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Abstract

The classical Chung-Feller Theorem offers an elegant perspective for enumerating
the Catalan number cn = 1

n+1

(2n
n

)

. One of the various proofs is by the uniform-
partition method. The method shows that the set of the free Dyck n-paths, which
have

(2n
n

)

in total, is uniformly partitioned into n + 1 blocks, and the ordinary
Dyck n-paths form one of these blocks; therefore the cardinality of each block is

1
n+1

(2n
n

)

. In this article, we study the Chung-Feller property: a sup-structure set
can be uniformly partitioned such that one of the partition blocks is (isomorphic
to) a well-known structure set. The previous works about the uniform-partition
method used bijections, but here we apply generating functions as a new approach.
By claiming a functional equation involving the generating functions of sup- and
sub-structure sets, we re-prove two known results about Chung-Feller property,
and explore several new examples including the ones for the large and the little
Schröder paths. Especially for the Schröder paths, we are led by the new approach
straightforwardly to consider “weighted” free Schröder paths as sup-structures. The
weighted structures are not obvious via bijections or other methods.
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1 Introduction

We use Z, N and N
− to denote the sets of integers, natural numbers and non-positive

integers, respectively. The combinatorial structures discussed in the paper are lattice
paths (or random walks) that start at the origin (0, 0) and lie in N × Z or N × N. A
class of lattice paths is usually determined by a step set S consisting of finite-many
(fundamental) steps, and a step is an integral vector (a, b) with a ≥ 1. We call (a, b) an
rise step if b > 0, fall step if b < 0, and level step if b = 0. Given a lattice path P , let
ℓ(P ) denote the length of P , which is the x-coordinate of the right end point of P but not
necessarily the number of steps on P .

Let Ln,S, L+
n,S and L−

n,S be the sets of lattice paths from (0, 0) to (n, 0) that are
constructed by steps in S and lie respectively in N×Z, N×N and N×N

−. By reversing the
order of the steps in each path, we obtain a bijection between L+

n,S and L−
n,S. Sometimes

we focus on the lattice paths with end point (n, h) for fixed positive integers h. We use
L(n,h),S and L+

(n,h),S to denote the sets of such lattice paths. The paths of all lengths are

often discussed at a time, especially when we deal with their generating function (GF); so
we define the class LN,S :=

⋃

n≥0 Ln,S, LkN,S :=
⋃

n≥0 Lkn,S, L(N,h),S :=
⋃

n≥0 L(n,h),S and
so on.

A lattice path is called a flaw path if it have some steps below or partially below the
x-axis, which are called flaw steps ; because the paths without flaws were once named
“good” in the literature and draw more attention. The paths in Ln,S are called free paths,
because they do not face the boundary x-axis as the ones in L+

n,S

Let us recall the original the Chung-Feller theorem and its known generalization as
follows. The Catalan number cn = 1

n+1

(

2n
n

)

is one of the most investigated sequences.
Among hundred of known combinatorial structures interpreting cn [28, 29], the Dyck n-
path is well known and fascinating. Usually, the set of all Dyck n-paths is denoted by
Dn, which is actually L+

2n,SD
with SD = {U = (1, 1), D = (1,−1)}. Dyck paths are 2-

dimensional translations of Dyck language, named after Walther von Dyck, which consists
of all balanced strings of parentheses. As random walks, Dyck paths also visually interpret
the tight-match version of the ballot problem. The original ballot problem deals with a
dominant-match, and was introduced and proved inductively by Bertrand [3]. The reader
can refer to Renault’s interesting narratives [22, 23] about the ballot problem. Especially,
he recovered André’s actual method for solving the classical ballot theorem and rectified
the prevalence of mis-attribution.

Given a positive integer d, let SC(d) = {U = (1, 1), Dd = (1,−d)} and

C(d)
n = L+

(d+1)n,S
C(d)

.

