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Abstract

For a positive integer q, a k-uniform hypergraph X = (V,E) is q-complementary

if there exists a permutation θ on V such that the sets E,Eθ, Eθ2
, . . . , Eθq−1

partition
the set of k-subsets of V . The permutation θ is called a q-antimorphism of X. The
well studied self-complementary uniform hypergraphs are 2-complementary.

For an integer n and a prime p, let n(p) = max{i : pi divides n}. In this paper,
we prove that a vertex-transitive q-complementary k-hypergraph of order n exists
if and only if nn(p) ≡ 1 (mod qℓ+1) for every prime number p, in the case where q

is prime, k = bqℓ or k = bqℓ + 1 for a positive integer b < k, and n ≡ 1(mod qℓ+1).
We also find necessary conditions on the order of these structures when they are
t-fold-transitive and n ≡ t ( mod qℓ+1), for 1 ≤ t < k, in which case they correspond
to large sets of isomorphic t-designs. Finally, we use group theoretic results due to
Burnside and Zassenhaus to determine the complete group of automorphisms and
q-antimorphisms of these hypergraphs in the case where they have prime order,
and then use this information to write an algorithm to generate all of these objects.
This work extends previous, analagous results for vertex-transitive self-complement-
ary uniform hypergraphs due to Muzychuk, Potočnik, Šajna, and the author. These
results also extend the previous work of Li and Praeger on decomposing the orbitals
of a transitive permutation group.

Key words: Self-complementary hypergraph; t-complementary hypergraph; Uniform hyper-

graph; Transitive hypergraph; Complementing permutation; Large set of t-designs
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1 Introduction

1.1 Definitions and notation

For a finite set V and a positive integer k, let V (k) denote the set of all k-subsets of V .
A hypergraph with vertex set V and edge set E is a pair (V, E), in which V is a finite
set and E is a collection of subsets of V . A hypergraph (V, E) is called k-uniform (or
a k-hypergraph) if E is a subset of V (k). The parameters k and |V | are called the rank
and the order of the k-hypergraph, respectively. The vertex set and the edge set of a
hypergraph X will often be denoted by V (X) and E(X), respectively. A 2-hypergraph is
a graph.

An isomorphism between k-hypergraphs X and X ′ is a bijection φ : V (X) → V (X ′)
which induces a bijection from E(X) to E(X ′). If such an isomorphism exists the hyper-
graphs X and X ′ are said to be isomorphic. An automorphism of X is an isomorphism
from X to X. The set of all automorphisms of X will be denoted by Aut(X). Clearly,
Aut(X) is a subgroup of Sym(V (X)), the symmetric group of permutations on V (X).

For a positive integer q, a k-hypergraph X = (V, E) is cyclically q-complementary (or q-
complementary) if there exists a permutation θ on V such that the sets E, Eθ, Eθ2

, . . . , Eθq−1

partition V (k). We denote the set Eθi

by Ei. Note that Eθ
i = Ei+1 for i = 0, 1, . . . , t−2 and

Eθ
q−1 = E0 = E. Such a permutation θ is called a (q, k)-complementing permutation, and

it gives rise to a family of q isomorphic k-hypergraphs {Xi = (V, Ei) : i = 0, 1, . . . , q − 1}
which partition V (k), the complete k-hypergraph on V , and which are permuted cyclically
under the action of θ. The following facts in [2] about (q, k)-complementing permutations
follow from the definition.

Lemma 1.1. [2] Let V be a finite set, and let s, q and k be positive integers such that
gcd(q, s) = 1.

(1) A permutation θ ∈ Sym(V ) is a (q, k)-complementing permutation if and only if θs

is a (q, k)-complementing permutation.

(2) The order of a (q, k)-complementing permutation is divisible by q.

(3) If q is prime, every cyclically q-complementary k-hypergraph has a (q, k)-complement-
ing permutation with order a power of q.

A (q, k)-complementing permutation of a q-complementary k-hypergraph X is also
called a q-antimorphism of X, and the set of q-antimorphisms of X will be denoted by
Antq(X). It is not difficult to check that Aut(X) ∪ Antq(X) is a subgroup of Sym(V ),
and that Aut(X) is an index-q subgroup of Aut(X) ∪ Antq(X). Also, if θ ∈ Antq(X)
then θqs ∈ Aut(X) for all integers s. Finally, it is clear that Aut(X) = Aut(Xi) for
i = 0, 1, . . . , q − 1 when X is q-complementary.

Let X = (V, E) be a k-hypergraph, let t be a positive integer, t < k. A k-hyper-
graph X is called t-subset-regular if there is a constant c such that every t-subset of V
is contained in exactly c edges in E. A k-hypergraph X is called vertex-transitive (or
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simple transitive) if Aut(X) acts transitively on V (X), and it is called t-fold-transitive (or
t-transitive) if Aut(X) acts transitively on the set of ordered t-tuples of distinct vertices
of X. The 2-transitive hypergraphs are also called doubly-transitive. Clearly, every t-
transitive k-hypergraph is t-subset-regular.

If Ω is a finite set, v is a point in Ω, τ is a permutation on Ω, G is a permutation
group on Ω, and p is a prime, then vτ , vG, Gv, and Sylp(G) will denote the image of v
by τ , the orbit of G containing v, the stabilizer of the point v in the group G, and the
set of Sylow p-subgroups of G, respectively. For a prime power n, let F

∗
n denote the

(cyclic) multiplicative group of units of the finite field Fn of order n. Given a ∈ F
∗
n and

b ∈ Fn, let αa,b denote the permutation in Sym(Fn) defined by αa,b : x → ax + b. The
set {αa,b : a ∈ F

∗
n , b ∈ Fn} forms a group, called the affine linear group of permutations

acting on Fn. This group will be denoted by AGL1(n). For finite sets U and V , and any
permutation α ∈ Sym(U) and β ∈ Sym(V ), the permutation (α, β) ∈ Sym(U × V ) is
defined by (u, v)(α,β) = (uα, vβ), for all (u, v) ∈ U × V . If a H is a subgroup of a group
G, we will denote this by H ≤ G. If H and G are equivalent as permutation groups, we
will denote this by H ≡ G.

A permutation group G acting on a finite set Ω is sharply transitive if for any two
points α, β ∈ Ω, there is exactly one permutation g ∈ G which maps α to β. The group
G is sharply doubly-transitive if G is sharply transitive in its action on ordered pairs of
distinct elements from Ω.

1.2 History and statement of the main results

The following result is actually a corollary to a more general result due to Khosrovshahi
and Tayfeh-Rezaie in [5], which gives necessary conditions on the order of large sets of
t-designs.

Lemma 1.2. [5] Let q be prime and suppose that k or k−1 is equal to bqℓ, where 1 ≤ b ≤
q − 1 for some positive integer ℓ. Let t be a positive integer such that 1 ≤ t < k. If there
exists a t-subset regular q-complementary k-hypergraph of order n, then n ≡ j ( mod qℓ+1)
for some j ∈ {t, t + 1, . . . , k − 1}.

