization class of λ. Then by Proposition 4.2.1
above, we can choose an arrangement B of µ from λ in which the only boxes which move
down are unlocked boxes of λ. But Sλ requires all unlocked boxes of λ to be moved down
as far as they can, so Sλ 6 µ. For the second statement, assume some box of Sλ is
unlocked. Then we can apply S again, to obtain S2λ which is smaller than Sλ, which
contradicts the first statement of this corollary.

Lemma 4.2.3. Let λ be a partition whose entire first row is locked, and let µ be the
partition (λ2, λ3, . . . ). Then a box (a, b) with (a > 1) is locked in λ if and only if (a−1, b)
is locked in µ. Similarly, suppose that λ has unlocked boxes in its last column. Let µ be
a partition obtained by removing any number of the boxes in that column (in such a way
that µ is actually a partition). Then boxes (c, d) ∈ µ are locked if and only if they are
locked in λ.

Proof. For the first statement, it is enough to notice that the first row of the partition λ
just plays the same role as the top of the partition plays in the first locked box condition.
For the second statement, it is enough to note that for any box z in the last column of
λ, there are no boxes to the right of z or above z, in the same ladder as z, which are the
two interests of the locked box conditions.

Proposition 4.2.4. Let λ be a partition. Then Sλ is a partition.

Proof. Suppose there was a box w in Sλ which was locked in λ but has an empty position
either directly above it or directly to the left of it. If this were the case then it would
contradict w being locked in λ, as an unlocked box to the left of w is impossible due to
the second locking rule and an unlocked box above w would contradict Lemma 4.1.4.

We let Sλ denote the assignment of boxes in λ to boxes in µ which is followed via the
application of S. The proposition will imply that Sλ is in fact an arrangement of Sλ from
λ.

There are two remaining possibilities we must rule out: That an unlocked box in λ
which was moved down via Sλ has an empty position directly to the left, or that it has
an empty position directly above. If we show that the construction never leaves an empty
position above a moved unlocked box, then as a consequence we can easily prove that we
get no empty positions to the left of a moved box.

Suppose the construction never leaves an empty position above a moved box. If there
was an empty position x directly to the left of a moved box Sλ(y) then below x there
would be a box z on LSλ(y). If z was not moved, then it must have been locked, which
implies all of the boxes above it were locked, including the box which was in position x,
contradicting that position x is empty. Otherwise, z moved, so our assumption implies
that z has no empty position above it. Applying this procedure again, we can determine
that there must be a box directly above the box directly above z. Applying this procedure
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will eventually imply that there must be a box in position x. Therefore our goal is to
show that moving down all unlocked boxes produces no box below an empty position.

We prove this by induction on n, the number of boxes in λ. The n = 1 case is clear.
We assume that if η is a partition of k < n then Sη has no box below an empty position
(and hence is a partition by the previous paragraph).

The inductive proof is broken into three cases.
The first case is that box (1, λ1) is locked. Then all of the boxes in the first row are

also locked. Let µ = λ \ {λ1}. A box (a, b) is locked in µ if and only if the box (a + 1, b)
is locked in λ by Lemma 4.2.3. Since |µ| < |λ|, Sµ has no box below an empty position.
We append the first row back on top of Sµ to form Sλ. Hence Sλ has no box below an
empty position.

Let j be so that λ1 = λj 6= λj+1.
The second case is when j > 1. Let x be the box (j, λj) and let y = (j − 1, λj−1). Let

µ = λ \ {x}. Let ν = λ \ {x, y}. Note that boxes in µ (and ν) are locked if and only
if they are locked in λ by Lemma 4.2.3. Since |µ| < |λ|, we can form a partition Sµ by
bringing down all unlocked boxes. Now we place x into the lowest empty position on the
ladder of x in Sµ. If the resulting configuration is not a partition, then from above we
may assume that there is an empty position above where x was placed. If this is the case,
Sλ(y) is below x and has a box z below it (if it didn’t then x would move below y). But
then in Sν when we move down all of the boxes we would have z below an empty position
(where y is in µ). But |ν| < |λ|, so Sν does not have an empty position above a box.

