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Abstract

Brègman [2], gave a best possible upper bound for the number of perfect match-
ings in a balanced bipartite graph in terms of its degree sequence. Recently Kahn
and Lovász [8] extended Brègman’s theorem to general graphs. In this paper, we
use entropy methods to give a new proof of the Kahn-Lovász theorem. Our methods
build on Radhakrishnan’s [9] use of entropy to prove Brègman’s theorem.

1 Introduction

Entropy has recently emerged as a powerful tool in combinatorics (see for instance [3, 6,
7]). Radhakrishnan [9] used entropy to give a new proof of Brègman’s theorem. While
Brègman’s theorem is usually stated in terms of the permanent of a square (0, 1)-matrix,
the equivalent version we state uses graph theoretic notation. If G is a graph, we let Φ(G)
be the set of perfect matchings of G and φ(G) = |Φ(G)|. Also, if v ∈ V (G), we denote
the degree of v by d(v).

Theorem 1 (Brègman [2]). If G = G(L, R) is a bipartite graph such that |L| = |R|, then

φ(G) ≤
∏

v∈L

(d(v)!)1/d(v) .

The extension of Brègman’s theorem to general graphs was achieved by Kahn and
Lovász [8], and independently proved by Friedland [4].

Theorem 2 (Kahn-Lovász [8]). For G an arbitrary graph,

φ(G) ≤
∏

v∈V

(d(v)!)1/(2d(v)).
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The original proof of Kahn and Lovász was never published, see [3]. Friedland’s proof
is based on an extension of Schrijver’s [10] proof of the Brègman inequality. A short proof,
deducing the result for general graphs from Brègman’s theorem, was given by Alon and
Friedland [1]. This paper presents a new proof of Theorem 2 using entropy methods.

We introduce the basics of entropy that will be used in this paper. For a more compre-
hensive introduction, see, e.g., [5]. In the following definition, and throughout this paper,
all logarithms are base two, and all random variables have finite range.

Definition 1. The entropy of a random variable X is given by

H(X) =
∑

x

P(X = x) log

(

1

P(X = x)

)

.

For random variables X and Y , the conditional entropy of X given Y is

H(X
∣

∣ Y ) = E(H(X
∣

∣ Y = y)) =
∑

y

P(Y = y)H(X
∣

∣ Y = y).

Both entropy and conditional entropy are always non-negative.

One can think of the term log(1/P(X = x)) appearing in the definition of the entropy
as measuring the surprise involved in discovering that the value of X turned out to be
x (measured on a logarithmic scale). In these terms H(X) is the expected surprise in
learning the value of X. The conditional entropy H(X

∣

∣ Y ) is the expected surprise in
learning the value of X given that the value of Y is known. The chain rule (part b) below)
shows that also H(X

∣

∣ Y ) = H((X, Y ))−H(Y ). The following theorem collects the basic
facts about entropy that we will need.

Theorem 3.

a) If X is a random variable then

H(X) ≤ log |range(X)| ,

with equality if and only if X is uniform on its range.
b) If X = (X1, X2, . . . , Xn) is a random sequence then

H(X) = H(X1) + H(X2

∣

∣ X1) + · · ·+ H(Xn

∣

∣ X1, X2, . . . , Xn−1).

c) If X, Y, Z are random variables then

H(X
∣

∣ Y, Z) ≤ H(X
∣

∣ Y ).

d) If X, Y, Z are random variables and Z is Y -measurable then

H(Y, Z) = H(Y ) and H(X
∣

∣ Y, Z) = H(X
∣

∣ Y ).
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Part c) above is the natural fact that knowing more information does not increase your
expected surprise—part d) says that if you could have worked out the extra information
for yourself then there is no change in your expected surprise.

In Section 2, we present Radhakrishnan’s entropy proof of Brègman’s theorem as a
consequence of his randomized version of the chain rule. Although the argument is exactly
that of Radhakrishnan, we believe that its presentation herein presents the ideas clearly
and succinctly. In addition it provides a framework for understanding our proof of the
Kahn-Lovász, which we present in Section 3.

2 Radhakrishnan’s proof

This section presents the entropy proof of Radhakrishnan of Brègman’s theorem, which
is as follows.

Theorem 1. If G = G(L, R) is a bipartite graph such that |L| = |R|, then

φ(G) ≤
∏

v∈L

(d(v)!)1/d(v) .

