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Abstract

Wang and Yeh proved that if P (x) is a polynomial with nonnegative and non-
decreasing coefficients, then P (x + d) is unimodal for any d > 0. A mode of a
unimodal polynomial f(x) = a0 + a1x + · · · + amxm is an index k such that ak is
the maximum coefficient. Suppose that M∗(P, d) is the smallest mode of P (x + d),
and M∗(P, d) the greatest mode. Wang and Yeh conjectured that if d2 > d1 > 0,
then M∗(P, d1) ≥ M∗(P, d2) and M∗(P, d1) ≥ M∗(P, d2). We give a proof of this
conjecture.

Keywords: unimodal polynomials, the smallest mode, the greatest mode.

1 Introduction

This paper is concerned with the modes of unimodal polynomials constructed from non-
negative and nondecreasing sequences. Recall that a sequence {ai}0≤i≤m is unimodal if
there exists an index 0 ≤ k ≤ m such that

a0 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ am.

Such an index k is called a mode of the sequence. Note that a mode of a sequence may
not be unique. The sequence {ai}0≤i≤m is said to be spiral if

am ≤ a0 ≤ am−1 ≤ a1 ≤ · · · ≤ a[ m

2
], (1.1)
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where [m
2
] stands for the largest integer not exceeding m

2
. Clearly, the spiral property

implies unimodality. We say that a sequence {ai}0≤i≤m is log-concave if for 1 ≤ k ≤ m−1,

a2
k ≥ ak+1ak−1,

and it is ratio monotone if

am

a0

≤
am−1

a1

≤ · · · ≤
am−i

ai

≤ · · · ≤
am−[ m−1

2
]

a[ m−1

2
]

≤ 1 (1.2)

and
a0

am−1

≤
a1

am−2

≤ · · · ≤
ai−1

am−i

≤ · · · ≤
a[ m

2
]−1

am−[ m

2
]

≤ 1. (1.3)

It is easily checked that ratio monotonicity implies both log-concavity and the spiral
property.

Let P (x) = a0 + a1x + · · ·+ amxm be a polynomial with nonnegative coefficients. We
say that P (x) is unimodal if the sequence {ai}0≤i≤m is unimodal. A mode of {ai}0≤i≤m is
also called a mode of P (x). Similarly, we say that P (x) is log-concave or ratio monotone
if the sequence {ai}0≤i≤m is log-concave or ratio monotone.

Throughout this paper P (x) is assumed to be a polynomial with nonnegative and
nondecreasing coefficients. Boros and Moll [2] proved that P (x + 1), as a polynomial of
x, is unimodal. Alvarez et al. [1] showed that P (x + n) is also unimodal for any positive
integer n, and conjectured that P (x + d) is unimodal for any d > 0. Wang and Yeh [6]
confirmed this conjecture and studied the modes of P (x+d). Llamas and Mart́ınez-Bernal
[5] obtained the log-concavity of P (x+c) for c ≥ 1. Chen, Yang and Zhou [4] showed that
P (x + 1) is ratio monotone, which leads to an alternative proof of the ratio monotonicity
of the Boros-Moll polynomials [3].

Let M∗(P, d) and M∗(P, d) denote the smallest and the greatest mode of P (x + d)
respectively. Our main result is the following theorem, which was conjectured by Wang
and Yeh [6].

Theorem 1.1 Suppose that P (x) is a monic polynomial of degree m ≥ 1 with nonnegative

and nondecreasing coefficients. Then for 0 < d1 < d2, we have M∗(P, d1) ≥ M∗(P, d2)
and M∗(P, d1) ≥ M∗(P, d2).

From now on, we further assume that P (x) is monic, that is am = 1. For 0 ≤ k ≤ m,
let

bk(x) =
m

∑

j=k

(

j

k

)

ajx
j−k. (1.4)

Therefore, bk(x) is of degree m − k and bk(0) = ak. For 1 ≤ k ≤ m, let

fk(x) = bk−1(x) − bk(x), (1.5)

which is of degree m − k + 1. Let f
(n)
k (x) denote the n-th derivative of fk(x).

Our proof of Theorem 1.1 relies on the fact that fk(x) has at most one real zero on

(0, +∞). In fact, the derivative f
(n)
k (x) of order n ≤ m − k has the same property. We

establish this property by induction on n.
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2 Proof of Theorem 1.1

To prove Theorem 1.1, we need the following three lemmas.

Lemma 2.1 For any 0 ≤ k ≤ m, we have b′k(x) = (k + 1)bk+1(x).