Lastly, if j = 1 then we let x = (1, λ1). Since x is unlocked, there is at least one empty
position in Lx which has a box above it. Let µ = λ \ {x}. Boxes are locked in µ if and
only if they were locked in λ by Lemma 4.2.3. Since the number of boxes on Lx was at
most the number of boxes on the ladder directly above x in λ (this is because x cannot be
a type I lock), the number of boxes on Lx is strictly less than the number on the ladder
above x in µ. Therefore, there exists an empty position on Lx directly below a box in
Sµ. We let (a, b) be the lowest such empty position. If (a, b) is the lowest empty position
in Sµ on Lx, then moving x into that position will yield a partition which is obtained
from moving x into the lowest empty position in its ladder. If not, then there must be an
empty position on Lx directly below an empty position, all below row a. Let (c, d) be the
highest such empty position on Lx below (a, b). Let (m0, d) be the lowest box in column
d (m0 is at least c − ℓ, since there is a box in the position (c − ℓ, d + 1)). Let (m1, b) be
the box in column b in L(m0 +1, d). By Corollary 4.2.2, all of the boxes of Sµ are locked.
But (m1, b) has the position (m0 + 1, d) in the same ladder, so if (m1, b) is locked then
there is a box to the right of it, in position (m1, b +1). We continue by letting (m2, b +1)
be the box in L(m0 + 1, d) in column b + 1. Similarly, since this box is locked, there must
be a box directly to the right of it which is locked. That box will be (m2, b + 2). This
process must eventually conclude at step (mk, b + k) where b + k is at the end of its row.
But then the box (mk, b + k) must be unlocked, since it has no locked boxes to the right
and the empty position (m0 + 1, d) in the same ladder below it. This contradicts all of
the boxes of Sµ being locked.
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Example 4.2.5. Continuing from the example above (λ = (6, 5, 4, 3, 1, 1) and ℓ = 3), we
move all of the unlocked boxes down to obtain the smallest partition in RC(λ), which is
Sλ = (3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1). The boxes labeled L are the ones which were locked in
(6, 5, 4, 3, 1, 1) (and did not move).

L L L

L L L

L L

L L

L

L

Theorem 4.2.6. Sλ is the unique smallest partition in its regularization class with
respect to dominance order. It can be characterized as being the unique partition (in
its regularization class) which has all locked boxes.

Proof. This follows from Corollary 4.2.2 and Proposition 4.2.4.

4.3 The nodes of laddℓ are smallest in dominance order

The nodes of laddℓ have been defined recursively by applying the operators f̂i. We now
give a simple description which determines when a partition is a node of laddℓ.

Proposition 4.3.1. Let λ be a partition of n. Let RC(λ) be its regularization class. If
λ is a node of laddℓ then λ is the smallest partition in RC(λ) with respect to dominance
order.

Proof. The proof is by induction on the size of a partition. Suppose we have a partition
µ in laddℓ which is smallest in its regularization class. Equivalently, all of the boxes of µ
are locked. We want to show that λ = f̂iµ is still smallest in its regularization class. Let
x = λ \ µ, so that λ is just µ with the addable i-box x inserted. There are two cases to
consider.

The first is that the insertion of x into µ makes x into an unlocked box. Since the
position y above x must be locked (or x is in the first row), there must exist an empty
position x′ in Lx which has a box y′ directly above x′ in the ladder of y. Also, the box z
to the left of x must be a type I lock, since x was not in µ (implying z could not be type
II). But then the position z′ to the left of x′ must have a box, since there is a box in the

the electronic journal of combinatorics 17 (2010), #R97 14



position above z′ (the box to the left of y′). Since µ was smallest in dominance order, it
could not have had a + below a − on the same ladder (otherwise the − could be moved
down to the +, contradicting that µ was smallest in dominance order). Hence there is no
− between the two +′s in positions x and x′ of µ. This means that the crystal rule would
have chosen to add to x′ instead of x, a contradiction.