As vertex-transitive q-complementary k-hypergraphs are necessarily 1-subset-regular,
we can use Lemma 1.2 to find basic necessary conditions on their order n in the case where
k or k − 1 is equal to bqℓ for a positive integer b < q. In particular, n ≡ j (mod qℓ+1)
for some j ∈ {1, 2, . . . , k − 1}. However, the main result of this paper in Theorem 1.3
shows that the condition of transitivity implies much stronger necessary conditions on the
order of these structures in the case where n ≡ 1 (mod qℓ+1), and that these necessary
conditions are also sufficient.

We will make use of the following notation. For a positive integer n and a prime p,
let n(p) denote the greatest integer r such that pr divides n.

Theorem 1.3. Let q be prime, let ℓ and b be positive integers such that 1 ≤ b ≤ q − 1,
and suppose that k or k − 1 equals bqℓ. If n ≡ 1 (mod qℓ+1), then there exists a vertex-
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transitive q-complementary k-hypergraph of order n if and only if

pn(p) ≡ 1 (mod qℓ+1) for every prime p. (1)

The necessity of condition (1) has been proved previously in the case where q = 2
by Potočnik and Šajna [12], and their proof technique is used in Section 2 in the proof
of the necessity of this condition in the general case where q is prime. It has also been
shown previously that condition (1) is sufficient in the case where q = 2 [3]. In Section 3,
we present a construction for vertex-transitive q-complementary uniform hypergraphs to
prove that this condition is also sufficient for every odd prime q, which will complete the
proof of Theorem 1.3.

Now consider hypergraphs with a greater level of symmetry, namely those which are
t-fold-transitive for t > 1. Since t-fold-transitive q-complementary k-hypergraphs are t-
subset-regular, Lemma 1.2 gives basic necessary conditions on their order n in the case
where k or k − 1 is equal to bqℓ for an integer b such that 1 ≤ b ≤ q − 1. In particular,
n ≡ j (mod qℓ+1) for some j ∈ {t, t + 1, . . . , k − 1}. However, in Section 2 we will
extend the necessary conditions of Theorem 1.3 to obtain the following theorem, which
gives stronger necessary conditions on the order n of such a hypergraph in the case where
n ≡ t (mod qℓ+1).

Theorem 1.4. Let ℓ be a positive integer, let q be prime, and suppose that k or k − 1
is equal to bqℓ for a positive integer b < q. Let t be a positive integer, t < k, and let
n ≡ t (mod qℓ+1). If there exists a t-fold-transitive q-complementary k-hypergraph of
order n, then

p(n−t+1)(p) ≡ 1 (mod qℓ+1) for every prime p. (2)

In Section 4, we will use group theoretic results due to Burnside and Zassenhaus
to determine the group of automorphisms and q-antimorphisms of a vertex-transitive
q-complementary k-hypergraph of prime order under certain conditions on p, q and k,
and then we will use this information to obtain Algorithm 4.6 for generating all such
hypergraphs.

1.3 Connection to design theory

There is a connection between t-subset-regular hypergraphs and designs. If a t-subset
regular k-hypergraph X of order n is q-complementary, then each of the hypergraphs
X0, X1, . . . , Xq−1 is a t-(n, k, λ) design, as defined in [1], with λ =

(

n−t

k−t

)

/q, and the
set {X0, X1, . . . , Xq−1} is a large set of t-designs [1], denoted by LS[q](t, k, n), in which
the t-designs are isomorphic. If X is vertex-transitive, then the corresponding t-design
is point-transitive. Hence vertex-transitive q-complementary k-hypergraphs of order n
correspond bijectively to large sets of t-designs LS[q](t, k, n) for some t ≥ 1 in which the
t-designs are point-transitive and isomorphic. Large sets of t-designs are very important
structures in combinatorial design theory, and their construction forms a crucial part of
Teirlinck’s remarkable proof in [15] of the existence of t-designs for all t. Large sets of
t-designs also have useful applications in cryptography, which is essential to the security
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of communication networks and, consequently, they have been studied extensively. The
results to date have been compiled efficiently in [1, pp.98-101]. Some sufficient conditions
on the order of large sets in which the t-designs have a common automorphism group have
been obtained but, to date, few large sets of isomorphic t-designs have been constructed.
The results of this paper imply the corresponding results in design theory. In particular,
Theorem 1.3 and Theorem 1.4 imply the following two results, respectively.

Corollary 1.5. Let q be prime, let ℓ and b be positive integers such that 1 ≤ b ≤ q − 1,
and suppose that k or k − 1 equals bqℓ and n ≡ 1 (mod qℓ+1). If

pn(p) ≡ 1 (mod qℓ+1) for every prime p, (3)

then there exists a LS[q](1, k, n) in which the 1-designs are point-transitive and isomor-
phic. Moreover, if the designs in a LS[q](1, k, n) are point-transitive and permuted cycli-
cally by a permutation θ of the point set, then condition ( 3) is also necessary.

Corollary 1.6. Let ℓ be a positive integer, let q be prime, and suppose that k or k − 1
is equal to bqℓ for a positive integer b < q. Let t be a positive integer, t < k, and
let n ≡ t (mod qℓ+1). If there exists a LS[q](t, k, n) in which the t-designs are t-fold-
transitive and permuted cyclically by a permutation θ of the point set, then

p(n−t+1)(p) ≡ 1 (mod qℓ+1) for every prime p.

In this paper, we will use terminology from hypergraph theory, rather than design
theory.

2 Necessary conditions on order

In this section we prove the necessity of condition (1) in Theorem 1.3. First we state some
preliminary results.

We will need to make use of the following lemma which is actually a corollary to a result
in [2]. Lemma 2.1 characterizes the cycle type of the (q, k)-complementing permutations
in Sym(n) which have order equal to a power of q, in the case where q is prime, for certain
values of k and n.

Lemma 2.1. [2] Let q be prime, and suppose that k or k − 1 is equal to bqℓ for some
integer b such that 1 ≤ b ≤ q − 1. Let n ≡ 1 (mod qℓ+1), and let θ ∈ Sym(n) be a
permutation whose order is a power of q. Then θ is a (q, k)-complementing permutation
if and only if θ has exactly one fixed point and every nontrivial orbit of θ has length
divisible by qℓ+1.

We will also require the following useful and well-known counting tool, called the
orbit-stabilizer lemma.

Lemma 2.2. (Orbit-stabilizer [16]) Let G be a permutation group acting on V and let
x be a point in V . Then

|G| = |Gx||x
G|.
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We are now ready to state and prove the necessity of condition (1) of Theorem 1.3.
The proof is essentially the same as Potočnik and Šajna’s proof of this result in [12] for
the case where q = 2, but it is included here for the sake of completeness. It should be
noted that a restricted version of Theorem 2.3 for graphs (k = 2) follows from the work
of Li and Praeger in [7]. Previously, Muzychuk proved this result in the case where k = 2
and q = 2 in [10].