The elements of C
(d)
n are called the Catalan n-paths of order d. Catalan paths are gen-

eralized from Dyck paths, and C
(1)
n = Dn. Notice that the index n is the semi-length

of the paths in Dn, and n is 1
d+1

of the length of each path in C
(d)
n . It is known that

c
(d)
n := |C

(d)
n | = 1

dn+1

(

(d+1)n
n

)

, which is called the nth generalized Catalan number [13, 15].
Given 0 ≤ k ≤ dn, an (n, k)-flaw path is a path in L(d+1)n,S

C(d)
that contains k rise
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steps U below the x-axis. Let C
(d)
n,k be the set of all (n, k)-flaw paths. Clearly, C

(d)
n,dn

∼=

C
(d)
n,0 = C

(d)
n . Not only L(d+1)n,S

C(d)
is the disjoint union of {C

(d)
n,k}

dn
k=0, but a stronger property

was developed as follows:

Theorem 1.1 [11] The structure set L(d+1)n,S
C(d)

is partitioned uniformly into {C
(d)
n,k}

dn
k=0.

Therefore, for each k we have

|C
(d)
n,k| =

1

dn + 1
|L(d+1)n,S

C(d)
| = c(d)

n . (1)

The above theorem was first proved by Eu et al. recently [11]. They used the cut-and-paste

technique to derive a bijection between C
(d)
n and C

(d)
n,k. As a relative result of Theorem 1.1,

a generalized ballot problem with step set SC(d) was proved by Renault [23] using André’s
“actual” method.

In particular, Eq. (1) confirms |Dn| = 1
n+1

(

2n
n

)

with d = 1. There are many other

proof methods for the identity |Dn| = 1
n+1

(

2n
n

)

, including the Cycle Lemma, the reflection
method, the counting of permutations, etc. The method using uniform partition is par-
ticularly called the Chung-Feller Theorem, which was first proved by MacMahon [18] and
then re-proved by Chung and Feller [8]. Some other interesting proofs and generalizations
are given in [4, 5, 6, 9, 12, 21, 27, 31].

The well-known Motzkin paths admit a Chung-Feller type result too. This problem
was first noted by Shapiro in [26], where the extension and the partition blocks were
suggested by an anonymous referee. Shapiro also mentioned that this property can be
proved either by the Cycle Lemma or by the generating function. A proof using bijection
and uniform partition was given by Eu et al. [11]. We will fulfill a proof using generating
functions in the next section and discuss Chung-Feller type results for generalized (k-color)
Motzkin paths in Section 3.

Our interest is less in the cardinality but more in Chung-Feller type results, i.e., the
phenomenon that a sup-structure set, like L(d+1)n,SD

, can be partitioned uniformly, and
one of these partition blocks is isomorphic to a well-known sub-structure set, like Dn.
(So is every block.) We call this phenomenon the Chung-Feller property admitted by
the sub-structures (or the set of these sub-structures), and call the sup-structure set a
Chung-Feller extension. Briefly, we will use “CF” to stand for “Chung-Feller”.

The core of Chung-Feller type results is uniform partition. All previous known results
are proved via bijection, i.e., showing the isomorphism among all partition blocks. These
bijections are very sophisticated; however, each one is case by case without a general rule.
Here we would like introduce a much easy and general way via generating functions to
fulfill the idea of uniform partition.

The paper is organized as follows. In Section 2, we develop the proper generating
function to deal with the CF extension of a given sub-structure. Then we re-prove the
known CF-property for Catalan paths and Motzkin paths. In Section 3, we focus on mul-
tivariate generating functions for the discussing sub-structures. By this way, we discover
a CF property for the generalized (k-colored) Motzkin paths of order d. A various CF
property for the Dyck paths with extension rate 2n + 1 turns to be a special case. In
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Sections 4 and 5, we explore the CF property of the large and the little Schröder paths,
respectively.

2 The generating function of a CF extension

The main purpose of this paper is to study the Chung-Feller property via generating
functions. It is easy to derive the generating function of a CF extension (a set of sup-
structures) if it exists. By manipulating this generating function, we can explain what
would these sup-structures look like.

