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Abstract

Properties of the 11 084 874 829 Steiner triple systems of order 19 are examined.
In particular, there is exactly one 5-sparse, but no 6-sparse, STS(19); there is ex-
actly one uniform STS(19); there are exactly two STS(19) with no almost parallel
classes; all STS(19) have chromatic number 3; all have chromatic index 10, except
for 4 075 designs with chromatic index 11 and two with chromatic index 12; all are
3-resolvable; and there are exactly two 3-existentially closed STS(19).

Keywords: automorphism, chromatic index, chromatic number, configuration, cycle
structure, existential closure, independent set, partial parallel class, rank, Steiner triple
system of order 19.

1 Introduction

A Steiner triple system (STS) is a pair (X,B), where X is a finite set of points and B is
a collection of 3-subsets of points, called blocks or triples, with the property that every
2-subset of points occurs in exactly one block. The size of the point set, v := |X|, is
the order of the design, and an STS of order v is commonly denoted by STS(v). Steiner
triple systems form perhaps the most fundamental family of combinatorial designs; it is
well known that they exist exactly for orders v ≡ 1, 3 (mod 6) [31].

Two STS(v) are isomorphic if there is a bijection between their point sets that maps
blocks onto blocks. Denoting the number of isomorphism classes of STS(v) by N(v),
we have N(3) = 1, N(7) = 1, N(9) = 1, N(13) = 2 and N(15) = 80. Indeed, due to
their relatively small number, the STSs up to order 15 have been studied in detail and
are rather well understood. An extensive study of their properties was carried out by
Mathon, Phelps and Rosa in the early 1980s [35].

For the next admissible parameter, we have N(19) = 11 084 874 829, obtained in [26].
Of course, this huge number prohibits a discussion of each individual design. Because the
designs are publicly available in compressed form [28], however, examination of some of
their properties can be easily automated. Computing resources set a strict limit on what
is feasible: one CPU year permits 2.8 milliseconds on average for each design.

Many properties of interest can nonetheless be treated. In Section 2, results, mainly
of a computational nature, are presented. They show, amongst other things, that there is
exactly one 5-sparse, but no 6-sparse, STS(19); that there is one uniform STS(19); that
there are two STS(19) with no almost parallel classes; that all STS(19) have chromatic
number 3; that all have chromatic index 10, except for 4 075 designs with chromatic index
11 and two with chromatic index 12; that all STS(19) are 3-resolvable; and that there are
two 3-existentially closed STS(19). Some tables from the original classification [26] are
repeated for completeness. In Section 3, some properties that remain open are mentioned,
and the computational resources needed in the current work are briefly discussed.
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Table 1: Automorphism group order
|Aut| # |Aut| # |Aut| # |Aut| #

1 11 084 710 071 8 101 19 1 96 1
2 149 522 9 19 24 11 108 1
3 12 728 12 37 32 3 144 1
4 2 121 16 13 54 2 171 1
6 182 18 11 57 2 432 1

2 Properties

2.1 Automorphisms

The automorphisms and automorphism groups of the STS(19) were studied in [6, 26]; we
reproduce the results here (with a correction in our Table 2).

Representing an automorphism as a permutation of the points, the nonidentity auto-
morphisms can be divided into two types based on their order. The automorphisms of
prime order have six cycle types

191, 1129, 1136, 1328, 1726, 1734,

and the automorphisms of composite order have nine cycle types

1192, 1163, 113262, 112144, 112182, 1382, 1344, 132262, 132243.

Table 1 gives the order of the automorphism group for each isomorphism class. Tables 2
and 3 partition the possible orders of the automorphism groups into classes based on the
types of prime and composite automorphisms that occur in the group. Compared with
[26], Table 2 has been corrected by transposing the classes 18c and 18d, and the classes
12a and 12b (this correction is incorporated in the table reproduced in [4]).

A list of the 104 STS(19) having an automorphism group of order at least 9 is given
in compact notation in the supplement to [6]. Cyclic STS(19) were first enumerated in
[1] and 2-rotational ones (automorphism cycle type 1192) in [38]; these systems are listed
in [35]. The 184 reverse STS(19) (automorphism cycle type 1129), together with their
automorphism groups, were determined in [10].

In this paper, certain STS(19) are identified as follows: A1–A4 are the cyclic systems
as listed in [35]; B1–B10 are the 2-rotational STS(19) as listed in [35]; and S1–S7 are the
sporadic STS(19) listed in the Appendix. In addition, an STS(19) can be identified by
the order of its automorphism group when this is unique (the listings in [6] are useful
for retrieving such designs). Design A4, with an automorphism group of order 171, is
both cyclic and 2-rotational and is therefore also listed as B8 in [35]; it is the Netto
triple system [39]. A reader interested in copies of STS(19) that are not included among
the sporadic examples here will apparently need to carry out some computational work,
perhaps utilizing the catalogue from [28]—the authors of the current work are glad to
provide consultancy for such an endeavour.
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Table 2: Automorphisms (prime order)

Order Class 191 1129 1136 1328 1726 1734 #
432 ∗ ∗ ∗ ∗ 1
171 ∗ ∗ 1
144 ∗ ∗ ∗ 1
108 ∗ ∗ ∗ ∗ 1
96 ∗ ∗ ∗ 1
57 ∗ ∗ 2
54 ∗ ∗ ∗ 2
32 ∗ ∗ 3
24 ∗ ∗ ∗ 11
19 ∗ 1
18 a ∗ ∗ 1

b ∗ ∗ ∗ 2
c ∗ ∗ ∗ 6
d ∗ ∗ 2

16 ∗ ∗ 13
12 a ∗ ∗ ∗ 8

b ∗ ∗ 7
c ∗ ∗ 12
d ∗ ∗ ∗ 10

9 ∗ 19
8 a ∗ ∗ 84

b ∗ 17
6 a ∗ ∗ 14

b ∗ ∗ 14
c ∗ ∗ 116
d ∗ ∗ 10
e ∗ ∗ 28

4 a ∗ ∗ 839
b ∗ 662
c ∗ 620

3 a ∗ 12 664
b ∗ 64

2 a ∗ 169
b ∗ 78 961
c ∗ 70 392

# 4 184 12 885 80 645 72 150 124 164 758
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Table 3: Automorphisms (composite order)
Class 1192 1163 113262 112144 112182 1382 1344 132262 132243 #

432 ∗ ∗ ∗ ∗ 1

171 ∗ 1

144 ∗ ∗ ∗ ∗ 1

108 ∗ ∗ 1

96 ∗ ∗ 1

57 2

54 ∗ 2

32 ∗ ∗ 3

24 ∗ 11

19 1

18a ∗ 1
18b ∗ 2
18c ∗ 6
18d ∗ 2

16 ∗ ∗ ∗ 5
16 ∗ 6
16 ∗ ∗ 1
16 ∗ 1

12a ∗ 8
12b 7
12c 12
12d ∗ 10

9 ∗ 9
9 10

8a ∗ 2
82

8b ∗ ∗ 5
∗ ∗ 10

∗ ∗ 2

6a ∗ 14
6b 14
6c ∗ 104

12
6d ∗ 10
6e 28

4a 839
4b ∗ 498

∗ 153
11

4c ∗ 48
572

# 10 15 137 518 16 4 185 24 48
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Table 4: Number of subsystems
STS(7) STS(9) # STS(7) STS(9) #

0 0 10 997 902 498 3 1 45
0 1 270 784 4 0 2 449
1 0 86 101 058 4 1 25
1 1 12 956 6 0 75
2 0 572 471 6 1 5
2 1 641 12 0 2
3 0 11 819 12 1 1

2.2 Subsystems and Ranks

A subsystem in an STS is a subset of blocks that forms an STS on a subset of the points.
A subsystem in an STS(v) has order at most (v− 1)/2; hence a subsystem in an STS(19)
has order 3, 7 or 9. Moreover, the intersection of two subsystems is a subsystem. It
follows that each STS(19) has at most one subsystem of order 9, with equality for 284 457
isomorphism classes [42]. The number of subsystems of each order in each isomorphism
class was determined in [29] and these results are collected in Table 4. The STS(19) with 12
subsystems of order 7 and 1 subsystem of order 9 is the system having an automorphism
group of order 432, and the other two STS(19) with 12 subsystems of order 7 are the
systems having automorphism groups of orders 108 and 144.

