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Abstract

For a group G and X a subset of G the commuting graph of G on X, denoted by
C(G,X), is the graph whose vertex set is X with x, y ∈ X joined by an edge if
x 6= y and x and y commute. If the elements in X are involutions, then C(G,X)
is called a commuting involution graph. This paper studies C(G,X) when G is
a 3-dimensional projective special unitary group and X a G-conjugacy class of
involutions, determining the diameters and structure of the discs of these graphs.

1 Introduction

For a group G and a subset X of G, we define the commuting graph, denoted C(G, X), to
be the graph whose vertex set is X with two distinct vertices x, y ∈ X joined by an edge if
and only if xy = yx. Commuting graphs first came to prominence in the groundbreaking
paper of Brauer and Fowler [6], famous for containing a proof that only finitely many
finite simple groups can contain a given involution centralizer. The commuting graphs
employed in this paper had X = G \ {1} – such graphs have played a vital role in recent
results relating to the Margulis–Platanov conjecture (see [11]). When X is a conjugacy
class of involutions, we call C(G, X) a commuting involution graph. This special case
demonstrated its importance in the (mostly unpublished) work of Fischer [9], which led
to the construction of three new sporadic simple groups. Aschbacher [1] also showed
a necessary condition on a commuting involution graph for the presence of a strongly
embedded subgroup in G. The detailed study of commuting involution graphs came to
the fore in 2003 with the work of Bates, Bundy, Hart (nèe Perkins) and Rowley, which
explored commuting involution graphs for G a symmetric group, or more generally a fi-
nite Coxeter group, a special linear group, or a sporadic simple group ([2], [3], [4], [5]).
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Recently some of the remaining sporadic simple groups were addressed in Taylor [12] and
Wright [14]. When G is a 4-dimensional projective symplectic group, the structure of
C(G, X) was determined in [8].
We continue the study of C(G, X) when G is a finite simple group of Lie type of rank 1
and X is a G-conjugacy class of involutions. The case when G is a 2-dimensional projec-
tive special linear group was addressed in [4]. The well-known structures of U3(2

a) and
Sz(22a+1) where a ∈ N quickly reveal the commuting involution graphs are disconnected
with the connected components are cliques. So the 3-dimensional projective unitary
groups of odd characteristic and the Ree groups of characteristic 3 remain to be studied.
This paper concentrates on the 3-dimensional unitary groups and from now on, we set
q = pa for p an odd prime and a ∈ N. Let H = SU3(q) and let X be the H-conjugacy
class of involutions. For t ∈ X we define the ith disc to be ∆i(t) = {x ∈ X| d(t, x) = i}
where d is the standard distance metric on C(H, X). Our main theorem is as follows.

Theorem 1.1 C(H, X) is connected of diameter 3, with disc sizes

|∆1(t)| = q(q − 1);

|∆2(t)| = q(q − 2)(q2 − 1); and

|∆3(t)| = (q + 1)(q2 − 1).

We remark that for G = H/Z(H) ∼= U3(q) and XG = XZ(H)/Z(H), the graphs C(H, X)
and C(G, XG) are isomorphic. The proof of Theorem 1.1 is constructive, determining the
graph structure as one “steps around the graph”. With an appropriately chosen t, Lemma
2.3 shows that one can identify which disc a given involution x ∈ X lies in, by inspection
of its top-left entry. It is interesting to note that the third disc is a single CH(t)-orbit
if and only if q 6≡ 5 (mod 6), otherwise it splits into three CH(t)-orbits. The collapsed
adjacency graphs for both cases are given in [7]. Our group theoretic notation is standard,
as given in [10].

2 The Structure of C(G, X)

This section gives a proof of Theorem 1.1. Let V be the unitary GF (q2)H-module with
basis {ei} and define the unitary form on V by (ei, ej) = δij. Hence the Gram matrix of
this form is the identity matrix, and H can be explicitly described as

H =
{

A ∈ SL3(q
2)

∣

∣

∣
A

T
A = I3

}

∼= SU3(q).