The key idea of Radhakrishnan’s proof was to introduce a randomized version of the
chain rule. This idea has been used in other entropy proofs and seems to be a powerful
tool when applying entropy methods to combinatorial problems.

Theorem 4 (Radhakrishnan). Suppose X = (Xi)i∈I is a random vector and A is an
arbitrary covering of I. Let � be an ordering on A chosen randomly (not necessarily
uniformly). Then

H(X) =
∑

A∈A

H(XA

∣

∣ �, XB, B ≺ A).

Proof. We prove it for a fixed ordering �, and the general result follows by averaging.
First note that H(X) = H ((XA)A∈A) by repeated application of Theorem 3, part d).
Thus, by the chain rule,

H(X) = H ((XA)A∈A) =
∑

A

H(XA|XB, B ≺ A).

We are now ready to present the entropy proof of Theorem 1 due to Radhakrishnan.
The proof proceeds by applying the randomized chain rule above with respect to orderings
of the vertices in L. For a fixed matching, then, if we proceed through a particular
ordering, each vertex of L has a certain subset of its neighbors as potential partners in
the matching. The number of such potential partners turns out to be uniform on the
possibilities, and the result follows.
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Proof of Theorem 1. Let M be a perfect matching of G chosen uniformly at random
from Φ(G), and let X = (Xe)e∈E(G) be the indicator vector of M . We define a covering
A = {Av : v ∈ L} by Av = {vw : w a neighbor of v}. For v ∈ L we define Xv to
be the unique M-neighbor of v, and note that Xv and XAv

contain precisely the same
information. Given � chosen uniformly at random from the set of all total orderings of
L (and independently of M), we define Nv = |Av \ {vXw : w � v}|. Later, in Lemma 6,
we give the easy proof that for any fixed perfect matching m we have

P(Nv = k
∣

∣ M = m) =
1

d(v)
, for all k = 1, 2, . . . , d(v).

As P(Nv = k
∣

∣ M = m) = 1/d(v) for any fixed m we see that Nv is uniformly distributed
on {1, 2, . . . , d(v)}. Now, by Theorem 4 followed by standard uses of the properties of
entropy from Theorem 3,

H(X) =
∑

v

H(Xv| �, Xw, x � v)

≤
∑

v

H(Xv| �, Nv)

≤
∑

v

H(Xv|Nv)

=
∑

v

d(v)
∑

k=1

P(Nv = k)H(Xv|Nv = k)

≤
∑

v

d(v)
∑

k=1

1

d(v)
log(k)

=
∑

v

log(d(v)!)1/d(v).

3 A proof of the Kahn-Lovász theorem

The entropy proof of the Kahn-Lovász theorem is complicated by the fact that there can
be edges of the graph (and a fixed matching) amongst the neighbors of a particular vertex.
Thus the analogue of the statement that Nv is uniformly distributed is no longer true.
However, we still are able to give an entropy bound that proves the theorem.

We discuss a slight generalization of the problem that we face. We discuss the process
of picking a random element from a family of sets, where some have already been ruled out.
These are the ones appearing before some distinguished element in a random ordering. In
the graph context we will have a random ordering on edges of a fixed matching incident
to neighbors of a vertex v—the distinguished element will be the matching edge incident
with v.
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Definition 2. Suppose that A = (Ax)x∈I is a family of non-empty disjoint finite sets and
let ⋆ be a distinguished element of I. We require |A⋆| = 1. Suppose that � is a uniformly
random (total) ordering of I. We define a random variable XA that we call a uniform
random late choice from A by picking an element of

⋃

x�⋆ Ax uniformly at random. For
notational convenience we define

U(A,�) =
⋃

x�⋆

Ax.

In the next lemma we prove that a certain conditional entropy associated with a
random late choice is greatest when all the Ax are singletons. In our graph context this
corresponds to the situation when there are no matching edges between neighbors of v.

Lemma 5. Let A = (Ax)x∈I be a family of non-empty disjoint finite sets and � be a
uniform random ordering on I. Let B be the family ({a})a∈U , where U =

⋃

x∈I Ax, and
let �B be a uniformly random ordering on U . We write n for |U |. Then

H(XA

∣

∣ �) ≤ H(XB

∣

∣ �B) =
log(n!)

n
,

with equality if and only if |Ax| = 1 for all x ∈ I.