The rank of an STS is the linear rank of its point–block incidence matrix over GF(2).
In this setting, a nonempty set of points is (linearly) dependent if every block intersects
the set in an even number of points. Counting the point–block incidences in a dependent
set in two different ways, one finds that a dependent set necessarily consists of (v + 1)/2
points so that its complement is the point set of a subsystem of order (v − 1)/2. An
in-depth study of the rank of STSs has been carried out in [11].

In particular, for v = 19 there is at most one dependent set, with equality if and
only if there exists a subsystem of order 9. It follows that the rank of an STS(19) is
18 if there exists a subsystem of order 9 (284 457 isomorphism classes) and 19 otherwise
(11 084 590 372 isomorphism classes).

The rank over GF(2) gives the dimension of the binary code generated by the (rows
or columns of) the incidence matrix. The code generated by the rows of a point–block
incidence matrix is the point code of the STS. There exist nonisomorphic STS(19) that
have equivalent point codes [27].

2.3 Small Configurations

A configuration C in an STS (X,B) is a subset of blocks C ⊆ B. Small configurations in
STSs have been studied extensively; see [8, Chapter 13], [17] and [19]. The number of any
configuration of size at most 3 is a function of the order of the STS. We address small
configurations with some particular properties.
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A configuration C with |C| = ℓ and | ∪C∈C C| = k is a (k, ℓ)-configuration. A config-
uration is even if each of its points occurs in an even number of blocks. If no point of a
configuration occurs in exactly one block, then the configuration is full.

The only even (and only full) configuration of size 4 is the Pasch configuration, the
(6, 4)-configuration depicted in Figure 1. The numbers of Pasch configurations in the
STS(19) were tabulated in [26]; for completeness, we repeat the result in Table 5.

Table 5: Number of Pasches
Pasch # Pasch # Pasch # Pasch #

0 2 591 17 954 710 609 34 2 190 166 51 366
1 35 758 18 845 596 671 35 1 301 951 52 482
2 263 646 19 716 603 299 36 775 233 53 78
3 1 315 161 20 583 321 976 37 452 306 54 278
4 4 958 687 21 457 755 898 38 267 642 55 69
5 15 095 372 22 347 324 307 39 152 122 56 137
6 38 481 050 23 255 589 428 40 92 056 57 24
7 84 328 984 24 182 938 899 41 51 019 58 104
8 162 045 054 25 127 614 183 42 31 587 59 6
9 276 886 518 26 87 003 115 43 16 974 60 41

10 426 050 673 27 58 052 942 44 11 827 62 47
11 596 271 997 28 38 010 203 45 6 008 64 3
12 765 958 741 29 24 457 073 46 4 629 66 18
13 910 510 124 30 15 492 114 47 2 151 70 5
14 1 008 615 673 31 9 663 499 48 2 099 78 2
15 1 047 850 033 32 5 956 712 49 724 84 3
16 1 027 129 335 33 3 623 356 50 991

Three STS(19) with 84 Pasch configurations were found in [23]. Indeed, 84 is the
maximum possible number of Pasch configurations and the list of such STS(19) in [23]
is complete. The three systems are those having automorphism groups of order 108, 144
and 432, also encountered in Section 2.2.

Replacing the blocks of a Pasch configuration, say P = {{a, b, c}, {a, y, z}, {x, b, z},
{x, y, c}}, by the blocks of P ′ = {{x, y, z}, {x, b, c}, {a, y, c}, {a, b, z}} transforms an STS
into another STS. This operation is a Pasch switch. All but one of the 80 isomorphism
classes of STS(15) contain at least one Pasch configuration. Any one of these can be
transformed to any other by some sequence of Pasch switches [16, 22]. A natural question
is whether the same is true for the STS(19), that is, if each STS(19) containing at least
one Pasch configuration can be transformed to any other such design via Pasch switches.
The answer is in the negative.

In [21] the concept of twin Steiner triple systems was introduced. These are two STSs
each of which contains precisely one Pasch configuration that when switched produces the
other system. If in addition the twin systems are isomorphic we have identical twins. In
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[20] nine pairs of twin STS(19) are given. By examining all STS(19) containing a single
Pasch configuration, we have established that there are in total 126 pairs of twins, but no
identical twins.

We also consider STSs that contain precisely two Pasch configurations, say P and Q,
such that when P (respectively Q) is switched what is obtained is an STS containing just
one Pasch configuration P ′ (respectively Q′). There are precisely 9 such systems. In every
case the two single Pasch systems obtained by the Pasch switches are nonisomorphic. One
such system is S1 (in the Appendix).

For size 6, there are two even configurations, known as the grid and the prism (or
double triangle); these (9, 6)-configurations are depicted in Figure 1.

Grid PrismPasch

Figure 1: The even configurations of size at most 6

Every STS contains an even configuration of size at most 8, see [15]. However, no
STS(19) missing either a grid or a prism was known. Indeed, a complete enumeration
of grids and prisms establishes that there is no such STS(19). The distribution of the
numbers of grids is shown in Table 9 and that for prisms in Table 10. The smallest
number of grids in an STS(19) is 21 (design S4) and the largest is 384 (the STS(19) with
automorphism group order 432). The smallest number of prisms is 171 (design A4) and
the largest is 1 152 (the designs with automorphism group orders 108, 144 and 432). In
particular, then, every STS(19) contains both even (9, 6)-configurations.

An STS is k-sparse if it does not contain any (n + 2, n)-configuration for any 4 6

n 6 k. In studying k-sparse systems it suffices to focus on full configurations, because an
(n + 2, n)-configuration that is not full contains an (n + 1, n − 1)-configuration. Because
k-sparse STS(19) with k > 4 are anti-Pasch, one could simply check the 2 591 anti-Pasch
STS(19). A more extensive tabulation of small (n + 2, n)-configurations was carried out
in this work.

There is one full (7, 5)-configuration (the mitre) and two full (8, 6)-configurations,
known as the hexagon (or 6-cycle) and the crown. These are drawn in Figure 2, and their
numbers are presented in Tables 11, 12 and 13.

The existence of a 5-sparse STS(19) was known [7]. By Table 11 there are exactly
four nonisomorphic anti-mitre STS(19). Moreover, by Tables 12 and 13 there is a unique
STS(19) with no hexagon and exactly four with no crown. Considering the intersections
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Mitre Hexagon Crown

Figure 2: The full (7, 5)- and (8, 6)-configurations

of the classes of STS(19) with these properties, and the anti-Pasch ones, only two STS(19)
are in more than one of the classes: one has no Pasch and no mitre, and one has no Pasch
and no crown.