For α ∈ GF (q2) we set α = αq, and (aij) = (aij). For a matrix g, define gij to be its
(i, j)th entry. There is only one class of involutions in H , which we denote by X, and fix

a representative t =





1 0 0
0 −1 0
0 0 −1



.

the electronic journal of combinatorics 18 (2011), #P103 2



Lemma 2.1 (i) CH(t) =



















(ad − bc)−1

a b
c d





∣

∣

∣

∣

∣

∣

∣

∣

a, b, c, d ∈ GF (q2)

aa + cc = bb + dd = 1
ad − bc 6= 0

ab + cd = ba + dc = 0















∼= GU2(q).

(ii) |X| = q2(q2 − q + 1).

(iii) |∆1(t)| = q(q − 1).

(iv) If x ∈ ∆1(t), then |∆1(t) ∩ ∆1(x)| = 1.

Proof Clearly

CH(t) =

{(

det A−1

A

)∣

∣

∣

∣

A ∈ GU2(q)

}

∼= GU2(q)

proving (i).
Part (ii) follows from the fact that |H| = q3(q3+1)(q2−1) and |GU2(q)| = q(q+1)(q2−1).

Let x =

(

det A−1

A

)

∈ CH(t) ∩ X. Using a result of Wall [13], there are two classes of

involutions in GU2(q), represented by −I2 and

(

−1 0
0 1

)

. If A = −I2, then x = t. Assume

then that A is the latter choice, giving ∆1(t) = xCG(H). By a routine calculation as in
part (i), it is easy to see that

CH(x) =

{(

A
det A−1

)∣

∣

∣

∣

A ∈ GU2(q)

}

,

and so

CH(〈t, x〉) =











a 0 0
0 b 0
0 0 (ab)−1





∣

∣

∣

∣

∣

∣

a, b ∈ GF (q2), aa = bb = 1







with |CH(〈t, x〉)| = (q + 1)2. Hence |∆1(t)| = |CH(t)|
|CH(〈t,x〉)|

= q(q − 1), proving (iii), while (iv)

follows immediately from the structure of CH(〈t, x〉). �

Henceforth, we set x =





−1 0 0
0 −1 0
0 0 1



 ∈ ∆1(t).

Lemma 2.2 (i) Let g, h ∈ ∆2(t). If g11 6= h11, then g and h are not CH(t)-conjugate.

(ii) ∆2(t) ∩ ∆1(x) =











a b

b −a
−1





∣

∣

∣

∣

∣

∣

bb = 1 − a2, a ∈ GF (q) \ {±1}







.

(iii) For each a ∈ GF (q) \ {±1}, there are q + 1 elements g of ∆2(t) ∩ ∆1(x) such that
g11 = a.
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Proof By an analogous method to that in Lemma 2.1(i), it is clear that

∆1(x) =











a b
c −a

−1





∣

∣

∣

∣

∣

∣

a, b, c ∈ GF (q2), a2 + bc = 1







.

Let

g =





a b
c −a

−1



 ∈ ∆1(x),

for a, b, c ∈ GF (q2), and h ∈ CH(t). Now (h−1gh)11 = h−1
11 ah11 = a and so any two

CH(t)-conjugate elements have the same top-left entry, so proving (i).
If b = 0 then a2 + bc = a2 = 1 and so a = ±1. But then aa = 1 and thus cc = 0
implying c = 0. Similarly, if c = 0 then b = 0. If a = ±1, then 1 + bc = 1 and so bc = 0.
Hence, either b = 0 or c = 0 and therefore both are 0. However, a = 1 implies g = t,
and a = −1 implies g ∈ ∆1(t). Therefore if a = ±1, then g /∈ ∆2(t). In particular,
if a 6= ±1 then g ∈ ∆2(t), since d(t, x) = 1 and [g, x] = 1. Suppose now a 6= ±1, so
b, c 6= 0. Then by Lemma 2.1(i), we have aa + cc = aa + bb = 1 and ab = ac. Therefore
aa + cc = a2cb−1 + cc = 1 and so a2b−1 + c = c−1. It follows that bc−1 = a2 + bc = 1 and
hence b = c. However, this yields a = a, implying a ∈ GF (q) \ {±1}, proving (ii).
By combining parts (i) and (ii), ∆1(x) ∩ ∆2(t) is partitioned into CH(〈t, x〉)-orbits, with
the action of CH(〈t, x〉) leaving the diagonal entries unchanged. Since a 6= ±1, bb 6= 0 and
bb − (1 + a2) = 0. Since there are q + 1 solutions in GF (q2) to the equation xq+1 = λ for
any fixed λ ∈ GF (q), there are q + 1 values of b that satisfy this equation. Therefore x is
centralised by q + 1 involutions sharing a common top-left entry, proving (iii). �

Lemma 2.3 There are exactly (q − 2) CH(t)-orbits in ∆2(t).