For explaining our new approach, let us consider the classical Chung-Feller Theorem as
an example. The set Dn := L+

2n,SD
of Dyck paths, where SD = {U = (1, 1), D = (1,−1)},

is the discussing sub-structure set. The generating function of DN is C(x) =
∑

n≥0 cnxn,

where cn = 1
n+1

(

2n
n

)

is the nth-Catalan number. The sup-structure set in this case is
L2n,SD

, which can be partition uniformly into {Cn,k}
n
k=0, where k counts the the number

of rise steps U below the x-axis. (Particularly, Cn,0 = Dn.) It is natural to consider the
following bivariate generating function for the sup-structure set L2n,SM

according to its
partitions.

∑

n≥0

n
∑

k=0

|Cn,k| x
nyk =

∑

n≥0

cnxn(1 + y + · · ·+ yn)

=
∑

n≥0

cnxn 1 − yn+1

1 − y

=
C(x) − y C(xy)

1 − y
. (2)

No doubt that a CF extension of any sub-structure set has the same type of bivariate
generating functions as (2). Therefore, we are led to the following definition:

Definition 2.1 Suppose G(x) :=
∑

n≥0 snxn is the generating function of a class SN :=
⊎

n≥0 Sn of combinatorial structures with sn = |Sn| and let AG(x) = xG(x). The gener-
ating function of Chung-Feller extension with respect to G(x) (or with respect to the class
SN) is denoted and defined by

CFG(x, y) :=
G(x) − y G(xy)

1 − y
=

AG(x) − AG(z)

x − z
|z=xy . (3)

By this definition we can easily reprove the classical Chung-Feller Theorem as follows.
A short proof for the classical Chung-Feller Theorem Let C(x) be the generating
function of DN and A(x) = xC(x). Clearly, A(x) is the GF of lifted Dyck paths, i.e., the
paths of form U -a Dyck path-D. It is well know that C = 1 + xC2 or 1 = C − xC2. So
x = A(x) − [A(x)]2. Plugging this identity into (3), we get

CFC(x, y) =
A(x) − A(z)

A(x) − [A(x)]2 − A(z) + [A(z)]2
|z=xy=

1

1 − [A(x) + A(xy)]
.
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Obviously, this is the bivariate GF of the free Dyck paths where the exponent of y counts
the semi-length of the flaw steps on each path. Therefore, the free Dyck paths is a Chung-
Feller extension of Dyck paths and the cardinality,

(

2n
n

)

, of the free Dyck n-paths is then
n + 1 times the cardinality of Dn.

Following the definition (3) and reversing the process in (2), we obtain

CFG(x, y) =
∑

n≥0

n
∑

k=0

sn xnyk and CFG(x, 1) =
∑

n≥0

(n + 1)sn xn.

The second identity indicates that the extension rate is n + 1. If we can find a sup-
structure class EN =

⊎

n≥0 En to realize the generating CFG(x, 1) as well as a collection
of sub-structure sets {En,k}

n
k=0 of En to realize the generating CFG(x, y), then {En,k}

n
k=0

forms a uniform (n + 1)-partition of En and |En,k| = sn for every k. If we can go a step
further to have En,k

∼= Sn for some k, then the structure class SN admits the CF property
and EN is its CF extension.

Indeed, CFG(x, 1) is simply the first derivative of xG(x), and it seems that we can
directly reveal CF property by investigating xG(x). As a matter of fact, it is difficult to
interpret sup-structures only using CFG(x, 1) or xG(x). However, it turns easier after we
explore the meaning of y in CFG(x, y).

The previous uniform partition proof of Chung-Feller Theorem uses bijection. In
general, the method need to fulfill a nontrivial bijection between En,k and Sn for every k.
In our method, the generating function has already guaranteed the property of uniform
partition. So we need En,k

∼= Sn for only one k and usually this bijection is very trivial.
To accomplish the mission mentioned above, we shall employ the functional equation

involving G. In this paper, we only focus on some generating function G(x) together with
A = AG(x) satisfying

x =
P (A)

Q(A)
, (4)

where P and Q are polynomials. We simply name (4) the fraction condition for G.