Theorem 1. The numbers of 4-sparse, 5-sparse and 6-sparse STS(19) are 2 591, 1 and
0, respectively.

The unique 5-sparse—that is, anti-Pasch and anti-mitre—STS(19) is A4. The unique
STS(19) having no Pasch and no crown is A2, and the unique STS(19) with no hexagon
is S5. The other three anti-mitre systems are B4, S6 and A3, and the other three anti-
crown systems are those with automorphism group orders 108, 144 and 432. The largest
number of mitres, hexagons and crowns in an STS(19) is 144 (for the three STS(19) with
automorphism group orders 108, 144 and 432), 171 (for A4) and 314 (for S7), respectively.

2.4 Cycle Structure and Uniform Systems

Any two distinct points x, y ∈ X of an STS determine a cycle graph in the following way.
The points x, y occur in a unique block {x, y, z}. The cycle graph has one vertex for each
point in X \ {x, y, z} and an edge between two vertices if and only if the corresponding
points occur together with x or y in a block.

A cycle graph of an STS is 2-regular and consists of a set of cycles of even length. Hence
they can be specified as integer partitions of v−3 using even integers greater than or equal
to 4. For v = 19, the possible partitions are l1 = 4+4+4+4, l2 = 4+4+8, l3 = 4+6+6,
l4 = 4 + 12, l5 = 6 + 10, l6 = 8 + 8 and l7 = 16. The cycle vector of an STS is a tuple
showing the distribution of the cycle graphs; for STS(19) we have (a1, a2, a3, a4, a5, a6, a7)
with

∑

7

i=1
ai =

(

19

2

)

= 171, where ai denotes the number of occurrences of the partition
li.

The cycle vector (0, 0, 0, 0, 0, 0, 171) is of particular interest; an STS all of whose cycle
graphs consist of a single cycle is perfect. It is known [25] that there is no perfect STS(19).
A more general family consists of the STSs with ai =

(

v

2

)

for some i; such STSs are uniform.
Uniform STS(19) are known to exist [39].
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An extensive investigation of the cycle vectors of STS(19) was carried out. The results
are summarized in Table 6, where the designs are grouped according to the support of
the cycle vector, that is, {i : ai 6= 0}. Only 28 out of 128 possible combinations of cycle
graphs are actually realised.

Table 6: Combinations of cycle graphs
Type # Type # Type #
5 1 3567 125 24567 75 786 636
57 5 4567 5 009 893 34567 174 351 058
134 3 12347 39 123457 51 146
347 1 12457 56 123467 15
357 1 12467 1 124567 8 658 874
457 17 13457 89 134567 11 039 468
567 2 585 13467 2 234567 8 685 731 027
1347 5 14567 135 588 1234567 2 124 060 807
2457 255 23457 46 863
3457 259 23567 10

The main observation from Table 6 is the following.

Theorem 2. There is exactly one uniform STS(19).

The following conclusions can also be drawn from Table 6. The anti-Pasch systems
are one with cycle graph 5; five with cycle graphs 5 and 7; and 2 585 with cycle graphs 5,
6 and 7. The unique 6-cycle-free system has cycle graphs 1, 2, 4, 6 and 7. The numbers
of k-cycle-free systems for k = 4, 6, 8, 10, 12 and 16 are 2 591, 1, 381, 66, 2 727 and 4,
respectively. The unique uniform STS(19) is the 5-sparse system A4 of Theorem 1.

2.5 Independent Sets

An independent set I ⊆ X in a Steiner triple system (X,B) is a set of points with
the property that no block of B is contained in I. A maximum independent set is an
independent set of maximum size. There exists an STS(19) that contains a maximum
independent set of size m if and only if m ∈ {7, 8, 9, 10}, and m = 10 arises precisely
when the design contains a subsystem of order 9; see [8, Chapter 17]. The following
theorem collects the results of a complete determination.

Theorem 3. The numbers of STS(19) with maximum independent set size 7, 8, 9 and
10 are 2, 10 133 102 887, 951 487 483 and 284 457, respectively.

The two systems that have maximum independent set of size 7 are the (cyclic) systems
A2 and A4.
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2.6 Chromatic Number

A colouring of a Steiner triple system (X,B) is a partition of X into independent sets. A
partition of X into k independent sets is a k-colouring. The chromatic number of an STS
is the smallest integer k such that the STS has a k-colouring, and corresponding colourings
are optimal. Designs with a unique optimal colouring have been termed uniquely colourable
[41]. A colouring is equitable if the cardinalities of the colour classes differ by at most
one. An STS is k-balanced if every k-colouring is equitable.

No STS(v) with v > 3 is 2-chromatic [40]. Moreover, every STS(19) is 4-colourable
[13, Theorem 6.1]; see also [24, Theorem 5]. Consequently, the chromatic number of any
STS(19) is either 3 or 4. No STS(19) with chromatic number 4 was known; indeed as we
see next, none exists. An exhaustive search establishes the following.

Theorem 4. Every STS(19) is 3-chromatic. More specifically,

(i) every STS(19) has a 3-colouring with colour class sizes (7, 7, 5) and

(ii) every STS(19) except for designs A2 and A4 has a 3-colouring with colour class
sizes (8, 6, 5).

Next we show that Theorem 4 completes the determination of the combinations of
3-colouring patterns that can occur in an STS(19). For a given 3-colouring of an STS(19),
let the colour classes be (C1, C2, C3). Let ci = |Ci| for 1 6 i 6 3. Without loss of
generality suppose that c1 > c2 > c3, and denote the pattern of colour class sizes by the
corresponding integer triple (c1, c2, c3). Informally, we refer to the colour classes C1, C2, C3

as red, yellow and blue. It is shown in [12, Section 2.4] and [13] that any 3-colouring of
an STS(19) must have one of the six patterns

(7, 6, 6), (7, 7, 5), (8, 6, 5), (8, 7, 4), (9, 5, 5), (9, 6, 4),

and that certain reductions are possible.

Lemma 1. An STS(19) that has a 3-colouring with colour class sizes

(i) (7, 7, 5) also has one with sizes (7, 6, 6),

(ii) (8, 6, 5) either has one with sizes (7, 7, 5) or one with sizes (7, 6, 6),

(iii) (8, 7, 4) also has one with sizes (7, 7, 5),

(iv) (9, 5, 5) either has one with sizes (9, 6, 4) or one with sizes (8, 6, 5),

(v) (9, 6, 4) also has one with sizes (8, 6, 5),

(vi) (8, 7, 4) also has one with sizes (8, 6, 5),

(vii) (9, 5, 5) also has one with sizes (8, 6, 5),

(viii) (9, 6, 4) also has one with sizes (9, 5, 5),

(ix ) (9, 6, 4) also has one with sizes (8, 7, 4).
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Proof. For (i)–(v), see [12, Section 2.4] or [13, Section 4]. It remains only to prove
(vi)–(ix).

Let xijk, 1 6 i 6 j 6 k, denote the number of blocks containing points belonging
to colour classes Ci, Cj and Ck, with appropriate multiplicities. Thus, for example, x122

is the number of blocks that contain a red point and two yellow points. Write x for
x223. As in the proof of [12, Theorem 2.4.1] we can construct the following table by a
straightforward computation.