Proof By Lemma 2.2(i) and (ii), there are at least (q − 2) CH(t)-orbits in ∆2(t). It
suffices to prove that any two matrices commuting with x that share a common top-left
entry are CH(〈t, x〉)-conjugate. Let g ∈ ∆2(t) ∩ ∆1(x), and a ∈ GF (q) \ {±1} be fixed
such that g11 = a and set g12 = b. By direct calculation, the diagonal entries of g remain
unchanged under conjugation by CH(〈t, x〉). Let

h =





1 0 0
0 β 0
0 0 β−1



 ∈ CH(〈t, x〉)

where ββ = 1. Then

h−1gh =





a bβ

β−1b −a
−1



 .
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Clearly bβ takes q + 1 different values for the q + 1 different values of β. However, since
there are only q + 1 possible values for b, all such values are covered. That is to say, all
matrices of the form





a b

b −a
−1



 ∈ ∆2(t) ∩ ∆1(x), a 6= ±1, bb = 1 − a2

lie in the same CH(〈t, x〉) orbit, and thus are all CH(t)-conjugate. Therefore, all involu-
tions that centralise x and share a common top-left entry are CH(t)-conjugate and so the
lemma follows. �

Lemma 2.4 |∆2(t)| = q(q2 − 1)(q − 2).

Proof Let

g =





−1
a b

b −a



 ∈ ∆1(t) and h =





α β

β −α
−1



 ∈ ∆2(t) ∩ ∆1(x)

for α 6= ±1 and ββ = 1 − α2 fixed. Then

gh =





−α aβ bβ

−β −aα −bα

0 −b a



 and hg =





−α −β 0

aβ −aα −b

0 −bα a



 .

If [g, h] = 1 then aβ = −β and bβ = 0 imply a = −1 and b = 0, since β 6= 0. Therefore,
g = x and thus h commutes with a single element of ∆1(t). Since ∆1(t) is a single CH(t)-
orbit, and combining Lemmas 2.1(iii) and 2.2(iii), all CH(t)-orbits in ∆2(t) have length
q(q − 1)(q + 1) = q(q2 − 1). Hence |∆2(t)| = q(q2 − 1)(q − 2), since ∆2(t) is a partition of
CH(t)-orbits. �

For each α ∈ GF (q) \ {±1}, define ∆α
2 (t) to be the CH(t)-orbit in ∆2(t) consisting of

matrices with top-left entry α ∈ GF (q) \ {±1}. By Lemmas 2.1(i) and 2.2(iii), ∆α
2 (t) can

be written explicitly as

∆α
2 (t) =



















α aDβ bDβ

dβD−2 (−adα + bc)D−1 bdD−1(1 − α)

−cβD−2 acD−1(α − 1) (bcα − ad)D−1





∣

∣

∣

∣

∣

∣

∣

∣

(

a b
c d

)

∈ GU2(q)

D = ad − bc

ββ = 1 − α2















.

(2.1)
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Lemma 2.5 Suppose

g =





α β

β −α
−1



 ∈ ∆α
2 (t) ∩ ∆1(x)

and

h =





γ aDδ bDδ

dδD−2 (−adγ + bc)D−1 bdD−1(1 − γ)

−cδD−2 acD−1(γ − 1) (bcγ − ad)D−1



 ∈ ∆γ
2(t)

satisfy the conditions of (2.1). If [g, h] = 1 then

(i) d = aββ−1δ−1δD3;

(ii) if b, c 6= 0 then a = −(1+α)(1−γ)−1β−1δD−1 and b = 2Dβ−1(1−γ)−1(βγ−aαδD)c−1;
and

(iii) if b = c = 0 then βγ = aαδD.