For instance, let C(d)(x) =
∑

n≥0 c
(d)
n xdn be the generating function of the general-

ized Catalan numbers of order d.a It is well-known that C(d)(x) = 1 + xd(C(d)(x))d+1.
Multiplying both sides of this functional equation by x and solving for x, we get

x = AC(d) −
(

AC(d)

)d+1
. (5)

As for the generating function M(x) of the Motzkin numbers, it satisfies the functional
equation M = 1 + xM + x2M2. By similar calculation, we obtain

x =
AM

1 + AM + AM
2 . (6)

aThe generating function defined as
∑

n≥0 c
(d)
n xn is not proper here, because the extension rate is

supposed to be dn + 1.
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So the both known CF type results satisfy the fraction condition (4).
In the rest of the paper we always assign z = xy, and let A = AG := xG(x) and

Ā = A(z) for convenience. When x = P (A)
Q(A)

is provided, the function CFG can be obtained

by the following manipulation. Let Px = P (A) and Pz = P (Ā) for short, and Qx, Qz are
defined similarly. Given a polynomial F (A) (whose variable is A, while A = A(x) is a
formal power series), we define

F̂ = F̂ (A, Ā) :=
F (A) − F (Ā)

A − Ā
, (7)

which is again a polynomial with variables A and Ā, because A − Ā must be a factor of
F (A) − F (Ā). Clearly F̂ (A, Ā) = F̂ (Ā, A) by definition. Now we derive that

x − z =
Px

Qx
−

Pz

Qz

=
(PxQz − PxQx) + (PxQx − PzQx)

QxQz

=
−PxQ̂(A − Ā) + P̂Qx(A − Ā)

QxQz

Plugging the identity above into the definition (3), we obtain

CFG(x, y) =
QxQz

P̂Qx − PxQ̂
.

The following proposition provides more equivalent formulas.

Proposition 2.2 Suppose G(x) be a formal power series. Adopt the definition of A,

Px, Pz, P̂ and Q̂ where z = xy as before. If x = P (A)
Q(A)

, then the generating function of

Chung-Feller extension with respect to G(x) can be represented as

CFG(x, y) =
QxQz

P̂Qx − PxQ̂
(8)

=
Qz

P̂ − xQ̂
. (9)

=
Px

x
Pz

z

P̂Qx − PxQ̂
(10)

One of (8)–(10) reveals a possible sup-structure class to be a CF extension. For practice,
let us re-prove Theorem 1.1 as follows.

We need some new notation here. Let v be a point on path P or an integral x-
coordinate in the span of P . We define P L

v and P R
v respectively to be the left and the

right subpaths of P cut by v. Also P[u,v] := P R
u ∩ P L

v is the subpath of P in between u

and v.
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A new proof for Theorem 1.1 We only prove the the unform-partition property and
then Eq. (1) follows immediately. By (5), we have P (A) = A−Ad+1 and Q(A) = 1. Then
P̂ (A, Ā) = 1 −

∑d
i=0 AiĀd−i and Q̂(A, Ā) = 0. By (9), we obtain

CFC(d)(x, y) =
1

1 −
∑d

i=0 AiĀd−i
=
∑

m≥0

(

d
∑

i=0

AiĀd−i

)m

. (11)

We explain that CFC(d)(x, y) is exactly the generating function of C
(d)
n,k for n ≥ 0 and

0 ≤ k ≤ dn as follows. Given any P ∈ L(d+1)N,S
C(d)

, suppose P has m steps Dd intersecting
the x-axis. In particular, m = 0 if and only if P is the path of length 0. For each of
these Dd, let u and v be its left and right end points. Let us mark the first intersection
point between the subpath P R

v and the x-axis. No doubt that the last marked point is
exactly the right end point of P , and then these m marked points cut P into m subpaths.
Each of these subpaths contained a unique Dd intersecting the x-axis. According to (11),
each of these m subpaths should be represented by a term xayb (with coefficient 1) in
∑d

i=0 AiĀd−i. In other words,
∑d

i=0 AiĀd−i stands for a GF of all possibilities for this
single subpath. We need more detail to identify each other.