(c1, c2, c3) x122 x133 x112 x113 x223 x233 x123

(7, 6, 6) 15 − x x 3 + x 18 − x x 15 − x 6
(7, 7, 5) 21 − x x − 5 1 + x 20 − x x 15 − x 5
(8, 6, 5) 15 − x x − 3 7 + x 21 − x x 13 − x 4
(8, 7, 4) 21 − x x − 7 6 + x 22 − x x 13 − x 2
(9, 5, 5) 10 − x x − 2 12 + x 24 − x x 12 − x 1
(9, 6, 4) 15 − x x − 6 12 + x 24 − x x 12 − x 0

Suppose we have an (8, 7, 4) 3-colouring of an STS(19). Then x > 7 since x133 =
x − 7 > 0. Moreover, x233 = 13 − x 6 6. Therefore we can find a yellow point to change
to blue without creating a blue-blue-blue block. This proves (vi).

Suppose we have a (9, 5, 5) 3-colouring. Since x122 + x133 = 8 < 9 we can find a red
point to be changed to either yellow or blue. This proves (vii).

Suppose we have a (9, 6, 4) 3-colouring. If x233 < 6, we can change a yellow point to
blue. So we may assume that x233 = 6. Then x133 = x123 = 0. Hence each blue point
occurs exactly three times in the yellow-blue-blue blocks and paired with three yellow
points. So each blue point must occur paired with three yellow points in yellow-yellow-
blue blocks. This is impossible; hence (viii) is proved.

Again, suppose we have a (9, 6, 4) 3-colouring. If x122 < 9, we can change a red point
to yellow. Otherwise x122 > 9. This forces x = x223 = x233 = 6 and x133 = x123 = 0,
which is impossible by the same argument as in the proof of (viii). This proves (ix).

The main result of this section is a straightforward consequence of Theorem 4 and
Lemma 1.

Theorem 5. Any STS(19) is 3-colourable with one of the following six combinations of
3-colouring patterns:

C1 = {(7, 6, 6), (7, 7, 5)},

C2 = {(7, 6, 6), (7, 7, 5), (8, 6, 5)},

C3 = {(7, 6, 6), (7, 7, 5), (8, 6, 5), (8, 7, 4)},

C4 = {(7, 6, 6), (7, 7, 5), (8, 6, 5), (9, 5, 5)},

C5 = {(7, 6, 6), (7, 7, 5), (8, 6, 5), (8, 7, 4), (9, 5, 5)},

C6 = {(7, 6, 6), (7, 7, 5), (8, 6, 5), (8, 7, 4), (9, 5, 5), (9, 6, 4)}.
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The first combination in Theorem 5, {(7, 6, 6), (7, 7, 5)}, occurs in only two STS(19),
both of which are cyclic; in fact these are the two exceptions of Theorem 4(ii), systems A2
and A4. The other two cyclic STS(19), A1 and A3, have the colouring pattern combination
{(7, 6, 6), (7, 7, 5), (8, 6, 5)}. It is easy to find examples exhibiting each of the remaining
combinations.

We are now able to answer the open problem of whether there exists a 3-balanced
STS(19) [13, Problem 1]. By [13, Theorem 4.1] and Theorems 4 and 5 we immediately
get the following.

Corollary 1. Every STS(19) is 3-chromatic and has an equitable 3-colouring. There
exists no 3-balanced STS(19).

In a separate computation we obtained the frequency of occurrence of each combination
of 3-colouring patterns. We also obtained information concerning the size of maximum
independent sets. Our results are presented in Table 7 in the form of a two-way frequency
table of maximum independent set size against combinations of 3-colouring patterns Ci

as defined in Theorem 5. The cell in row Ci, column j gives the number of STS(19) that
have 3-colouring pattern combination Ci and maximum independent set size j. Observe
that the total count for size 10 is in agreement with [42], and it is worth pointing out
that the zero entries in rows C2 to C6 can be deduced by elementary arguments without
the need for any extensive computation. In particular, it is not difficult to show that an
independent set of size 10 excludes the possibility of a (9,5,5) 3-colouring.

Table 7: Colourings and maximum independent sets
Colouring 7 8 9 10 Total

C1 2 0 0 0 2
C2 0 53 680 512 2 650 830 1 241 56 332 583
C3 0 10 079 422 375 421 936 849 283 216 10 501 642 440
C4 0 0 2 912 144 0 2 912 144
C5 0 0 464 995 662 0 464 995 662
C6 0 0 58 991 998 0 58 991 998

Total 2 10 133 102 887 951 487 483 284 457 11 084 874 829

2.7 Almost Parallel Classes

A set of nonintersecting blocks that do not contain all points of the design is a partial
parallel class, and a partial parallel class with ⌊v/3⌋ blocks is an almost parallel class.
Consequently, six nonintersecting blocks of an STS(19) form an almost parallel class. For
each STS(19) we determined the total number of almost parallel classes in the following
way.

For each STS(19), the point to be missed by the almost parallel class is specified, after
which the problem of finding the almost parallel classes can be formulated as instances
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of the exact cover problem. In the exact cover problem, a set U and a collection S of
subsets of U are given, and one wants to determine (one or all) partitions of U using sets
from S. To solve instances of the exact cover problem, the libexact software [30], which
implements ideas from work by Knuth [32], was utilized. The results are presented in
Table 8.

There is a conjecture that for all v ≡ 1, 3 (mod 6), v > 15, there exists an STS(v)
whose largest partial parallel class has fewer than ⌊v/3⌋ blocks [4, Conjecture 2.86],
[8, Conjectures 19.4 and 19.5], [41, Section 3.1]. The results in the current work are in
accordance with this conjecture.

In fact, Lo Faro already showed that every STS(19) has a partial parallel class with
five blocks [33] and, constructively, that there indeed exists an STS(19) with no almost
parallel class [34]. The current work shows that there are exactly two STS(19) with no
almost parallel classes. These are A4 and the unique design with automorphism group of
order 432. The largest number of almost parallel classes, 182, arises in S3.

A set of blocks of a design with the property that each point occurs in exactly α of
these blocks is an α-parallel class. A partition of all blocks into α-parallel classes is an
α-resolution, and a design that admits an α-resolution is α-resolvable. A Steiner triple
system whose order v is not divisible by 3 cannot have a (1-)parallel class, but may have
a 3-parallel class. The existence of Steiner triple systems of order at least 7 without a
3-parallel class is an open problem [8, p. 419].

A complete search demonstrates that every STS(19) not only has a 3-parallel class,
but a 3-resolution. It is, however, not always the case that every 3-parallel class can
be extended to a 3-resolution. That is, some STS(19) contain a 6-parallel class that is
nonseparable, in that it does not further partition into two 3-parallel classes. Using [3],
the largest α for which an STS(v) contains a nonseparable α-parallel class is 3, 1, 3, 5
and 6 for v = 7, 9, 13, 15 and 19, respectively.

2.8 Chromatic Index

While the chromatic number concerns colouring points, the chromatic index concerns
colouring blocks. More precisely, the chromatic index of an STS is the smallest number
of colours that can be used to colour the blocks so that no two intersecting blocks receive
the same colour.

An STS(v) is resolvable if and only if its chromatic index is (v − 1)/2. Since 19 is not
divisible by 3, there is no resolvable STS(19), and the smallest possible chromatic index
for such a design is ⌈57/6⌉ = 10.