Proof Recall that since α, γ 6= ±1, we have β, δ 6= 0. Direct calculation shows that

gh =





αγ + βdδD−2 αaDδ + βD−1(bc − adγ) αbDδ + βbdD−1(1 − γ)

βγ − αdδD−2 βaDδ − αD−1(bc − adγ) βbDδ − αbdD−1(1 − γ)

cδD−2 (1 − γ)acD−1 −D−1(bcγ − ad)





and

hg =





αγ + βaDδ βγ − aαDδ −bDδ

αdδD−2 + βD−1(bc − adγ) βdδD−2 − α(bc − adγ)D−1 −bdD−1(1 − γ)

−αcδD−2 + β(γ − 1)acD−1 −cβδD−2 − acD−1α(γ − 1) −D−1(bcγ − ad)



 .

Now if [g, h] = 1 then we have the following relations from the (1,1), (1,2), (1,3) and (3,1)
entries respectively:

αγ + dβδD−2 = αγ + βaδD;

aαδD + βD−1(bc − adγ) = βγ − aαδD;

bαδD + bdβD−1(1 − γ) = −bδD; and

−cαδD−2 + acβD−1(γ − 1) = cδD−2.

The relations from the other entries are all equivalent to the four shown above. It is now
a routine calculation to deduce parts (i)-(iii) from these relations. �

Lemma 2.6 Let yα ∈ ∆α
2 (t) for some α ∈ GF (q) \ {±1}. Then

∣

∣∆1(yα) ∩ ∆−α
2 (t)

∣

∣ = 1.
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Proof Without loss of generality, choose yα such that [yα, x] = 1, so (yα)11 = α and set
(yα)12 = β. Let y−α ∈ ∆−α

2 (t) be as in (2.1) for suitable a, b, c, d ∈ GF (q2). We remark
that if α = 0, we denote this element y′

0 to distinguish it from y0. Assuming [y−α, yα] = 1,
we apply Lemma 2.5 by setting α = −γ, and note that ββ = δδ. Suppose that b, c 6= 0,
then a and b are as in Lemma 2.5(ii). Since α = −γ, we have a = −D−1β−1δ, giving
b = 2Dβ−1(1 − γ)−1(βγ − β−1δδγ)c−1. However, βγ − β−1δδγ = β(γ − β−1β−1δδγ) = 0
since β−1β−1δδ = 1. This yields b = 0, contradicting our original assumption. Hence
b = c = 0, giving a as in Lemma 2.5(iii) and thus aδαD = −βα. Hence either α = 0 or
a = −βδ−1D−1.
If α 6= 0, then aD = −βδ−1 and dD−2 = −βδ−1 showing that

y−α =





−α −β2δ−1

−β2δ−1 α
−1



 .

If α = γ = 0, then both y0 and y′
0 commute with x, where (y0)12 = β and (y′

0)12 = δ. If
y0 and y′

0 commute, then an easy calculation shows that δ = ±β. Since y0 6= y′
0, we must

have δ = −β.
Hence in both cases, yα commutes with a single element of ∆−α

2 (t). �

Lemma 2.7 Let yα ∈ ∆α
2 (t). Then |∆1(yα) ∩ ∆γ

2(t)| = q + 1 for α 6= −γ.

Proof As in Lemma 2.6, choose yα such that [yα, x] = 1 with (yα)11 = α and set (yα)12 =
β. Let yγ ∈ ∆γ

2(t) be as in (2.1) for suitable a, b, c, d ∈ GF (q2). For brevity we remark
that if α = γ, then yα and yγ will denote different elements. Assume [yα, yγ] = 1, so the
relevant relations from Lemma 2.5 hold for fixed α, β, γ, δ satisfying α, γ ∈ GF (q)\{±1},
ββ = 1 − α2 and δδ = 1 − γ2.
Suppose b = c = 0, so Lemma 2.5(iii) holds. Since β 6= 0 and if α = 0, then γ = 0,
contradicting the assumption that α 6= −γ. Hence a = βγα−1δ−1D−1. Using Lemma
2.5(i), we get d = βδ−1D2γα−1 and so ad = ββδ−1δ−1γ2α−2D. Combining the expressions
for ββ, δδ and D, we get