The second case is that the insertion of x into µ unlocks a box. If this is the case then
let y be the position above x. The only case to consider is adding the box x unlocks some
box above the row of x, on the ladder directly below x. Let z denote the lowest such
box. If there is a box x′ directly above z and no box directly to the right of x′ then x′

would have been unlocked in µ, since the box y is in µ but x is not. This contradicts the
assumption that µ was the smallest.

The only other possibility is that the box x′ above z has a box directly to the right
of it (this still works even if z is in the first row of the partition). If there was a box to
the right of z, then that box would be locked since it was locked in µ. But then z would
be locked independently of the addition of x. So z is at the end of its row. The position
one box to the right of z (let us name it w) must therefore be empty and have the same
residue as x. It is an addable box, so it will contribute a + to the i-ladder-signature.
There are no − boxes on Lx below x, because if there was a removable i-box on Lx below
x then the box z would have been unlocked in µ. Therefore, no − will cancel the + from
position w. Since w is on the ladder past Lx, this yields a contradiction as f̂i should have
added a box to position w.

One can view regℓ as having nodes {RC(λ) : λ ⊢ n, n > 0}. The regℓ model takes the
representative Rλ ∈ RC(λ), which happens to be the largest in dominance order. Here,
we will take a different representative of RC(λ), the partitions Sλ, which are smallest in
dominance order. One must then give a description of the edges of the crystal graph.
We will show in Section 6 that the crystal operators f̂i and êi are the correct operators
to generate the edges of the graph. In other words, we will show that the crystal laddℓ

constructed above is indeed isomorphic to regℓ.

5 Reinterpreting the crystal rule of regℓ

In this short section we prove some lemmas necessary for our main theorem (that the
crystals regℓ and laddℓ are isomorphic). We also reinterpret the crystal rule on the classical
regℓ in terms of the new crystal rule.

5.1 Two lemmas needed for crystal isomorphism

Lemma 5.1.1. Suppose λ ∈ laddℓ and (a, b) and (c, d) are boxes on the same ladder such
that (a, b) is removable and (c, d) is addable. Then a < c.

Proof. If there was a − box above an empty + box on the same ladder, then one could
move that − box down to the + position to form a new partition in the same regularization
class. But this cannot happen since the nodes of laddℓ are smallest in dominance order.
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Lemma 5.1.2. Suppose λ ∈ laddℓ and (a, b) and (c, d) are boxes on the same ladder such
that (a, b) is addable and (c, d) is removable. Then a < c.

Proof. Since λ is in regℓ, it is ℓ-regular. Suppose such positions (a, b) and (c, d) exist.
Then the rim hook starting at box (a, b − 1) and following the border of λ down to the
(c, d) box will cover exactly (b − d)ℓ boxes. However, this border runs over only b − d
columns, so there must exist a column which contains at least ℓ boxes at the ends of their
rows. This contradicts λ being ℓ-regular.

5.2 Reinterpreting the classical crystal rule

The next theorem proves that the classical crystal rule can be interpreted in terms of
ladders. In fact the only difference between the classical rule and the ladder crystal rule
is that ladders are read bottom to top instead of top to bottom.

Theorem 5.2.1. The i-signature (and hence reduced i-signature) of an ℓ-regular partition
λ in regℓ can be determined by reading from its leftmost ladder to rightmost ladder, reading
each ladder from bottom to top.

Proof. If positions x and y contain +′s (or −′s) of the same residue with the ladder of
x to the left of the ladder of y, then by the regularity of λ, x will be in a row below y.
Hence reading the i-signature up ladders from left to right is equivalent to reading up the
rows of λ from bottom to top.