By elementary counting, an STS(19) with chromatic index 10 must have at least 7
disjoint almost parallel classes. Moreover, the chromatic index of an STS(19) with no
almost parallel classes is at least ⌈57/5⌉ = 12. We now describe the computational
approach used to show that 10, 11 and 12 are the only possible chromatic indices for an
STS(19).

Exact algorithms and greedy algorithms for finding the chromatic index and upper
bounds on the chromatic index of STSs were presented in the early 1980s [2, 5]. Now
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Table 8: Number of almost parallel classes
APC # APC # APC # APC #

0 2 79 764 738 110 526 902 725 141 43 290
36 1 80 1 224 282 111 495 595 995 142 25 609
40 1 81 1 924 007 112 458 547 878 143 14 838
48 5 82 2 974 055 113 417 254 801 144 8 604
50 1 83 4 513 033 114 373 408 256 145 4 827
51 1 84 6 737 331 115 328 678 489 146 2 907
52 2 85 9 882 490 116 284 606 260 147 1 581
54 5 86 14 239 039 117 242 381 171 148 1 028
56 14 87 20 170 633 118 203 039 046 149 522
57 6 88 28 071 379 119 167 316 900 150 386
58 16 89 38 411 235 120 135 654 277 151 210
59 6 90 51 637 134 121 108 190 905 152 173
60 31 91 68 231 490 122 84 895 844 153 75
61 27 92 88 611 342 123 65 517 542 154 85
62 58 93 113 110 188 124 49 778 191 155 32
63 65 94 141 933 285 125 37 203 375 156 53
64 158 95 175 017 943 126 27 381 347 157 6
65 225 96 212 214 494 127 19 807 367 158 22
66 476 97 252 843 760 128 14 108 068 159 6
67 774 98 296 203 531 129 9 891 578 160 24
68 1 606 99 341 097 019 130 6 829 506 162 5
69 2 801 100 386 153 551 131 4 633 657 164 12
70 5 363 101 429 813 668 132 3 105 171 166 3
71 9 930 102 470 269 272 133 2 044 697 167 1
72 18 098 103 505 968 628 134 1 327 796 168 1
73 32 270 104 535 235 668 135 847 519 172 4
74 56 959 105 556 712 827 136 536 040 174 4
75 98 415 106 569 489 811 137 332 998 180 1
76 168 833 107 572 707 805 138 203 608 182 1
77 284 405 108 566 389 062 139 123 411
78 470 557 109 550 847 618 140 74 672
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modern algorithms for finding colourings and chromatic numbers of graphs can be used
to determine the chromatic number of the line graph of the design, which equals the
chromatic index of the design.

To find a 10-colouring, the algorithm starts by finding sets of 7 disjoint almost parallel
classes. To do this, for each STS(19), all almost parallel classes are first found (as in
Section 2.7). Using these, sets of 7 disjoint ones are obtained by an algorithm for finding
cliques in graphs (form one vertex for each almost parallel class and place edges between
disjoint classes). The Cliquer software [37] can be utilized to find the cliques. The final
step is an exhaustive search for three partial parallel classes to partition the remaining
57 − 7 · 6 = 15 blocks.

A more general exhaustive search algorithm was applied to instances with chromatic
index greater than 10. The final result is as follows.

Theorem 6. The numbers of STS(19) that have chromatic index 10, 11 and 12 are
11 084 870 752, 4 075 and 2, respectively.

Consequently, exactly the two STS(19) with no almost parallel classes (see Section 2.7)
have chromatic index 12. Our results are consistent with the observation that no STS(v)
with v > 7 and chromatic index exceeding the minimum chromatic index by more than 2
is known to exist [8, pp. 366–367], [41, p. 411].

2.9 Existential Closure

The block intersection graph of an STS has one vertex for each block and an edge between
two vertices exactly when the corresponding blocks intersect. A graph G = (V, E) is
n-existentially closed if for every n-element subset S ⊆ V of vertices and for every subset
T ⊆ S, there exists a vertex x 6∈ S that is adjacent to every vertex in T and nonadjacent
to every vertex in S \ T .

In [14] n-existentially closed block intersection graphs of STSs are studied. The block
intersection graph of an STS(v) is 2-existentially closed if and only if v > 13, it cannot
be 4-existentially closed [36, Theorem 1] for any v, and the only possible orders for which
it can be 3-existentially closed are 19 and 21. In fact, two STS(19) possess 3-existentially
closed block intersection graphs [14].

The following result from [14, Theorem 4.1] helps in designing an algorithm for deter-
mining whether the block intersection graph of an STS is 3-existentially closed.

Theorem 7. The block intersection graph of an STS(v) is 3-existentially closed if and
only if

(i) the STS(v) contains no subsystem STS(7),

(ii) the STS(v) contains no subsystem STS(9),

(iii) for every set of three nonintersecting blocks, if v < 19 there exists a block that
intersects none of the three, and if v > 19 there exists a block that intersects all
three.
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No STS(19) other than those discovered in [14] is 3-existentially closed.

Theorem 8. The number of 3-existentially closed STS(19) is 2.

The two 3-existentially closed STS(19) are A3 and S2.

3 Conclusions

The main aim of the current work has been to compute all kinds of properties of STS(19)
and collect them in a single place. However, it is impossible to accomplish this task in
an exhaustive manner, so we omit discussion of properties that (1) we do not consider to
have large general interest, (2) we are not able to present in a compact manner, or (3) we
simply are not able to compute at the present time.

For example, we consider various kinds of colouring problems, such as those studied
in [9, 18], to be of the first type. Any properties that have been used as invariants for
STSs cannot, by definition, be tabulated in a compact way and are of the second type;
examples of this type include various forms of so-called trains.

The third type of problems contain some very interesting open problems, including
those of determining intersection numbers of STSs, maximal sets of disjoint STSs, and
whether all STSs are derived. Further information on these problems can be found in
[4, 8]. For example, just determining whether a single STS is derived remains a major
challenge.

The problems were addressed using three different computational environments (in
Canada, Finland and Great Britain), so we do not try to give exact details about the
computations. The computational resources needed partition the problems roughly into
three groups: those taking days or at most a couple of weeks (“easy”), those taking up to
a couple of years (“intermediate”) and those taking up to ten years (“hard”). These CPU
times are roughly the times needed for one core of a “contemporary microprocessor”.

The intermediate calculations were those of determining subconfigurations (10 CPU
weeks), determining the almost parallel classes (1.5 CPU years), constructing the fre-
quency table of maximum independent set size against 3-colouring pattern combination
(12 CPU weeks), showing existence of 3-parallel classes (7 CPU months) and searching for
3-existentially closed designs (9 CPU months). The only one belonging to the category
of hard calculations was the determination of the chromatic indices, which consumed just
under 8 CPU years. All remaining calculations were “easy”.

Appendix

We use the same method for compressing STSs as in the supplement to [6]. That is,
for the points we use the symbols a-s and represent an STS by a string of 57 symbols
x1x2 · · ·x57. The symbol xi is the largest element in the ith block. The other two symbols
in the ith block are the smallest pair of symbols not occurring in earlier blocks under the
colexicographic ordering of pairs: a pair y, z with y < z is smaller than a pair y′, z′ with
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y′ < z′ iff z < z′, or z = z′ and y < y′. The order of the automorphism group is given
after each design.