(γ2 − α2γ2)(α2 − α2γ2)−1 = 1,

giving γ2 = α2 resulting in γ = ±α. Since α 6= −γ, we must have α = γ. But then
aDδ = β and so yγ = yα. Therefore, we may assume b, c 6= 0.
By a long but routine check, substitutions of ββ, γγ and the relations in Lemma 2.5
show that ad − bc = D holds. These relations also clearly show that a, b, c and d are all
non-zero. Hence by Lemma 2.1(i), we have ab = −cd and so cc = −abcd−1, and there are
q + 1 values of c that satisfy this equation.
It now suffices to check that the remaining conditions of Lemma 2.1(i) hold. Since
α, γ ∈ GF (q), we have (1 − α)(1 − α)−1 = (1 − γ)(1 − γ)−1 = 1. Together with the
relations already determined, we have aa + cc = aa − ad−1bc = D−1D−1. However
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DD = 1, so the conditions of Lemma 2.1(i) hold. By considering aa + cc, we get a similar
result for bb + dd. Hence there is only one possible value of each of a and d, there are
(q + 1) different values of c with b depending on c, proving the lemma. �

As a consequence, we have the following.

Corollary 2.8 Let y ∈ ∆2(t). Then |∆1(y) ∩ ∆3(t)| = q + 1.

Proof Since the valency of the graph is q(q − 1) and |∆1(y) ∩ ∆1(t)| = 1, Lemmas 2.6
and 2.7 give Corollary 2.8. �

For the remainder of this paper, denote

y =





0 1 0
1 0 0
0 0 −1



 ∈ ∆0
2(t)

and define

zγ =





1 −2 γ
−2 1 −γ

γ −γ −3



 ,

for γγ = −4. An easy check shows that [zγ , y] = 1, zγ
T = zγ and zγ is an involution,

hence zγ ∈ X and d(t, zγ) ≤ 3. However, since t is the sole element with top-left entry 1
that is at most distance 2 from t, we have d(t, zγ) ≥ 3 and thus equality.

Lemma 2.9 ∆1(y) ∩ ∆3(t) = {zγ | γ ∈ GF (q2), γγ + 4 = 0}.

Proof There are q + 1 values of γ and zγ centralises y for all such γ. By Corollary 2.8,
|∆1(y) ∩ ∆3(t)| = q + 1, and so the lemma follows. �

Fix γ and let g ∈ CH(t) be of the form as described in Lemma 2.1(i) for suitable
a, b, c, d ∈ GF (q2). Then

zγg =





D−1 −2a + cγ −2b + dγ
−2D−1 a − γc b − dγ
γD−1 −γa − 3c −bγ − 3d





and

gzγ =





D−1 −2D−1 D−1γ
−2a + bγ a − bγ −aγ − 3b
−2c + dγ c − dγ −cγ − 3d



 .

If [zγ , g] = 1, then we equate the entries to get conditional relations. From the (2,2)
entries, we see that b = cγγ−1. This, combined with the (2,3) entry, gives d = a + 4cγ−1.
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The (3,1) entry shows that c = −2−1(D−1 − d)γ, and so d = 2D−1 − a. Hence

b = −2−1(a − D−1)γ;

c = −2−1(a − D−1)γ; and

d = 2D−1 − a

for a ∈ GF (q2). A routine check shows these relations are sufficient for [zγ , g] = 1. These
relations, together with the conditions of Lemma 2.1(i) and DD = 1, give

aD−1 + aD−1 = 2. (2.2)

Clearly, the number of possible such a is |CH(〈t, zγ〉)|. Since D = ad− bc, we get D3 = 1.
Therefore DD = D3 = 1 which has a solution D 6= 1 if and only if q ≡ 5 (mod 6).

Lemma 2.10 If q 6≡ 5 (mod 6), then |CH(〈t, zγ〉)| = q. Moreover, C(H, X) is connected
of diameter 3 and |∆3(t)| = (q + 1)(q2 − 1).