Theorem 2.3. Let q be prime, let ℓ and b be positive integers such that 1 ≤ b ≤ q − 1,
and suppose that k or k − 1 is equal to bqℓ. If n ≡ 1 (mod qℓ+1) and there exists a
vertex-transitive q-complementary k-hypergraph of order n, then

pn(p) ≡ 1 (mod qℓ+1) for every prime p.

Proof: Suppose that X is a vertex-transitive q-complementary k-hypergraph of order
n. If a prime p does not divide n, then n(p) = 0 and so the result holds, so we need only
consider prime divisors of n. Let p be a prime divisor of n, and suppose that pr is the
highest power of p dividing n. We shall prove the theorem by finding a vertex-transitive
q-complementary k-subhypergraph X ′ of X of order pr, and the result will then follow
from Lemma 1.2.

Let d be the largest positive integer such that pd divides |Aut(X)|. The subhyper-
graph X ′ we are looking for will be induced by an appropriate orbit of a Sylow p-subgroup
of Aut(X). In the following four steps, we find an appropriate Sylow p-subgroup P of
Aut(X) and an orbit of P that induces a vertex-transitive q-complementary k-subhyper-
graph X ′ of order pr.

Step 1. Define the set P of all p-subgroups P of Aut(X) for which there exist v ∈ V (X)
and τ ∈ Antq(X) such that vτ = v, τ−1Pτ = P , and Pv ∈ Sylp(Aut(X)v). We will show
that P 6= ∅, and that a maximal element of P is a Sylow p-subgroup of Aut(X) with the
desired properties.

Step 2. We show that P 6= ∅. Choose v ∈ V (X), P ∈ Sylp(Aut(X)v), and σ ∈ Antq(X).
Since Aut(X) is transitive on V (X), there exists h ∈ Aut(X) such that vh = vσ. Then
σ̄ := hσ−1 is a q-antimorphism of X fixing v. This implies that σ̄−1Aut(X)vσ̄ =
Aut(X)v, and thus σ̄−1P σ̄ ∈ Sylp(Aut(X)v). Therefore, there is g ∈ Aut(X)v such
that g−1Pg = σ̄−1P σ̄. Let τ = gσ̄−1. Then vτ = v and τ−1Pτ = P . Moreover,
Pv = P ∈ Sylp(Aut(X)v). Hence P ∈ P and so P 6= ∅.

Step 3. Let P be a maximal element of P with respect to inclusion. We show that
P is a Sylow p-subgroup of Aut(X). Let N be the normalizer of P in Aut(X), and let Q
be the Sylow p-subgroup of N containing P . We will show that Q lies in P, and conse-
quently P = Q since P is a maximal element of P and P ≤ Q ∈ P. It will then follow
that P is a Sylow p-subgroup of its own normalizer in Aut(X), and therefore that P is a
Sylow p-subgroup of Aut(X).

Now we will show that Q ∈ P. Since P ∈ P, by the definition of P, there exists
v ∈ V (X) and τ ∈ Antq(X) such that vτ = v, τ−1Pτ = P , and Pv ∈ Sylp(Aut(X)v).
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Since τ normalizes both Aut(X) and P , it also normalizes N , and hence τ−1Qτ ∈ Sylp(N).
Let g be an element of N such that τ−1Qτ = g−1Qg. Then gτ−1 ∈ Antq(X), and so by
Lemma 1.1(2), |gτ−1| = sqi for a positive integer i and an integer s such that q 6 | s. Now
σ = (gτ−1)s has order a power of q, and so by Lemma 2.1, σ fixes exactly one point of
V (X) and every other orbit of σ has order divisible by qℓ+1. Let u be the unique fixed
point of σ. Now we have a vertex u and a q-antimorphism σ such that uσ = u, and
σ−1Qσ = Q, which are the first two requirements for Q to be in P.

It remains to show that Qu ∈ Sylp(Aut(X)u). Let U be the orbit of N containing
v. That is, U = vN . Observe that τ−1Nτ = N , whence U τ = vNτ = vτN = vN = U .
Since g ∈ N , we also have Ug = U . Hence Uσ = U . Thus the k-hypergraph with vertex
set U and edge set E(X) ∩ U (k) admits N as a transitive group of automorphisms and σ
(restricted to U) as a q-antimorphism. Now by Lemma 1.2, it follows that its order |U |
is congruent to one of 1, 2, . . . , or k − 1 modulo qℓ+1. Moreover, U is a union of orbits
of σ, whose lengths (with the exception of the fixed point u) are all divisible by qℓ+1. It
follows that |U | ≡ 1(mod qℓ+1) and the fixed point u of σ lies in U . Now since u and v lie
in the same orbit of N , Puand Pv are conjugate in N , and so |Pu| = |Pv|. It follows that
Pu ∈ Sylp(Aut(X)u). On the other hand, Qu is a p-subgroup of Aut(X)u and Pu ≤ Qu,
and so it follows that Qu = Pu. Hence Qu ∈ Sylp(Aut(X)u), and we conclude that Q ∈ P.
It now follows that P = Q and P is a Sylow p-subgroup of Aut(X).

Step 4. Now we will show that the orbit of P containing v induces a k-hypergraph
with the required properties. First, since |P | = pd and Pv ∈ Sylp(Aut(X)v), we have
|Pv| = pd−r and thus |vP | = pr by the Orbit-Stabilizer Lemma 2.2. Second, since
(vP )τ = (vτ )P = vP , τ is a q-antimorphism of the k-hypergraph X ′ with vertex set
vP and edge set E(X) ∩ (vP )(k). Also P ≤ Aut(X), so P (restricted to vP ) is contained
in Aut(X ′). Since P certainly acts transitively on its orbit vP , it follows that X ′ is a
vertex-transitive q-complementary k-subhypergraph of X of order pr, as required.

Now that Steps 1-4 are complete, it remains to show that the order pr of X ′ is congruent
to 1 modulo qℓ+1. Observe that τ also lies in Antq(X), and Lemma 1.1(2) guarantees that
τ has order divisible by q. Thus |τ | = sqi for positive integers i and s where q 6 |s, and so
τ s ∈ Antq(X) and τ s has order a power of q. Hence Lemma 2.1 implies that τ s has one
fixed point, and every nontrivial orbit of τ s has length divisible by qℓ+1. By Lemma 1.2,
|V (X ′)| = |vP | is congruent to one of 1, 2, . . . , or k−1 modulo qℓ+1. But since vP is also a
union of orbits of τ s, we must have that pn(p) = pr = |vP | ≡ 1(mod qℓ+1), as claimed.