S1: edgfhghijkllmnljompqporqsnsloqprmrsnnopsrqqprosqsrpsqrrss (1)
S2: cefggfhijijklmnokppqmrsolrsqnqpsnrmornsoqpsqporpqrsrsqsrs (8)
S3: cefghngjljrikoqplrnqmskmsnonsmrlpmoprqpqosopqsrrpsqqsrsrs (3)
S4: cefghigpojlijqmplrqokomsnnqpslrommnsrqprnsoprqsrspqqsrsrs (1)
S5: cefghfgjoiksmrlpnksqkmpsnlrnoqmmnqposrprqoorpqsrspqqrssrs (6)
S6: cefghigomjsinksllsjqkmropnlqrpomnrpqpqornsopqrsrpqsqsrsrs (9)
S7: cefihkgsojosmiqmnrlpjqklospnqlpormprnsprqonsoprqsrqqrssrs (1)
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Table 9: Number of grids
Grid # Grid # Grid # Grid #

21 1 58 421 406 261 95 5 466 378 132 19 595
22 1 59 455 538 873 96 4 452 414 133 17 568
23 1 60 483 962 320 97 3 625 512 134 17 390
24 6 61 505 587 977 98 2 964 501 135 15 125
25 27 62 519 737 441 99 2 419 681 136 14 765
26 44 63 525 975 481 100 1 984 363 137 12 845
27 156 64 524 399 635 101 1 625 523 138 12 707
28 403 65 515 397 821 102 1 340 634 139 10 911
29 1 012 66 499 528 245 103 1 103 378 140 10 689
30 2 577 67 477 877 986 104 915 322 141 9 228
31 6 067 68 451 447 963 105 756 727 142 9 097
32 13 721 69 421 183 378 106 629 794 143 7 629
33 29 607 70 388 549 216 107 522 121 144 7 495
34 62 549 71 354 553 810 108 439 478 145 6 593
35 125 648 72 320 163 173 109 365 162 146 6 407
36 246 636 73 286 220 933 110 310 349 147 5 325
37 461 547 74 253 571 165 111 256 766 148 5 266
38 840 481 75 222 621 207 112 219 625 149 4 318
39 1 484 562 76 193 840 439 113 183 979 150 4 386
40 2 534 581 77 167 454 239 114 157 625 151 3 507
41 4 196 398 78 143 611 784 115 133 530 152 3 515
42 6 739 474 79 122 366 578 116 115 251 153 2 820
43 10 522 877 80 103 592 757 117 97 139 154 2 838
44 15 960 510 81 87 177 751 118 85 923 155 2 265
45 23 562 586 82 72 978 536 119 72 545 156 2 455
46 33 871 296 83 60 813 771 120 65 014 157 1 830
47 47 412 716 84 50 428 258 121 55 582 158 1 905
48 64 736 436 85 41 665 785 122 50 393 159 1 433
49 86 205 567 86 34 306 651 123 43 478 160 1 552
50 112 103 389 87 28 141 430 124 40 275 161 1 124
51 142 489 811 88 23 037 710 125 34 759 162 1 284
52 177 059 163 89 18 809 436 126 32 578 163 913
53 215 192 146 90 15 344 880 127 28 746 164 1 010
54 256 144 342 91 12 489 931 128 27 080 165 766
55 298 709 622 92 10 159 180 129 23 884 166 843
56 341 446 147 93 8 261 382 130 23 163 167 557
57 382 864 465 94 6 721 096 131 20 281 168 664
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Table 9: Number of grids (cont.)
Grid # Grid # Grid # Grid #
169 490 194 80 219 2 249 3
170 527 195 19 220 23 250 2
171 324 196 90 221 2 252 10
172 429 197 21 222 14 254 1
173 267 198 70 223 5 255 2
174 383 199 8 224 33 256 7
175 206 200 97 225 5 258 1
176 328 201 16 226 8 260 7
177 153 202 39 227 5 262 1
178 232 203 6 228 31 264 8
179 126 204 79 229 2 267 2
180 223 205 5 230 4 272 7
181 128 206 25 231 3 276 4
182 207 207 13 232 21 280 4
183 109 208 59 234 10 284 3
184 155 209 4 235 1 288 5
185 75 210 51 236 26 294 1
186 149 211 2 238 5 300 1
187 57 212 46 239 1 303 1
188 159 213 10 240 26 308 1
189 45 214 14 242 1 312 3
190 91 215 2 243 1 320 2
191 44 216 38 244 7 336 2
192 123 217 3 245 1 384 1
193 36 218 15 248 11
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Table 10: Number of prisms
Prism # Prism # Prism # Prism #

171 1 250 75 976 287 42 388 161 324 198 341 505
189 1 251 98 127 288 46 639 711 325 196 983 412
200 1 252 125 286 289 51 169 522 326 195 225 803
207 1 253 158 108 290 55 931 715 327 193 085 136
211 1 254 200 729 291 60 918 787 328 190 605 951
216 2 255 253 967 292 66 151 873 329 187 795 686
217 1 256 318 185 293 71 586 084 330 184 649 280
219 6 257 397 908 294 77 237 835 331 181 212 592
221 1 258 492 617 295 83 032 700 332 177 549 753
222 6 259 610 716 296 88 988 957 333 173 586 201
223 17 260 753 345 297 95 089 060 334 169 440 136
224 22 261 921 675 298 101 293 200 335 165 109 202
225 27 262 1 126 793 299 107 579 627 336 160 640 418
226 25 263 1 368 838 300 113 892 453 337 155 982 892
227 41 264 1 655 279 301 120 225 453 338 151 293 063
228 73 265 1 993 377 302 126 496 164 339 146 440 917
229 130 266 2 390 574 303 132 753 692 340 141 569 668
230 166 267 2 851 791 304 138 902 842 341 136 664 720
231 245 268 3 389 099 305 144 926 038 342 131 727 398
232 321 269 4 010 807 306 150 790 370 343 126 770 273
233 448 270 4 727 106 307 156 429 753 344 121 858 346
234 667 271 5 547 565 308 161 884 623 345 116 981 409
235 932 272 6 485 240 309 167 038 214 346 112 190 976
236 1 291 273 7 552 715 310 171 888 128 347 107 410 238
237 1 750 274 8 757 871 311 176 448 741 348 102 737 476
238 2 462 275 10 118 769 312 180 620 616 349 98 136 704
239 3 344 276 11 640 128 313 184 476 735 350 93 657 722
240 4 558 277 13 335 175 314 187 911 346 351 89 292 744
241 6 221 278 15 233 835 315 190 927 860 352 85 046 857
242 8 341 279 17 317 913 316 193 530 670 353 80 920 249
243 11 120 280 19 617 190 317 195 702 979 354 76 911 822
244 14 888 281 22 137 761 318 197 395 867 355 73 054 525
245 20 119 282 24 884 491 319 198 675 356 356 69 332 115
246 26 400 283 27 887 561 320 199 497 261 357 65 735 409
247 34 577 284 31 140 015 321 199 874 535 358 62 291 346
248 44 753 285 34 623 522 322 199 760 946 359 58 986 226
249 58 845 286 38 376 738 323 199 286 571 360 55 805 608
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Table 10: Number of prisms (cont.)
Prism # Prism # Prism # Prism #