Proof Since q 6≡ 5 (mod 6), from (2.2) we have D = 1 and a + a − 2 = 0. There are q
distinct values of a satisfying this, so |CH(〈t, zγ〉)| = q. Denote the CH(t)-orbit containing
zγ by ∆γ

3(t). Hence,

|∆γ
3(t)| =

|CH(t)|

|CH(〈t, zγ〉)|
= (q + 1)(q2 − 1).

Combining Lemmas 2.1(ii)-(iii) and 2.4, we have

|X \ ({t} ∪ ∆1(t) ∪ ∆2(t))| = |∆γ
3(t)| .

Hence C(H, X) is connected of diameter 3, and ∆γ
3(t) = ∆3(t) as required. �

Remark Since ∆3(t) is a single CH(t)-orbit and the valency of the graph is q(q−1), for
w ∈ ∆3(t) we have |∆1(w) ∩ ∆3(t)| = q. This proves Theorem 1.1 when q 6≡ 5 (mod 6).

We now turn our attention to the remaining case, when q ≡ 5 (mod 6).

Lemma 2.11 Suppose q ≡ 5 (mod 6).

(i) |CH(〈t, zγ〉)| = 3q.

(ii) There are exactly three CH(t)-orbits in ∆3(t), each of length 1
3
(q + 1)(q2 − 1).

(iii) C(H, X) is connected of diameter 3 and |∆3(t)| = (q + 1)(q2 − 1).
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Proof From (2.2), we have DD = D3 = 1 and since q ≡ 5 (mod 6), there are three

possible values for D. Since aD−1 + aD−1 − 2 = (aD−1) + aD−1 − 2 = 0 then for each
value of D, there are q such values of aD−1. Hence there are 3q values of aD−1 in total,
proving (i).
Fix γ, and let ∆γ

3(t) be the CH(t)-orbit containing zγ . We have

|∆γ
3(t)| =

|CH(t)|

|CH(〈t, zγ〉)|
=

1

3
(q + 1)(q2 − 1). (2.3)

Let h =





E
λ µ
σ τ



 ∈ CH(t) where E = λτ − µσ. Then

h−1zγh =





1 E(γσ − 2λ) E(−2µ + τγ)
−E−2(2τ + µγ) (λµγ − σγτ + 4µσ)E−1 + 1 (−γτ 2 + µ2γ + 4µτ)E−1

E−2(2σ + λγ) (−λ2γ + σ2γ − 4λσ)E−1 (λµγ − σγτ + 4µσ)E−1 − 3



 .

Suppose h−1zγh = zδ ∈ ∆3(t) ∩ ∆1(y) for some δ 6= γ. Hence (h−1zγh)21 = −2 =
(h−1zγh)12 gives τ = E2 − 2−1µγ and λ = 2−1γσ + E−1. Since E = λτ − µσ, we have
2−1γσE2 − 2−1µγE−1 = 0 and so µ = γγ−1σE3. Rewriting τ , we get τ = E2 − 2−1γσE3.
To summarise,

λ = 2−1γσ + E−1;

µ = γγ−1σE3; and

τ = E2 − 2−1γσE3.

Using these relations and γγ = −4, a simple check shows that (h−1zγh)22 = 1 and
(h−1zγh)33 = −3 hold, and (h−1zγh)31 = E−3γ = δ. Easy substitutions and checks show

that (h−1zγh)32 = −(h−1zγh)31 and (h−1zγh)13 = (h−1zγh)31. Since δδ = −4, we have
E3E3 = 1. In particular, E3 is a (q + 1)th root of unity. There are q + 1 such roots
and only a third of them are cubes in GF (q2)∗. Hence there are only 1

3
(q + 1) such

values of δ = E−3γ. Therefore, we can pick γ1, γ2 and γ3 such that γiγi = −4 where
the zγi

are not pairwise CH(t)-conjugate. Hence there are at least 3 orbits in ∆3(t), and
by (2.3) they all have length 1

3
(q + 1)(q2 − 1). But (as in the proof of Lemma 2.10),

|X \ ({t} ∪ ∆1(t) ∪ ∆2(t))| = (q + 1)(q2 − 1) and so this proves (ii), and (iii) follows im-
mediately. �

This now completes the proof of Theorem 1.1.
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