Proof. Set k = |I|. For each value of n, we prove the result by downwards induction on
k. The case k = n is precisely the equality in the statement of the lemma. In this case
we have

H(XA

∣

∣ �) =
1

n!

∑

�

log |U(A,�)|

=
1

n!

∑

�

log |{x ∈ I : x � ⋆}|

=

n
∑

i=1

1

n!

∣

∣

∣
{� : |{x ∈ I : x � ⋆}| = i}

∣

∣

∣
log(i)

=
n

∑

i=1

1

n
log(i)

=
log(n!)

n
.

Suppose then that k < n. There exists some Ax with |Ax| ≥ 2. Note that x 6= ⋆, since by
definition |A⋆| = 1. We will build a family A′ that is identical with A except that Ax is
split into two nonempty parts, Ax′ and Ax′′ . (Here we have introduced two new elements
into the index set and deleted x, so I ′ = I \ {x} ∪ {x′, x′′}.) We introduce a new uniform
random ordering �′ on I ′. We will show

H(XA

∣

∣ �) < H(XA′

∣

∣ �′) ≤
log(n!)

n
.
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To be precise, we show that for a fixed ordering �0 on I0 = I \{x}, the total contribution
to H(XA

∣

∣�) coming from orderings � on I which restrict to �0 on I0 is no bigger than
the total for H(XA′

∣

∣�′) where again �′ restricts to �0. I.e., we show

1

k!

∑

�
�|I0=�0

log (|U(A,�)|) <
1

(k + 1)!

∑

�′

�′|I0=�0

log (|U(A′,�′)|) . (†)

We let

S = |U(A \ {Ax} ,�0)| , d′ = |Ax′| , d′′ = |Ax′′| , and d = |Ax| = d′ + d′′.

Since the position of ⋆ in �0 is fixed, the only relevant issues are the positions of x in �
and x′, x′′ in �′. Suppose that ⋆ is the jth smallest element in �0. The possible values
for |U(A,�)| are S and S + d. There are j orderings (exactly those in which x appears
before ⋆) for which the value is S, and k− j for which the value is S +d. (Note that since
there are k−1 elements of I0, there are k positions in which x can be inserted.) Similarly,
the four possible values for |U(A′,�′)| are S, S + d′, S + d′′, and S + d, with respective
frequencies j(j + 1), j(k − j), j(k − j), and (k − j)(k − j + 1). Therefore, proving (†) is
equivalent to proving (after multiplying by (k + 1)! and exponentiating)

[

Sj(S + d)k−j
]k+1

< Sj(j+1)(S + d′)j(k−j)(S + d′′)j(k−j)(S + d)(k−j)(k−j+1).

Canceling common factors, this is equivalent to

Sj(k−j)(S + d)j(k−j) < (S + d′)j(k−j)(S + d′′)j(k−j).

Taking the j(k − j)th root, this is S(S + d) = S2 + dS < S2 + dS + d′d′′.

The other ingredient of our proof is the idea, due to Cuckler and Kahn [3], of exploiting
the fact that a uniformly random ordering on the vertices of G induces a uniformly random
ordering on the edges of any fixed perfect matching. If the vertices of a graph G are
ordered by labeling them 1, 2, . . . , n, then, for any subset of edges F ⊆ E(G), we define
the induced lexicographic ordering on F to be the lexicographic ordering on F , where
edges are thought of as elements of

(

[n]
2

)

.

Lemma 6. Let G be a graph and m a perfect matching in G. If �V is a random ordering
of V (G), we define �E to be the induced lexicographic ordering on m. Then �E is uniform
on the set of all orders of m. Moreover, for a particular edge xy ∈ m, the ordering �E is
independent of the event {x �V y}.

Proof. For any permutation of the edges of m, there is a permutation of V (G) inducing
it. Therefore, the uniformity of �V implies that of �E . Similarly, the transposition (x y)
maps the event {�E = �0, x �V y} to the event {�E = �0, y �V x} and hence, by the
uniformity of �V ,

P(�E = �0, x �V y) = P(�E = �0, y �V x),

i.e., �E is independent of the event {x �V y}.
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We now describe the setup that allows us to connect uniform random late choices and
the Kahn-Lovász theorem.