361 52 776 788 398 5 210 998 435 424 445 472 95 566
362 49 877 144 399 4 870 806 436 400 992 473 92 467
363 47 109 094 400 4 555 184 437 375 930 474 89 604
364 44 477 939 401 4 255 687 438 356 584 475 86 116
365 41 956 665 402 3 975 185 439 335 932 476 83 388
366 39 596 950 403 3 710 635 440 318 533 477 80 516
367 37 316 718 404 3 468 155 441 300 617 478 78 206
368 35 158 337 405 3 235 022 442 286 646 479 74 644
369 33 131 446 406 3 021 856 443 271 545 480 72 289
370 31 199 621 407 2 817 205 444 258 555 481 68 924
371 29 360 909 408 2 632 611 445 245 429 482 67 293
372 27 626 089 409 2 454 635 446 235 409 483 63 891
373 25 997 783 410 2 292 545 447 224 067 484 62 065
374 24 455 068 411 2 137 919 448 214 575 485 58 964
375 22 993 528 412 1 995 564 449 205 399 486 56 790
376 21 604 049 413 1 861 521 450 197 610 487 54 505
377 20 310 057 414 1 737 449 451 188 729 488 52 492
378 19 075 074 415 1 616 932 452 182 542 489 49 354
379 17 916 453 416 1 509 591 453 176 060 490 47 536
380 16 819 109 417 1 404 929 454 168 815 491 45 253
381 15 795 662 418 1 314 772 455 162 976 492 43 832
382 14 826 839 419 1 225 935 456 158 019 493 40 816
383 13 907 432 420 1 144 721 457 152 147 494 39 536
384 13 050 725 421 1 067 065 458 148 600 495 37 181
385 12 241 906 422 995 655 459 142 312 496 35 949
386 11 482 906 423 927 859 460 138 498 497 33 708
387 10 762 834 424 868 000 461 134 174 498 32 268
388 10 084 561 425 811 642 462 130 272 499 30 063
389 9 453 238 426 758 276 463 125 969 500 28 901
390 8 853 538 427 709 328 464 122 632 501 27 030
391 8 294 860 428 663 317 465 117 860 502 25 906
392 7 771 024 429 619 097 466 115 901 503 24 000
393 7 269 785 430 582 159 467 111 021 504 23 162
394 6 806 485 431 544 981 468 108 594 505 21 754
395 6 363 581 432 513 193 469 104 985 506 20 937
396 5 960 984 433 479 631 470 101 572 507 19 322
397 5 569 324 434 452 765 471 98 344 508 18 497
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Table 10: Number of prisms (cont.)
Prism # Prism # Prism # Prism #

509 17 095 546 1 731 583 334 620 2 116
510 16 519 547 1 499 584 421 621 2 254
511 15 154 548 1 394 585 413 622 2 301
512 14 143 549 1 222 586 434 623 2 357
513 13 411 550 1 291 587 392 624 2 510
514 12 808 551 1 103 588 480 625 2 523
515 11 849 552 1 094 589 420 626 2 527
516 11 530 553 926 590 465 627 2 581
517 10 468 554 1 000 591 474 628 2 719
518 10 064 555 826 592 572 629 2 826
519 9 280 556 885 593 521 630 2 966
520 8 869 557 719 594 593 631 3 099
521 8 064 558 757 595 599 632 3 144
522 7 774 559 648 596 662 633 3 059
523 7 153 560 728 597 647 634 3 157
524 6 714 561 532 598 710 635 3 236
525 6 300 562 629 599 729 636 3 362
526 6 014 563 517 600 830 637 3 384
527 5 362 564 511 601 872 638 3 465
528 5 209 565 436 602 972 639 3 487
529 4 847 566 505 603 959 640 3 393
530 4 551 567 416 604 1 011 641 3 423
531 4 184 568 497 605 1 050 642 3 599
532 4 108 569 374 606 1 149 643 3 580
533 3 736 570 452 607 1 188 644 3 753
534 3 743 571 358 608 1 375 645 3 622
535 3 116 572 387 609 1 308 646 3 827
536 3 141 573 349 610 1 358 647 3 643
537 2 792 574 345 611 1 471 648 3 812
538 2 744 575 330 612 1 495 649 3 744
539 2 548 576 381 613 1 553 650 3 902
540 2 452 577 336 614 1 701 651 3 579
541 2 100 578 351 615 1 703 652 3 790
542 2 155 579 326 616 1 875 653 3 752
543 1 864 580 382 617 1 868 654 3 713
544 1 844 581 315 618 1 980 655 3 683
545 1 613 582 399 619 2 027 656 3 662
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Table 10: Number of prisms (cont.)
Prism # Prism # Prism # Prism #

657 3 649 694 1 495 731 194 768 27
658 3 597 695 1 380 732 211 769 22
659 3 637 696 1 400 733 175 770 21
660 3 667 697 1 250 734 177 771 14
661 3 567 698 1 324 735 164 772 21
662 3 416 699 1 141 736 152 773 12
663 3 464 700 1 136 737 154 774 24
664 3 326 701 1 010 738 147 775 10
665 3 370 702 1 024 739 116 776 16
666 3 370 703 931 740 116 777 5
667 3 294 704 935 741 88 778 13
668 3 155 705 833 742 123 779 3
669 3 170 706 844 743 89 780 5
670 3 123 707 729 744 97 781 8
671 3 023 708 759 745 75 782 10
672 3 036 709 669 746 103 783 6
673 2 903 710 666 747 68 784 9
674 2 895 711 636 748 90 785 5
675 2 735 712 624 749 79 786 10
676 2 797 713 597 750 91 787 5
677 2 606 714 564 751 56 788 9
678 2 600 715 511 752 60 789 2
679 2 416 716 531 753 44 790 8
680 2 493 717 433 754 65 791 8
681 2 302 718 455 755 43 792 12
682 2 238 719 439 756 45 793 1
683 2 215 720 394 757 46 795 2
684 2 072 721 359 758 39 796 2
685 2 115 722 366 759 42 797 2
686 2 023 723 334 760 35 798 3
687 1 880 724 326 761 28 799 1
688 1 868 725 262 762 30 800 2
689 1 724 726 306 763 23 801 1
690 1 645 727 229 764 40 805 1
691 1 620 728 253 765 15 806 5
692 1 595 729 253 766 16 807 1
693 1 497 730 218 767 19 808 4
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Table 10: Number of prisms (cont.)
Prism # Prism # Prism # Prism #

809 1 838 1 856 1 912 2
814 1 840 2 864 2 918 6
816 3 844 1 868 1 1152 3
818 1 846 2 870 4
822 14 850 1 878 1
832 1 852 1 888 2

Table 11: Number of mitres
Mitre # Mitre # Mitre # Mitre #

0 4 29 666 856 068 56 699 975 83 39
3 11 30 726 726 670 57 427 224 84 83
4 27 31 765 630 873 58 261 965 85 16
5 94 32 780 912 655 59 162 576 86 47
6 463 33 771 673 239 60 105 125 87 20
7 1 587 34 739 625 001 61 68 560 88 34
8 5 196 35 688 305 207 62 47 177 89 7
9 16 130 36 622 481 814 63 32 413 90 54