Example 5.2.2. λ = (6, 5, 3, 3, 2, 2, 1) and ℓ = 3. Suppose we wanted to find the 2-
signature for λ. Then we could read from leftmost ladder (in this case, the leftmost ladder
relevant to the 2-signature is the one which contains position (8,1)) to rightmost ladder.
Inside each ladder we read from bottom to top . The picture below shows the positions
which correspond to addable and removable 2-boxes, with their ladders. The 2-signature
is + −−−.
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6 Regularization and Crystal Isomorphism

The results of this section come from ideas originally sketched out with Steve Pon in the
summer of 2007.
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6.1 Crystal isomorphism

We will now prove that our crystal laddℓ from Section 3 is indeed isomorphic to the crystal
regℓ.

Remark 6.1.1. In the following definitions, any positions (i, j) for either of i, j = 0 are
assumed to be in the diagram for the partition λ.

Definition 6.1.2. The kth ladder of λ will refer to all of the positions (i, j) with i, j > 0
of λ which are on L(k, 1). |L(k, 1)| will denote the number of positions of this ladder
which are in λ (so |L(k, 1)| depends on the partition λ).

Definition 6.1.3. We let Ak(λ) denote the boxes (i, j) (i, j > 0) on the kth ladder which
have boxes (i, j + 1) and (i + 1, j) in λ, but (i + 1, j + 1) not in λ. Similarly, we let Bk(λ)
denote the boxes (i, j) on the kth ladder which do not have boxes (i, j + 1) and (i + 1, j)
in λ.

Remark 6.1.4. Note that the boxes in Bk(λ) are exactly those boxes on the kth ladder
which are removable in λ and that the boxes (i, j) in Ak(λ) are exactly those boxes for
which there is an addable position in (i + 1, j + 1) on the (k + ℓ)th ladder.

Lemma 6.1.5. Let λ and µ be two partitions in the same ℓ regularization class. Then
|Bk(λ)| − |Ak(λ)| = |Bk(µ)| − |Ak(µ)|. In other words, |Bk| − |Ak| is an invariant of a
regularization class.

Proof. The number of boxes in any ladder of a partition is clearly an invariant of a
regularization class (in fact this can be the definition of a regularization class). We will
count all of the boxes in the kth ladder. Each box in the kth ladder falls into at least one
of three different categories. Either it has a box directly to the right of it, a box directly
below it, or neither. Boxes with neither are counted by |Bk(λ)|. Boxes with a box below
are counted in |L(k +1, 1)|. Boxes with a box to the right are counted in |L(k + ℓ−1, 1)|.
But we have over-counted as some boxes can have a box both directly below and to the
right. To fix this, we must subtract by |L(k + ℓ, 1)| (those boxes (i, j) which also have a
box (i + 1, j + 1) in λ) and |Ak(λ)| (those boxes which do not have (i + 1, j + 1) in λ).
Hence:

|L(k, 1)| = |L(k + 1, 1)| + |L(k + ℓ − 1, 1)| + |Bk(λ)| − |L(k + ℓ, 1)| − |Ak(λ)|.

The lemma follows, as all terms other than |Bk(λ)| − |Ak(λ)| are invariants of the
regularization class.

Example 6.1.6. Let λ = (3, 2, 1) and ℓ = 3. There are 4 partitions in the regularization
class of λ: (3, 2, 1), (3, 1, 1, 1), (2, 2, 2) and (2, 1, 1, 1, 1). Let k = 4. There are 4 total
positions in the ladder containing (4, 1) (they are (0, 3), (2, 2), (4, 1) and (6, 0)). Then
L(4, 1) = 3, L(5, 1) = 2, L(6, 1) = 2 and L(7, 1) = 1. A4((3, 2, 1)) = {(0, 3)},
B4((3, 2, 1)) = {(2, 2)}, A4((3, 1, 1, 1)) = {(0, 3)}, B4((3, 1, 1, 1)) = {(4, 1)} and A4,
B4 are empty for the other two partitions. |B4| − |A4| = 0 for all 4 partitions. Also,
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L(4, 1) = 3 = 2 + 2 − 1 + 0 = L(5, 1) + L(6, 1)−L(7, 1) + (|B4| − |A4|), as was shown in
the proof of Lemma 6.1.5.