Definition 3. Given a graph G, a vertex v ∈ V (G), and a perfect matching m ∈ Φ(G),
we define

Iv = {e ∈ m : e is incident with a neighbor of v} .

If e ∈ Iv, we set
Ae = e ∩ N(v),

so that if w is a neighbor of v whose m-neighbor u is also adjacent to v, then Awu = {w, u},
whereas if u is not adjacent to v (in particular if u = v), then Awu = {w}. We let
Av = {Ae : e ∈ Iv}, from which we distinguish the element {v′} = A{v,v′}, where v′ is the
m-neighbor of v. Also, given a uniform random ordering �V on V , we define Nv to be
the random variable

Nv =

{

|{w ∼ v : w �V v and u �V v where u is the m-neighbor of w}| if v ≺V v′,

0 otherwise.

Our final lemma relates the entropy of a random late choice from Av to the distribution
of Nv.

Lemma 7. With the setup of the previous definition, if XAv
is a uniform random late

choice from Av then

H(XAv

∣

∣ �Iv
) =

dv
∑

i=1

P(Nv = i
∣

∣ v ≺V v′) log(i). (‡)

Proof. Let k = |Av| and n = |V (G)|. We have

H(XAv

∣

∣ �Iv
) =

1

k!

∑

�Iv

log (|U(Av,�Iv
)|) =

1

n!

∑

�V

log (|U(Av,�Iv
)|) .

We note that if v ≺V v′, then |U(Av,�Iv
)| = Nv, where the right-hand side, being a

random variable, is a function of �V . Otherwise, of course, Nv = 0. By Lemma 6, the
event {v ≺V v′} is independent of the induced ordering �Iv

so

1

n!

∑

�V

log (|U(Av,�Iv
)|) =

2

n!

∑

�V

v≺V v′

log (|U(Av,�Iv
)|) .

Therefore

H(XAv

∣

∣ �Iv
) =

2

n!

∑

�V

v≺V v′

log (|U(Av,�Iv
)|) =

dv
∑

i=1

P(Nv = i
∣

∣ v ≺V v′) log(i).
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We are now ready to prove the Kahn-Lovász theorem.

Proof of Theorem 2. Let M be a perfect matching of G chosen uniformly at random from
Φ(G), and let X = (Xe)e∈E be the indicator vector of M . For v ∈ V (G), we also set Xv =
w where vw ∈ M . We pick a uniformly random total ordering �V on V (G). We let Qv

be the indicator random variable for the event {Xv ≺V v} = {v = Xw for some w ≺V v}.
We have

log(φ(G)) = H(X)

=
∑

v∈V

H
(

Xv

∣

∣ (Xw, w ≺V v), �V

)

=
∑

v∈V

H
(

Xv

∣

∣ Nv, Qv, (Xw, w ≺V v), �V

)

(1)

≤
∑

v∈V

H
(

Xv

∣

∣ Nv, Qv

)

=
∑

v∈V

P(Qv = 1) H
(

Xv

∣

∣ Nv, Qv = 1
)

+
∑

v∈V

P(Qv = 0) H
(

Xv

∣

∣ Nv, Qv = 0
)

=
1

2

∑

v∈V

H
(

Xv

∣

∣ Nv, Qv = 0
)

=
1

2

∑

v∈V

dv
∑

k=1

P(Nv = k, Qv = 0)H
(

Xv

∣

∣ Nv = k, Qv = 0
)

≤
1

2

∑

v∈V

dv
∑

k=1

P(Nv = k, Qv = 0) log(k)

=
1

2

∑

v∈V

dv
∑

k=1

∑

m∈Φ(G)

P(Nv = k, Qv = 0
∣

∣ M = m) log(k)P(M = m)

=
1

2

∑

v∈V

∑

m∈Φ(G)

H(XAv

∣

∣ �Iv
)P(M = m) (2)

≤
1

2

∑

v∈V

∑

m∈Φ(G)

P(M = m)

(

log(dv!)

dv

)

(3)

=
1

2

∑

v∈V

1

dv
log(dv!).

Here (1) is a consequence the fact that Qv and Nv are ((Xw, w ≺V v), �V )-measurable,
(2) is an application of Lemma 7, and (3) follows from Lemma 5.
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