Next we extend the necessary condition in Theorem 2.3 to prove Theorem 1.4.

Proof of Theorem 1.4: When t = 1 the result follows directly from Theorem 2.3,
so we may assume that t ≥ 2.

Suppose that X = (V, E) is a t-transitive q-complementary k-hypergraph of order
n ≡ t (mod qℓ+1). Let v1, v2, . . . , vt−1 ∈ V , and let τ ∈ Antq(X). Since X is t-transitive,
it is certainly (t−1)-transitive, and so there exists σ ∈ Aut(X) such that vτσ

i = (vτ
i )σ = vi
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for all i ∈ {1, 2, . . . , t − 1}. Hence τσ fixes {v1, . . . , vt−1} pointwise and τσ ∈ Antq(X).
That is, there exists a q-antimorphism θ = τσ of X which fixes every element in the
set {v1, . . . , vt−1}. Hence E0, E1, E2, . . . , Eq−1 partitions V (k), where Ej = Eθj

for j =
0, 1, . . . , q−1. Also, since X is t-transitive, it follows that

⋂t−1
i=1 Aut(X)vi

acts transitively
on V \ {v1, v2, . . . , vt−1}.

Let F denote the set of edges of E which do not contain an element of {v1, v2, . . . , vt−1},
and for each j ∈ {0, 1, 2, . . . , q − 1}, let Fj denote the edges in Ej = Eθj

which do not
contain an element of {v1, v2, . . . , vt−1}. Then every permutation in

⋂t−1
i=1 Aut(X)vi

must
map edges in Fj onto edges in Fj, and the permutation θ ∈ Antq(X) must map edges
in Fj onto edges in Fj+1 ( mod q), for j = 0, 1, . . . , q − 1. Hence F, F θ, F θ2

, . . . , F θq−1

partitions (V \ {v1, v2, . . . , vt−1})
(k), and so θ is a q-antimorphism of the k-hypergraph

X̂ = (V \ {v1, v2, . . . , vt−1}, F ). Thus X̂ is a q-complementary k-hypergraph. Moreover,

t−1
⋂

i=1

Aut(X)vi
≤ Aut(X̂).

Since the group
⋂t−1

i=1 Aut(X)vi
acts transitively on V (X̂) = V \{v1, v2, . . . , vt−1}, it follows

that X̂ is vertex-transitive. The order of X̂ is

|V \ {v1, v2, . . . , vt−1}| = n − t + 1

where n − t + 1 ≡ 1 (mod qℓ+1). Hence Theorem 2.3 implies that

p(n−t+1)(p) ≡ 1 (mod qℓ+1) for every prime p.

3 Constructions

In this section, we prove the sufficiency of condition (1) in Theorem 1.3. We begin with
a construction of vertex-transitive q-complementary uniform hypergraphs of prime power
order. These hypergraphs are ‘Paley-like’ in the sense that the construction uses similar
algebraic tools to those used in the construction of the well known Paley graphs in [14],
the generalized Paley graphs constructed in [8] and studied in [9], the Peisert graphs in
[11], and the Paley uniform hypergraphs in [3, 6, 12].

If F is a finite field and a1, a2, . . . , ak ∈ F, the Van der Monde determinant of a1, a2, . . .,
ak is defined as V M(a1, . . . , ak) =

∏

i>j(ai − aj).

Construction 3.1. Paley-like uniform hypergraph
Let q be an odd prime. Let k be an integer, and let n be a prime power such that
n ≡ 1(mod qℓ+1), where ℓ = max{k(q), (k − 1)(q)}. Let r be a divisor of (n− 1)/qℓ+1. Let
Fn be the field of order n, and let ω be a generator of the multiplicative group F

∗
n. Let S

denote the group of squares in F
∗
n, and let

c =

{

gcd
(

n − 1, r
(

k

2

))

, n even

gcd
(

n−1
2

, r
(

k

2

))

, n odd
.
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For j = 0, 1, . . . , qc − 1, let Fj denote the coset ω2j
〈

ω2qr(k

2)
〉

in S. Finally, define Pn,k,r

to be the k-hypergraph with vertex set

V (Pn,k,r) := Fn,

and edge set

E(Pn,k,r) := {{a1, . . . , ak} ∈ F
(k)
n : V M2(a1, . . . , ak) ∈ F0 ∪ · · · ∪ Fc−1}.

For a ∈ F
∗
n and b ∈ Fn, recall that αa,b : Fn → Fn denotes the bijection defined by

xαa,b := ax + b for all x ∈ Fn.

Lemma 3.2. Let X = Pn,k,r denote the Paley-like k-hypergraph defined in Construc-
tion 3.1.

(1) Let m′ = gcd

(

m ∈ {1, 2, . . . , p − 1} : m

(

k

2

)

= sc where q 6 |s

)

. Then

(a) (Aut(X) ∪ Antq(X)) ∩ AGL1(n) = 〈αωm′
,0, α1,1〉

(b) Aut(X) ∩ AGL1(n) = 〈αωm′q,0, α1,1〉.

(2) (a) 〈αωqr ,0, α1,1〉 ≤ Aut(X)

(b) 〈αωr ,0, α1,1〉 ≤ Aut(X) ∪ Antq(X)

(3) X is vertex-transitive and q-complementary.

Proof: If n is odd, then n − 1 is even and so |S| = (n − 1)/2. Our choice of ℓ and r
guarantee that the highest power of q that divides

(

k

2

)

is ℓ, while the highest power of q
that divides (n − 1)/r is at least ℓ + 1. This implies that

[

〈

ω2
〉

:
〈

ω2rq(k

2)
〉]

= gcd

(

n − 1

2
, rq

(

k

2

))

= q gcd

(

n − 1

2
, r

(

k

2

))

= qc.

Similarly, if n is even, then n− 1 is odd, |S| = n− 1, and the highest power of q dividing
(n − 1)/r is at least ℓ + 1. This implies that

[

〈

ω2
〉

:
〈

ω2rq(k

2)
〉]

= gcd

(

n − 1, rq

(

k

2

))

= q gcd

(

n − 1, r

(

k

2

))

= qc.

Since S = 〈ω2〉 whether n is even or odd, we have shown that, in both cases, the number

of cosets of
〈

ω2rq(k
2)

〉

in S = 〈ω2〉 is qc, and so {Fj}
qc−1
j=0 partitions S. Moreover, ω2sFj =

Fj+s( mod qc) for any positive integer s.
For each i = 0, 1, . . . , q − 1, let

Ai = Fic ∪ Fic+1 ∪ Fic+2 ∪ · · · ∪ Fic+(c−1),
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and let
Ei = {{a1, a2, . . . , ak} ∈ F

(k)
n : V M2(a1, a2, . . . , ak) ∈ Ai}.