Proof. Let Bj,k(x) denote the summand of bk(x). It is readily checked that

B′
j,k(x) = (k + 1)Bj,k+1(x).

The result immediately follows.

Lemma 2.2 For n ≥ 1 and 1 ≤ k ≤ m, we have

f
(n)
k (x) = (k + n − 1)nbk+n−1(x) − (k + n)nbk+n(x), (2.1)

where (m)j = m(m − 1) · · · (m − j + 1).

Proof. Use induction on n. For n = 1, we have

f
(n)
k (x) = f ′

k(x) = kbk − (k + 1)bk+1.

Assume that the lemma holds for n = j, namely,

f
(j)
k (x) = (k + j − 1)jbk+j−1(x) − (k + j)jbk+j(x).

Therefore,

f
(j+1)
k (x) = (k + j − 1)jb

′
k+j−1(x) − (k + j)jb

′
k+j(x)

= (k + j)(k + j − 1)jbk+j(x) − (k + j + 1)(k + j)jbk+j+1(x)

= (k + j)j+1bk+j(x) − (k + j + 1)j+1bk+j+1(x).

This completes the proof.

Lemma 2.3 For 1 ≤ k ≤ m and 0 ≤ n ≤ m− k, the polynomial f
(n)
k (x) has at most one

real zero on the interval (0, +∞). In particular, fk(x) has at most one real zero on the

interval (0, +∞).

Proof. Use induction on n from m−k to 0. First, we consider the case n = m−k. Recall
that

fk(x) =
m

∑

j=k−1

(

j

k − 1

)

ajx
j−k+1 −

m
∑

j=k

(

j

k

)

ajx
j−k.

Thus fk(x) is a polynomial of degree m − k + 1. Note that

f
(m−k)
k (x) = (m − k + 1)!

(

m

k − 1

)

amx +

[(

m − 1

k − 1

)

am−1 −

(

m

k

)

am

]

(m − k)!.
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Clearly, f
(m−k)
k (x) has at most one real zero x0 on (0, +∞). So the lemma is true for

n = m − k.
Suppose that the lemma holds for n = j, where m − k ≥ j ≥ 1. We proceed to show

that f
(j−1)
k (x) has at most one real zero on (0, +∞). From the inductive hypothesis it

follows that f
(j)
k (x) has at most one real zero on (0, +∞). In light of (2.1), it is easy to

verify that f
(j)
k (+∞) > 0 and

f
(j)
k (0) = (k + j − 1)jak+j−1 − (k + j)jak+j ≤ 0.

It follows that either the polynomial f
(j−1)
k (x) is increasing on the entire interval (0, +∞),

or there exists a positive real number r such that f
(j−1)
k (x) is decreasing on (0, r] and

increasing on (r, +∞). Again by (2.1) we find f
(j−1)
k (+∞) > 0 and

f
(j−1)
k (0) = (k + j − 2)j−1ak+j−2 − (k + j − 1)j−1ak+j−1 ≤ 0.

So we conclude that f
(j−1)
k (x) has at most one real zero on (0, +∞). This completes the

proof.
Proof of Theorem 1.1. In view of (1.4), we have

P (x + d) =

m
∑

k=0

ak(x + d)k =

m
∑

k=0

bk(d)xk.

Let us first prove that M∗(P, d1) ≥ M∗(P, d2). Suppose that M∗(P, d1) = k. If k = m,
then the inequality M∗(P, d1) ≥ M∗(P, d2) holds. For the case 0 ≤ k < m, it suffices
to verify that bk(d2) > bk+1(d2). By Lemma 2.2, fk+1(x) has at most one real zero on
(0, +∞). Note that

fk+1(0) ≤ 0 and fk+1(+∞) > 0.

From M∗(P, d1) = k it follows that bk(d1) > bk+1(d1), that is fk+1(d1) > 0. Therefore,
fk+1(d2) > 0, that is, bk(d2) > bk+1(d2).

Similarly, it can be seen that M∗(P, d1) ≥ M∗(P, d2). Suppose that M∗(P, d2) = k. If
k = 0, then we have M∗(P, d1) ≥ M∗(P, d2). If 0 < k ≤ m, it is necessary to show that
bk−1(d1) < bk(d1). Again, by Lemma 2.2, we know that fk(x) has at most one real zero
on (0, +∞). From M∗(P, d2) = k, it follows that bk−1(d2) < bk(d2), that is fk(d2) < 0. By
the boundary conditions

fk(0) ≤ 0 and fk(+∞) > 0,

we obtain fk(d1) < 0, that is bk−1(d1) < bk(d1). This completes the proof.
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