Let Q be one of these m subpaths. Here we not only consider this single subpath Q but
also all possibilities for Q. There is a unique Dd intersecting the x-axis on Q, and suppose
that the y-coordinates of the two end points u, v of this Dd are i and i − d respectively
(0 ≤ i ≤ d). Let us consider QL

u and QR
v . Note that isomorphically QL

u is from (0, 0)
to (∗, i) and QR

v is from (0, i − d) to (∗, 0), and they never touch the x-axis except their
end points, i.e., they are exactly the two parts of Q over and below the x-axis. A routine
technique for lattice paths is to cut QL

u into i pieces according the left end point of the
last step U intersecting the line y = k for k = 1, . . . , i − 1. Each of these i pieces is a
step U followed by a Catalan path; so A = xG generates a single piece. Therefore, the all
possibilities for QL

u can be represented by Ai. Similarly, the all possibilities for QR
w can be

represented by Ad−i.
However, it is Ād−i rather than Ad−i appearing in CFC(d)(x, y); so we realize that the

exponent of y counts the number of the steps U on QR
w, which are exactly the flaw steps U

on Q. Since Q is combined by three parts, QL
u , Dd and QR

v , and Dd responses for neither
x’s nor y’s powers, the bivariate GF of Q is then

∑d
i=0 AiĀd−i.

Combining m subpaths with each similar to Q and running m from 0 to ∞, we

obtain
∑

m≥0

(

∑d
i=0 AiĀd−i

)m

as the bivariate generating function of L(d+1)N,S
C(d)

, where

the power indices of x and y represent the numbers of all steps U and the flaw ones
respectively. The proof is now complete.

2.1 Chung-Feller property of the Motzkin paths

The set Mn of the well-known Motzkin n-paths is exactly L+
n,SM

with step set SM = {U =
(1, 1), D = (1,−1), L = (1, 0)}. The cardinality mn of Mn is called the nth Motzkin
number. Here we deal with the sup-structure set L(n+1,1),SM

. Let Hn,k ⊆ L(n+1,1),SM
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(0 ≤ k ≤ n) consist of those paths whose rightmost minima occurring at x = k. Clearly,
L(n+1,1),SM

=
⊎n

k=0 Hn,k and one can easily map Hn,0 (Hn,n) to Mn isomorphically by
deleting the first (last) step of each path. Not only these two particular cases, but also

|Hn,k| = |Mn| = mn

for all k, i.e., L(n+1,1),SM
is partitioned uniformly into {Hn,k}

n
k=0. As a variation of Chung-

Feller theorem, this problem was first noted by Shapiro [26], and the extension L(n+1,1),SM

and blocks {Hn,k}
n
k=0 were suggested by an anonymous referee of his paper. A proof

using bijection was given by Eu et al. [11]. Here we provide a new proof using generating
functions.

By (6), we have P (A) = A and Q(A) = 1+A+A2, and also P̂ = 1 and Q̂ = 1+A+ Ā.
Plugging these into (10), we obtain

CFM(x, y) =
A
x

Ā
z

1 − AĀ
=

A

x

Ā

z

∑

m≥0

(AĀ)m = M(z)
(

∑

m≥0

ĀmAm
)

M(x). (12)

We analyze the pattern of M(z)
(
∑

m≥0 ĀmAm
)

M(x) to offer a new proof for the following
CF property of the Motzkin paths.

Theorem 2.3 ([11, 26]) Let Hn,k ⊆ L(n+1,1),SM
consist of those paths whose rightmost

minima occurring at x = k. The structure set L(n+1,1),SM
is partitioned uniformly into

{Hn,k}
n
k=0. Therefore, L(n+1,1),SM

is a CF extension of the Motzkin n-paths.

Proof. Let L(N+1,1),SM
=
⊎

n≥0 L(n+1,1),SM
and define the bivariate generating function

of L(N+1,1),SM
by

∑

P∈L(N+1,1),SM

xℓ(P )−1yρ(P ), (13)

where ℓ(P ) is the length of P and ρ(P ) is the x-coordinate of the rightmost minimum.