Then {Ai}
q−1
i=0 partitions S, and ω2scAi = Ai+s( mod q) for any integer s. Also, {Ei}

q−1
i=0

partitions F
(k)
n , and E = E(X) = E0. Observe that for any k-subset {a1, . . . ak} ∈ F

(k)
n

and any b ∈ Fn, we have

V M2(a1 + b, a2 + b, . . . , ak + b) = V M2(a1, a2, . . . , ak).

It follows that α1,b ∈ Aut(X) for all b ∈ Fn, and so 〈α1,1〉 ≤ Aut(X).
Now we will find some more automorphisms and some q-antimorphisms of X.

(1) If m is an integer such that m
(

k

2

)

= sc for an integer s such that q 6 |s, then

V M2(ωma1, . . . , ω
mak) = ω2m(k

2)V M2(a1, . . . , ak) = ω2scV M2(a1, . . . , ak).

Thus αωm,0 maps each k-subset of Fn with square Van der Monde determinant in Ai

to a k-subset of Fn with square Van der Monde determinant in Ai+s( mod q) for each
i = 0, 1, . . . , q − 1. Hence the permutation θ = αωm,0 induces a mapping from Ei to

Ei+s( mod q) for each i. Since q does not divide s and q is prime, we have {Eθi

}q−1
i=0 =

{Ei+s( mod q)}
q−1
i=0 = {Ei}

q−1
i=0 , which partitions F

(k)
n . Thus θ is a q-antimorphism of X.

Now Lemma 1.1(1) implies that

αωmi,0 ∈ Antq(X) for all i 6≡ 0 (mod q),

and
αωmi,0 ∈ Aut(X) for all i ≡ 0 (mod q).

Now the composition of two automorphisms of X is again an automorphism of X,
and the composition of a q-antimorphism of X with an automorphism of X is a
q-antimorphism of X. Since 〈α1,1〉 ≤ Aut(X), it follows that

〈αωm,0, α1,1〉 ≤ Aut(X) ∪ Antq(X) and 〈αωqm,0, α1,1〉 ≤ Aut(X)

for all m ∈ M . But 〈ωm : m ∈ M〉 is a cyclic group generated by ωm′
, where

m′ = gcd(m : m ∈ M). Hence

〈αωm′
,0, α1,1〉 ≤ Aut(X) ∪ Antq(X) and 〈αωqm′

,0, α1,1〉 ≤ Aut(X).

Next we show that if αa,b ∈ Aut(X) ∪ Antq(X), then a ∈ 〈ωm′
〉. Suppose that

a 6∈ 〈ωm′
〉. Now 〈ωm〉 ⊆ 〈ωm′

〉 for all m ∈ M . Hence we must have a = ωz for an
integer z 6∈ M . Observe that

V M2(a
αa,b

1 , . . . , a
αa,b

k ) = V M2(ωza1 + b, . . . , ωzak + b)

= ω2z(k
2)V M2(a1, . . . , ak).
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Since z 6∈ M , z
(

k

2

)

is not a multiple of c, and so αa,b must not induce a permutation of
the sets E0, E1, . . . , Eq−1. Thus αa,b is neither an automorphism nor a q-antimorphism
of X. Hence if a 6∈ 〈ωm′

〉, then αa,b 6∈ Aut(X) ∪ Antq(X). We conclude that

(Aut(X) ∪ Antq(X)) ∩ AGL1(n) = 〈αωm′
,0, α1,1〉

and
Aut(X) ∩ AGL1(n) = 〈αωqm′

,0, α1,1〉,

as claimed.

(2) The highest power of q dividing
(

k

2

)

is ℓ, and qℓ divides (n − 1)/r when n is odd,

and it divides (n − 1)/2r when n is even. Since c = gcd
(

|S|, r
(

k

2

))

, this implies that

r
(

k

2

)

= sc for a positive integer s which is not divisible by q. Thus (2) follows directly
from (1).

(3) Since the subgroup 〈α1,1〉 of Aut(X) acts transitively on Fn = V (X), it follows that
X is vertex-transitive, and since Antq(X) 6= ∅, the k-hypergraph X is q-complement-
ary.

In Section 4.3, we will use some group theoretic results to find the complete set of
automorphisms and q-antimorphisms of the Paley-like k-hypergraphs of Construction 3.1
which have prime order.

Lemma 3.2 shows that condition (1) of Theorem 1.3 is sufficient when n is a prime
power. We now generalize Construction 3.1 and prove that this condition is sufficient for
all n.

Construction 3.3. Generalized Paley-like uniform hypergraph
Let q be an odd prime, let k be an integer, and let n be a positive integer such that

pn(p) ≡ 1 (mod qℓ+1) for every prime p,

where ℓ is the largest positive integer such that qℓ divides a positive integer m with m ≤ k.
Let n = pα1

1 pα2
2 · · · pαt

t be the unique prime factorization of n, where pi is prime, αi ≥ 1
and p1 < p2 < . . . < pt. For each i ∈ {1, 2, . . . , t}, let ni = pαi

i , let ri be a divisor of the
integer (ni − 1)/qℓ+1, and let r = (r1, r2, . . . , rt). Let Fni

denote the field of order ni. Let

V = Fn1 × Fn2 × . . . × Fnt
.

Define a mapping ζ : V (k) → Z2 by

ζ({x1, x2, . . . , xk}) =



















0 if {x1j , x2j , . . . , xkj} ∈ E(Pnj ,m,rj
),

where j = min{1 ≤ i ≤ t : |{x1i, x2i, . . . , xki}| > 1}

and m = |{x1j, x2j , . . . , xkj}|.

1 otherwise.

Now define Xn,k,r to be the k-hypergraph with vertex set V and edge set

E = {{x1, x2, . . . , xk} ∈ V (k) : ζ({x1, x2, . . . , xk}) = 0}.
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Note that when t = 1 and n = n1 = pα1
1 is a prime power congruent to 1 modulo qℓ+1,

the k-hypergraph Xn,k,r of Construction 3.3 is the same as the Paley-like k-hypergraph
Pn1,k,r1 given by Construction 3.1.

Lemma 3.4. The k-hypergraph Xn,k,r defined in Construction 3.3 is vertex-transitive and
q-complementary.

Proof: Since pn(p) ≡ 1 (mod qℓ+1) for every prime p, it follows that for each i, ni ≡
1 (mod qℓ+1), and hence ni ≡ 1 (mod qb+1) for all b ≤ ℓ. Now by definition, ℓ =
max{ℓm : 1 < m ≤ k} where ℓm = max{m(q), (m − 1)(q)}. Hence ni ≡ 1 (mod qℓm+1) for
1 < m ≤ k, and so Pni,m,ri

is well defined for 1 ≤ i ≤ t and 1 < m ≤ k. Thus the edges
of Xn,k,r are well defined.