Lemma 6.1.7. Let λ be a node of laddℓ. Then the number of ladder-(co)normal boxes
on the kth ladder of λ is the same as the number of (co)normal boxes on the kth ladder of
Rλ. In particular, a ladder-good (ladder-cogood) i-box of λ lies on the same ladder as the
good (cogood) i-box of Rλ.

Proof. Lemma 5.1.1 implies that there is no cancelation in the ladder i-signature on a
ladder of λ. Similarly, Lemma 5.1.2 implies that there is no cancelation in the i-signature
on a ladder of Rλ. This allows us to calculate the ladder i-signature (resp. i-signature)
of λ (resp. Rλ) by counting the number of addable and removable i-boxes in each ladder.

First, we start with two adjacent ladders, L(k, 1) and L(k + ℓ, 1). The difference
between the number of −’s which contribute from L(k, 1) and the number of +’s which
contribute from L(k + ℓ, 1) is an invariant, αk, by Lemma 6.1.5. If αk is positive, then
after cancellation between these two ladders, there are exactly αk −’s remaining in ladder
L(k, 1). If αk is negative, then there are −αk +’s remaining in ladder L(k + ℓ, 1). This is
independent of calculating the ladder i-signature of λ, or the i-signature of Rλ. Continuing
this process between all ladders, we see that the number of uncanceled + and − signs on
each ladder is an invariant, and the lemma follows.

Corollary 6.1.8. Let λ be a node in laddℓ. Then ϕ̂i(λ) = ϕi(Rλ) and ε̂i(λ) = εi(Rλ).

Theorem 6.1.9. Regularization commutes with the crystal operators. In other words:

1. R ◦ f̂i = f̃i ◦ R,

2. R ◦ êi = ẽi ◦ R.

Proof. (1) will follow from Lemma 6.1.7, since applying an f̂i to a partition λ will place
an i-box in the same ladder of λ as f̃i places in Rλ. (2) follows similarly.

Corollary 6.1.10. The crystal regℓ is isomorphic to laddℓ.

Proof. The map R : laddℓ → regℓ gives the isomorphism. The map S described in Section
4 is the inverse of R. The other crystal isomorphism axioms are routine to check.
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Example 6.1.11. Let λ = (2, 1, 1, 1) and ℓ = 3. Then Rλ = (2, 2, 1), f̂2λ = (2, 1, 1, 1, 1)
and f̃2(2, 2, 1) = (3, 2, 1). But R(2, 1, 1, 1, 1) = (3, 2, 1).

(2, 1, 1, 1)
bf2

−−−→ (2, 1, 1, 1, 1)yR

yR

(2, 2, 1)
ef2

−−−→ (3, 2, 1)

7 The nodes of laddℓ

7.1 Characterization via hook lengths

It was pointed out to the author by Fayers that a characterization of the nodes of
laddℓ can be described in terms of hook lengths and arm lengths. We now include this
characterization.

Theorem 7.1.1. A partition λ belongs to the crystal laddℓ if and only if there does not
exist a box (i, j) ∈ λ such that hλ

(i,j) = ℓ · arm(i, j).

Proof. If λ has a box (i, j) with hook length ℓ · arm(i, j) then the box (i, λi) will be
unlocked, as it is on the same ladder as the empty position directly below the last box in
column j. Hence λ is not in laddℓ.

If λ does not belong to the crystal laddℓ then there exists an unlocked box (a, b) in the
diagram of λ. This implies that there exists an unlocked box (i, λi) which is either directly
below a locked box or in row 1. This box is then unlocked because it violates a type I
lock rule, which means that in the same ladder as (i, λi) there is an empty position (n, j)
directly below a box (n−1, j). But then the box (i, j) will satisfy hλ

(i,j) = ℓ ·arm(i, j).
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