10 45 051 37 547 576 707 64 23 643 91 1
11 119 156 38 468 917 351 65 16 778 92 19
12 292 925 39 391 303 591 66 12 393 93 9
13 685 985 40 318 424 938 67 8 661 94 7
14 1 502 196 41 252 876 637 68 6 489 96 27
15 3 122 990 42 196 124 480 69 4 295 98 2
16 6 160 011 43 148 685 094 70 3 264 99 2
17 11 527 121 44 110 224 646 71 2 181 100 6
18 20 542 885 45 79 959 174 72 1 700 102 7
19 34 903 297 46 56 803 086 73 990 104 2
20 56 577 514 47 39 545 210 74 909 105 2
21 87 700 390 48 26 981 662 75 469 108 5
22 130 128 895 49 18 067 853 76 465 112 3
23 185 013 010 50 11 873 632 77 270 114 1
24 252 364 501 51 7 665 089 78 263 116 2
25 330 721 805 52 4 870 654 79 122 120 2
26 416 700 734 53 3 046 823 80 191 144 3
27 505 540 524 54 1 883 004 81 72
28 591 121 831 55 1 150 672 82 96
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Table 12: Number of hexagons
Hexa # Hexa # Hexa # Hexa #

0 1 34 724 247 745 66 436 234 98 110
2 1 35 714 131 642 67 326 333 99 62
4 8 36 685 867 252 68 239 208 100 77
5 2 37 642 422 184 69 179 527 101 33
6 18 38 587 540 455 70 134 495 102 74
7 42 39 525 307 321 71 100 405 103 17
8 275 40 459 726 499 72 75 980 104 35
9 1 060 41 394 271 746 73 57 056 105 28

10 3 888 42 331 862 444 74 43 803 106 28
11 13 543 43 274 475 233 75 31 922 107 10
12 42 046 44 223 366 811 76 26 629 108 136
13 119 420 45 179 088 397 77 17 366 109 10
14 315 586 46 141 683 536 78 13 996 110 17
15 769 997 47 110 703 052 79 9 867 111 10
16 1 750 488 48 85 587 484 80 8 815 112 14
17 3 711 050 49 65 546 910 81 5 888 113 1
18 7 390 282 50 49 813 749 82 5 139 114 17
19 13 851 974 51 37 586 617 83 3 120 115 1
20 24 536 316 52 28 199 864 84 2 880 116 18
21 41 147 211 53 21 046 347 85 1 883 117 4
22 65 593 940 54 15 677 184 86 2 264 118 1
23 99 604 643 55 11 622 883 87 1 127 120 10
24 144 448 598 56 8 623 668 88 1 016 121 1
25 200 532 422 57 6 370 044 89 615 122 4
26 266 967 992 58 4 713 086 90 1 645 124 8
27 341 559 277 59 3 483 045 91 436 126 16
28 420 712 045 60 2 580 662 92 408 128 1
29 499 765 074 61 1 909 874 93 249 132 3
30 573 401 076 62 1 419 396 94 234 144 12
31 636 579 383 63 1 050 752 95 150 171 1
32 684 620 989 64 786 486 96 248
33 714 416 762 65 577 280 97 75
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Table 13: Number of crowns
Crown # Crown # Crown # Crown #

0 4 75 84 112 39 276 149 11 026 967
24 8 76 225 113 46 162 150 12 418 598
28 1 77 98 114 55 376 151 13 951 975
32 7 78 230 115 65 172 152 15 649 589
34 1 79 146 116 78 169 153 17 504 989
36 17 80 303 117 92 109 154 19 550 198
40 4 81 184 118 110 533 155 21 784 052
42 2 82 352 119 130 711 156 24 217 202
44 3 83 271 120 155 188 157 26 857 968
45 1 84 507 121 183 383 158 29 735 229
46 3 85 409 122 218 318 159 32 838 784
48 17 86 625 123 256 913 160 36 187 030
49 2 87 538 124 304 546 161 39 768 756
50 4 88 788 125 357 058 162 43 644 429
51 3 89 745 126 420 855 163 47 762 633
52 19 90 1 103 127 493 066 164 52 146 277
54 23 91 997 128 580 012 165 56 809 902
55 5 92 1 448 129 678 149 166 61 761 576
56 37 93 1 460 130 794 787 167 66 960 296
57 9 94 1 941 131 925 609 168 72 455 628
58 16 95 1 999 132 1 080 365 169 78 205 211
59 6 96 2 809 133 1 256 516 170 84 194 952
60 72 97 2 861 134 1 462 493 171 90 422 800
61 5 98 3 569 135 1 691 178 172 96 907 778
62 22 99 3 832 136 1 960 531 173 103 579 676
63 16 100 5 157 137 2 262 445 174 110 428 354
64 65 101 5 644 138 2 612 802 175 117 487 564
65 16 102 7 012 139 3 008 486 176 124 638 538
66 77 103 7 868 140 3 455 009 177 131 927 624
67 19 104 9 735 141 3 958 995 178 139 275 613
68 71 105 11 111 142 4 536 189 179 146 638 317
69 32 106 13 806 143 5 178 047 180 154 028 623
70 81 107 15 906 144 5 903 381 181 161 359 146
71 55 108 19 655 145 6 715 687 182 168 619 294
72 173 109 22 619 146 7 629 172 183 175 716 385
73 65 110 27 800 147 8 645 817 184 182 665 320
74 144 111 32 269 148 9 772 477 185 189 374 242
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Table 13: Number of crowns (cont.)
Crown # Crown # Crown # Crown #

186 195 806 871 217 134 563 689 248 4 411 819 279 3 866
187 201 907 700 218 126 661 383 249 3 734 688 280 3 026
188 207 659 159 219 118 861 873 250 3 149 311 281 2 220
189 212 988 838 220 111 206 681 251 2 648 386 282 1 621
190 217 852 023 221 103 671 809 252 2 219 528 283 1 190
191 222 201 411 222 96 346 526 253 1 850 527 284 880
192 226 058 774 223 89 252 032 254 1 538 216 285 617
193 229 322 865 224 82 406 974 255 1 272 656 286 458
194 231 961 935 225 75 860 206 256 1 051 337 287 337
195 233 966 564 226 69 578 295 257 862 379 288 237
196 235 362 932 227 63 614 491 258 707 331 289 186
197 236 055 372 228 57 977 229 259 576 064 290 135
198 236 115 675 229 52 664 490 260 468 744 291 88
199 235 469 719 230 47 671 940 261 378 298 292 63
200 234 145 518 231 43 011 588 262 304 621 293 35
201 232 142 509 232 38 676 935 263 244 241 294 36
202 229 517 435 233 34 668 107 264 194 690 295 12
203 226 209 636 234 30 961 644 265 155 113 296 19
204 222 338 699 235 27 551 781 266 123 781 297 14
205 217 827 123 236 24 435 171 267 96 942 298 5
206 212 820 389 237 21 602 222 268 76 095 299 7
207 207 301 265 238 19 035 194 269 59 785 300 4
208 201 303 814 239 16 706 493 270 46 762 301 1
209 194 883 375 240 14 612 461 271 36 086 302 1
210 188 122 519 241 12 739 285 272 27 879 303 4
211 180 992 703 242 11 064 520 273 21 426 306 1
212 173 617 922 243 9 577 688 274 16 461 309 2
213 166 018 485 244 8 260 815 275 12 570 314 1
214 158 267 357 245 7 095 407 276 9 619
215 150 399 412 246 6 078 552 277 7 117
216 142 486 139 247 5 188 692 278 5 272
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