Let F
∗
ni

denote the (cyclic) multiplicative group of nonzero elements in Fni
, and let ωi

be a generator of F
∗
ni

. For 1 ≤ i ≤ t, define a bijection φi : Fni
→ Fni

by xφi := ωri

i x for all
x ∈ Fni

. Then by Lemma 3.2(3), φi ∈ Antq(Pni,m,ri
) for 1 < m ≤ k, so it follows from the

definition of Xn,k,r that (φ1, φ2, . . . , φt) ∈ Antq(Xn,k,r). Hence Xn,k,r is q-complementary.
Next we verify that Xn,k,r is vertex-transitive. For 1 ≤ i ≤ t, define a bijection

αi : Fni
→ Fni

by xαi := x + 1, for all x ∈ Fni
. Then for each i, the mapping αi preserves

the Van der Monde determinant of any m pairwise distinct elements in Fni
, and hence αi

is an automorphism of Pni,m,ri
, for 1 < m ≤ k. Consequently

〈α1〉 × 〈α2〉 × · · · × 〈αt〉 ≤ Aut(Xn,k,r).

Since 〈α1〉 × 〈α2〉 × · · · × 〈αt〉 acts transitively on V = Fn1 × Fn2 × · · · × Fnt
, we conclude

that Xn,k,r is vertex-transitive.

Proof of Theorem 1.3: The necessity of condition (1) follows directly from Theo-
rem 2.3. The sufficiency of condition (1) was proved for the prime q = 2 in [3], so we may
assume that q is an odd prime. Since k = bqℓ or k = bqℓ + 1 for some positive integer
b < q, for any integer m such that 1 < m ≤ k we have ℓ ≥ m(q). Thus k, ℓ, and n satisfy
the hypotheses of Construction 3.3, and so the sufficiency of condition (1) follows from
Construction 3.3 and Lemma 3.4 whenever q is an odd prime.

4 Vertex-transitive q-complementary hypergraphs of

prime order

4.1 Preliminaries - some group theory

In Section 4.3, we will characterize the vertex-transitive q-complementary k-hypergraphs
of prime order p in the cases where k or k − 1 is equal to bqℓ for a positive integer b < q,
and p ≡ 1 (mod qℓ+1). To do this, we will require some results from group theory.

The following two theorems due to Burnside [16] and Zassenhaus [17] restrict the
automorphism group of a vertex-transitive k-hypergraph of prime order.

the electronic journal of combinatorics 18 (2011), #P100 12



Theorem 4.1. (Burnside [16]) If G is a transitive permutation group acting on a prime
number p of elements, then either G is doubly-transitive or

G ≡ {αa,b : a ∈ H ≤ F
∗
p , b ∈ Fp}.

Theorem 4.2. (Zassenhaus [17, 4]) A sharply doubly-transitive permutation group of
prime degree p is equivalent as a permutation group to AGL1(p).

4.2 Generating q-complementary hypergraphs

Given a (q, k)-complementing permutation θ, we may generate all of the q-complementary
k-hypergraphs for which θ is a q-antimorphism in the following way. Let c0, c1, . . . , cq−1

be q colors and suppose we have the complete set of orbits of θ on V (k), each of the form
A, Aθ, Aθ2

, . . . . Within each of these orbits, color the elements of the form Aθs

with color
ci if and only if s ≡ i (mod q). Suppose there are m orbits O1,O2, . . . ,Om of θ on V (k).
If we fix a color cij in the j-th orbit and then choose elements of V (k) of color cij from orbit
Oj for an edge set E, for each j = 1, 2, . . . , m, then X = (V, E) is q-complementary with
q-antimorphism θ. There are qm choices for the list of colors ci1, ci2, . . . , cim, and hence
we can use this method to generate the set of all qm q-complementary k-hypergraphs for
which θ is a q-antimorphism. This set is called the θ-switching class of q-complementary
k-hypergraphs on V , since we can obtain one from another by switching the edges of one
colour for another colour in each orbit in some subset of the orbits of θ on V (k), and two
hypergraphs in this θ-switching class are called θ-switching equivalent.

4.3 A characterization

Now we are ready to characterize the structure of the vertex-transitive q-complementary
k-hypergraphs of odd prime order p in the cases where q is an odd prime, k = bqℓ or
k = bqℓ + 1 for a positive integer b < q, and p ≡ 1 (mod qℓ+1). We will show that these
hypergraphs are θ-switching equivalent to a Paley-like hypergraph of Construction 3.1,
for some permutation θ. We begin by determining the set of possible automorphisms and
q-antimorphisms of these hypergraphs.

Lemma 4.3. Let q be an odd prime, let ℓ and b be positive integers with b < q, and
suppose that k or k − 1 is equal to bqℓ. If X is a vertex-transitive q-complementary k-
hypergraph of odd prime order p ≡ 1 (mod qℓ+1), then Aut(X) ∪ Antq(X) is equivalent
as a permutation group to a subgroup of AGL1(p). That is

Aut(X) ∪ Antq(X) ≡ {αa,b : a ∈ G ≤ F
∗
p , b ∈ Fp}.

Proof: Since X is vertex-transitive, Aut(X) and Aut(X)∪Antq(X) are both transitive
permutation groups acting on a prime number of elements. Since p ≡ 1 (mod qℓ+1),
Lemma 1.2 implies that X is not doubly-transitive, and so by Burnside’s Theorem,

Aut(X) ≡ {αa,b : a ∈ H ≤ F
∗
p , b ∈ Fp} (4)
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for some subgroup H of F
∗
p. Now since AGL1(p) is doubly-transitive and X is not doubly-

transitive, Aut(X) 6≡ AGL1(p). Hence H is a proper subgroup of F
∗
p in Equation (4).

Hence |H| < p − 1, and so

|Aut(X)| = p|H| =
p(p − 1)

d
for an integer d ≥ 2. (5)

Since Aut(X) is an index-q subgroup of Aut(X) ∪ Antq(X), we also have

|Aut(X) ∪ Antq(X)| = q|Aut(X)| =
q

d
p(p − 1). (6)

If Aut(X) ∪ Antq(X) is not doubly-transitive, then the result follows directly from
Burnside’s Theorem 4.1. On the other hand, if Aut(X) ∪ Antq(X) is doubly-transitive,
then the Orbit-Stabilizer Lemma guarantees that p(p − 1) divides |Aut(X) ∪ Antq(X)|.
Hence |Aut(X) ∪ Antq(X)| = mp(p − 1) for a positive integer m, and (6) implies that
m = q

d
. If the integer d in (5) satisfies 2 ≤ d < q, then as q is prime, d 6 | q, con-

tradicting the fact that m is an integer. We conclude that d ≥ q. Now the fact that
1 ≤ m = q

d
implies that d = q and m = 1. Hence |Aut(X) ∪ Antq(X)| = p(p − 1), and so

Aut(X) ∪ Antq(X) must be sharply doubly-transitive. Hence Zassenhaus’ Theorem 4.2
implies that Aut(X) ∪ Antq(X) ≡ AGL1(p).

In the next lemma, we find the complete set of automorphisms and q-antimorphisms
of the Paley-like k-hypergraphs of Construction 3.1 which have prime order.

Lemma 4.4. Let q be an odd prime, let b and ℓ be positive integers such that b < q, and
suppose that k or k − 1 is equal to bqℓ. Let p be a prime such that p ≡ 1 (mod qℓ+1).
Let r be a divisor of p−1

qℓ+1 , and let X = Pp,k,r be the Paley-like k-hypergraph defined in

Construction 3.1. Let c = gcd
(

p−1
2

, r
(

k

2

))

. Then

Aut(X) ∪ Antq(X) = 〈αωm′
,0, α1,1〉 and Aut(X) = 〈αωqm′

,0, α1,1〉,

for m′ = gcd

(

m ∈ {1, 2, . . . , p − 1} : m

(

k

2

)

= sc where q 6 |s

)

.

Proof: Since p is prime, Lemma 4.3 implies that

Aut(X) ∪ Antq(X) ≤ AGL1(p),

while Lemma 3.2 implies that

(Aut(X) ∪ Antq(X)) ∩ AGL1(p) = 〈αωm′
,0, α1,1〉

and
Aut(X) ∩ AGL1(p) = 〈αωqm′

,0, α1,1〉,

so the result follows.
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Theorem 4.5.
Let q be an odd prime, and suppose X = (V, E) is a vertex-transitive q-complementary
k-hypergraph of prime order p, where k or k − 1 is equal to bqℓ for a positive integer
b < q, and p ≡ 1 (mod qℓ+1). Let ω be a generator of Fp. Then X is isomorphic
to a k-hypergraph Y with vertex set Fp for which Aut(Y ) = 〈αωqr ,0, α1,1〉 ≤ Aut(Pp,k,r)
and Aut(Y ) ∪ Antq(Y ) = 〈αωr,0, α1,1〉 ≤ Aut(Pp,k,r) ∪ Antq(Pp,k,r), where r = p(p −
1)/|Aut(X) ∪ Antq(X)|. Consequently Y is θ-switching equivalent to Pp,k,r for all θ ∈
{αωmr ,b : q 6 | m, b ∈ Fp}.

Proof: By Lemma 4.3, there is ϕ : V → Fp such that Y = (ϕ(V ), ϕ(E)) satisfies

Aut(Y ) ∪ Antq(Y ) = {αa,b : a ∈ G ≤ F
∗
p , b ∈ Fp},

and Aut(Y ) is an index-q subgroup of this group, so

Aut(Y ) = {αa,b : a ∈ K ≤ F
∗
p , b ∈ Fp},

where K is an index-q subgroup of G. Since

r =
p(p − 1)

|Aut(Y ) ∪ Antq(Y )|
=

p(p − 1)

|Aut(X) ∪ Antq(X)|

and ω is a generator of F
∗
p, it follows that the set G of multiplicative permutations in

Aut(Y ) ∪ Antq(Y ) is 〈ωr〉, and the set K of multiplicative automorphisms of Y is 〈ωqr〉.

If we can verify that r is a divisor of (p−1)
qℓ+1 , then Pp,k,r exists and Lemma 3.2(4) guaran-

tees that Aut(Y ) = 〈αωqr ,0, α1,1〉 ≤ Aut(Pp,k,r) and Aut(Y ) ∪ Antq(Y ) = 〈αωr ,0, α1,1〉 ≤
Aut(Pp,k,r) ∪ Antq(Pp,k,r), as claimed.

It remains to show that r = p(p−1)
|Aut(X)∪Antq(X)|

is a divisor of (p − 1)/qℓ+1. First we will

show that both of the integers p and qℓ divide |Aut(Y )|. We have Aut(Y ) = 〈αωqr ,0, α1,1〉,
which contains the subgroup 〈α1,1〉 of order p, and so p divides |Aut(Y )|. Now by
Lemma 1.1(3), Y has a q-antimorphism θ with order a power of q, and Lemma 2.1 guar-
antees that θ has one fixed point and every nontrivial orbit of θ has length divisible by
qℓ+1. Thus |θ| is divisible by qℓ+1, and so |Aut(Y ) ∪ Antq(Y )| = q|Aut(Y )| is divisible by
qℓ+1. It follows that qℓ divides |Aut(Y )|. Since p ≡ 1 (mod qℓ+1), the primes p and q are
not equal, and so pqℓ divides |Aut(X)|.

Now observe that

r =
p(p − 1)

|Aut(X) ∪ Antq(X)|
=

p(p − 1)

|Aut(Y ) ∪ Antq(Y )|
=

p(p − 1)qℓ+1

q|Aut(Y )|qℓ+1

which implies that
p − 1

qℓ+1
= r

(

|Aut(Y )|

pqℓ

)

. (7)

Since pqℓ divides |Aut(X)|, the quotient |Aut(Y )|
pqℓ is an integer. Hence Equation (7) implies

that r divides the integer p−1
qℓ+1 . This completes the proof.
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4.4 Generating transitive q-complementary k-hypergraphs

In this section, we present an algorithm for generating all vertex-transitive q-complement-
ary k-hypergraphs of prime order p ≡ 1 (mod qℓ+1), whenever q is an odd prime and k or
k − 1 is equal to bqℓ for a positive integer b < q. We use the fact that such hypergraphs
are αωr ,0-switching equivalent to the Paley-like hypergraph Pp,k,r, for some r.

Algorithm 4.6.
Let q be an odd prime, let ℓ and b be positive integers with b < q, and suppose that k or
k − 1 is equal to bqℓ. Let p be a prime such that p ≡ 1 (mod qℓ+1). Let ω be a generator
of F

∗
p. Let c0, c1, c2, . . . , cq−1 denote q colors. In Step 1(a)-(b) we will color the elements

of F
(k)
p with these q colors.

1. Choose a divisor r of (p− 1)/2ℓ+1, let Pp,k,r be the Paley-like k-hypergraph of order
p, and let θ = αωr ,0.

(a) Take an uncolored edge A ∈ E(Pp,k,r) In Steps (i), (ii) and (iii) below, we will

find and color the orbit O = A〈αωr,0,α1,1〉 of the group 〈αωr ,0, α1,1〉 on F
(k)
p which

contains A.

(i) Create a sequence of elements of F
(k)
p

A, Aθ, Aθ2

, Aθ3

, . . . , Aθ|θ|−1

. (8)

For each i = 0, 1, . . . , q − 1, color the elements of the form Aθs

with color
ci if and only if s ≡ i (mod q).

(ii) Repeat Step 1(a)(i) but replace A with the first element of A〈αωr,0,α1,1〉

which is uncolored.

(iii) Repeat Step 1(a)(ii) until all elements of A〈αωr,0,α1,1〉 have been colored.

(b) Repeat Step 1(a) until all edges of Pp,k,r have been colored. (Then all edges of

F
(k)
p have been colored.)

(c) Let m be the number of orbits of the group 〈αωr,0, α1,1〉 on F
(k)
p created in

Steps 1(a) and 1(b), and choose an ordering OA1 ,OA2, . . . ,OAm
of these orbits,

where Aj ∈ E(Pp,k,r) for j = 1, 2, . . . , m.

(i) Choose a vector v ∈ Z
m
q , and let Xr

v be the k-hypergraph with vertex
set Fp and edge set E, where an edge e ∈ OAj

is in E if and only if e is
colored ci and vj = i, for some i. (Note that Pp,k,r = Xr

0
.)

(ii) Repeat Step 2(c)(i) for all vectors v ∈ Z
m
q .

2. Repeat Step 1 for all divisors r of (p − 1)/qℓ+1.

Theorem 4.7. Let q be an odd prime, let b and ℓ be positive integers such that b < q, and
suppose that k = bqℓ or k = bqℓ + 1. Let p be a prime such that p ≡ 1 (mod qℓ+1), and
let X be a k-hypergraph of order p. Then X is a vertex-transitive and q-complementary
if and only if X is isomorphic to a k-hypergraph generated by Algorithm 4.6.
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Proof: (⇒) Suppose that X is a vertex transitive self-complementary k-hypergraph
of order p. By Theorem 4.5, X is isomorphic to a k-hypergraph Y with vertex set Fp

for which Aut(Y ) = 〈αωqr,0, α1,1〉 ≤ Aut(Pp,k,r) and Aut(Y ) ∪ Antq(Y ) = 〈αωr ,0, α1,1〉 ≤
Aut(Pp,k,r)∪Antq(Pp,k,r), where r = p(p− 1)/|Aut(X)∪Ant(X)|. We will obtain Y from
Pp,k,r using Algorithm 4.6.

Since αωr ,0 is a q-antimorphism of Y , Y is αωr ,0-switching equivalent to Pp,k,r. Since
Pp,k,r = Xr

0
, E(Pp,k,r) consists of all of the edges of color c0. Hence Y can be obtained

from Pp,k,r by exchanging the edges of color c0 for edges of another color in each orbit
in some subset of the orbits of αωr ,0 on V (k). Moreover, since Aut(Y ) = 〈αωqr ,0, α1,1〉,
for each i ∈ {0, 1, . . . , q − 1} the set of orbits from which we chose edges of color ci for

E(Y ) must also be equal to a union of orbits of 〈αωqr ,0, α1,1〉 on F
(k)
p . This implies that

Y can be obtained from Pp,k,r by exchanging edges of color c0 for edges of another color,
say cij , in each orbit OAj

in a subset S of the orbits OA1 ,OA2, . . . ,OAm
constructed in

Steps 1(a)-(b) of Algorithm 4.6. Let v ∈ Z
m
q be the vector such that vj = i if and only if

Aj ∈ S and the edges of E(Y )∩OAj
have color ci. Then Y = Xr

v . Since X ∼= Y , we have
X ∼= Xr

v , and so X is isomorphic to a k-hypergraph generated by Algorithm 4.6.

(⇐) Suppose that X is a k-hypergraph of order p that is isomorphic to a k-hyper-
graph generated by Algorithm 4.6. We will show that X is vertex transitive and q-
complementary. Now X ∼= Xr

v = (V, E) for some divisor r of (p − 1)/qℓ+1 and some

v ∈ Z
m
q , where m is the number of orbits of the group 〈αωr ,0, α1,1〉 on F

(k)
p . The k-

hypergraph Xr
v is constructed by choosing the edges of color cvj

from each of the orbits
OAj

in {OA1,OA2 , . . . ,OAm
}. Our coloring method in Step 1(a) guarantees that, for

each i = 1, 2, . . . , q − 1, the set of edges of color ci in the orbit OAj
constitutes an orbit of

〈αωqr ,0, α1,1〉 on F
(k)
p , for each j ∈ {1, 2, . . . , m}. This implies that 〈αωqr ,0, α1,1〉 ≤ Aut(Xr

v ).
Since 〈α1,1〉 ≤ 〈αωqr ,0, α1,1〉, and 〈α1,1〉 acts transitively on Fp, we conclude that Aut(Xr

v)
acts transitively on V (Xr

v) = Fp, and so Xr
v is vertex-transitive.

Now let Ei,j denote the set of edges of color ci in the orbit OAj
. Our coloring method

in Step 1(a) guarantees that {Eθi

i,j}
q−1
i=0 partitions the edges of OAj

, where θ = αωr ,0,

for each j ∈ {1, 2, . . . , m}. Consequently {Eθi

}q−1
i=0 partitions V (k). This implies that

αω,0 ∈ Antq(X
r
v), and so Xr

v is q-complementary.
Hence Xr

v is a vertex-transitive q-complementary k-hypergraph of order p, and since
X ∼= Xr

v , so is X.

5 Open problem

When t = q = 2, Theorem 1.4 gives necessary conditions on the order of a doubly-
transitive self-complementary k-hypergraph in the cases where k = 2ℓ or k = 2ℓ + 1.

Corollary 5.1. Let ℓ be a positive integer, let k = 2ℓ or k = 2ℓ + 1, and suppose n ≡
2 ( mod 2ℓ+1). If there exists a doubly-transitive self-complementary k-hypergraph of order
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n, then
p(n−1)(p) ≡ 1 (mod 2ℓ+1) for every prime p.

In [13], Potočnik and Šajna gave a construction for doubly-transitive self-complement-
ary 3-hypergraphs which show that the necessary conditions of Corollary 5.1 are sufficient
in the case where k = 3 and n is a prime power. This leads the author to pose the following
open problem.

Problem 5.2. Determine the values of t, q and k for which condition ( 2) of Theorem 1.4
is sufficient for the existence of a t-fold-transitive q-complementary k-hypergraph.

The 3-hypergraphs of prime power order constructed in [13] are the only known doubly-
transitive self-complementary 3-hypergraphs. It would be interesting to know whether any
others exist.
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[13] P. Potočnik and M. Šajna, Self-complementary two-graphs and almost self-comple-
mentary double covers, European J. Combin. 28 (2007), 1561-1574.

[14] S.B. Rao, On regular and strongly-regular self-complementary graphs, Discrete Math.
54 (1985), 73-82.

[15] L. Teirlinck, Non-trivial t-designs without repeated blocks exist for all t. Discrete
Math., 65 (1987), 301-311.

[16] H. Wielandt, Finite Permutation Groups. Academic Press, New York (1964).

[17] H. Zassenhaus, Über endliche Fastkörper. Abh. Math. Sem. Univ. Hamburg 11 (1936),
187-220.

the electronic journal of combinatorics 18 (2011), #P100 19