Once we analyze that the above generating function equals M(z)
(

∑

m≥0 ĀmAm
)

M(x),

we conclude that L(n+1,1) is a CF extension of Mn and it can be partitioned uniformly
into {Hn,k}

n
k=0.

For any P ∈ L(N+1,1),SM
, let u be its rightmost minimum point and let U = [u, v]

denote the rise step following u immediately. Suppose that the y-coordinate of u is −m.
Notice that m can be any natural number among all paths P ∈ L(N+1,1),SM

. On the
subpath P L

u , let us find the first fall step D dropping from y = −i to y = −i − 1 for
i = 0, . . . , m − 1, and mark the left end points of this D by ui. The subscript of ui also
indicates the absolute y-coordinate of this points. These m points ui partition P L

u into
m + 1 subpaths such that the first subpath is a Motzkin path (probably of length 0), and
each of the rest subpaths begins with a fall step D followed by a Motzkin path over the
line y = −i − 1. Thus, P L

u is represented by M(z)Ām. Notice that the exponent of y in
M(z)Ām is exactly the x-coordinate of u.

On P R
v (not P R

u ), let us find the last rise step U rising from y = −j to y = −j + 1 for
j = 0, . . . , m − 1, and mark the right end point of this U by vj . Again, these m points
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vj partition P R
v into m + 1 subpaths such that the last one is a Motzkin path (probably

of length 0), and each of the rest subpaths is a Motzkin path followed by a rise step U .
Thus, P R

v is represented by AmM(x).
According to the interpretation above, the step U = [u, v] appears in neither P L

u

(corresponding to M(z)Ām) nor P R
v (corresponding to AmM(x)). However, this U is

unique in every P ∈ L(N+1,1),SM
; so we simply ignore its count as the exponent of x or y.

This is why the exponent of x in (13) is ℓ(P ) − 1. The whole proof is complete new.

A different interpretation of CFM(x, y). Follows the discussion in the last proof.
Let us connect P L

u and P R
v by contracting u and v into one point. Let P ′ denote this new

lattice path and w the new point obtained by contracting u and v. Clearly, P ′ ∈ LN,SM
and

w is one of the minimum points of P ′, not necessarily the rightmost one. The combination
of P ′ and w yields a new interpretation of CFM(x, y) by defining

(LN,SM
,W) = {(P ′, w) | P ′ ∈ LN,SM

and w is one of the minimum points of P ′}.

The bivariate GF of (LN,SM
,W) shall be defined as

∑

(P ′,w)∈(LN,SM
,W) xℓ(P ′)ywx, where wx

is the x-coordinate of w. This generating function equals the one in (13), and then equals
CFM(x, y).

Corollary 2.4 The structure set (Ln,SM
,W) is a CF extension of Mn.

The advantage of the this corollary is that Ln,SM
is the set of free Motzkin n-paths.

3 Chung-Feller property for a multivariate GF

Now we consider some sub-structure sets that admits multivariate generating functions.

Definition 3.1 Let G(x1, . . . , xk) =
∑

n1,...,nk≥0 an1,...,nk
x1

n1 · · ·xk
nk be the multivariate

generating function of a sequence {an1,...,nk
}n1,...,nk≥0 and AG = x1G(x1, . . . , xk). The

function of Chung-Feller extension with respect to G and x1 is denoted and defined as

CFG,x1(x1, . . . , xk, y) =
AG(x1, x2, . . . , xk) − AG(z, x2, . . . , xk)

x1 − z
|z=x1y . (14)

This definition is due to that we are looking for a sup-structure class with the generating
function

∑

n1,...,nk≥0

an1,...,nk
x1

n1 · · ·xk
nk(1 + y + · · · + yn1). (15)

According to (15) as well as (14), a sup-structure set is partitioned into n1 + 1 blocks,
corresponding to yi for i = 0, . . . , n1, of uniform size an1,...,nk

for every fixed k-tuple
(n1, . . . , nk). According (15), the extension rate is independent on n2, . . . , nk. It is easy
to check that Proposition 2.2 still holds for CFG,x1 by replacing A with AG and defining

the corresponding ĀG, Px, Pz, P̂ and Q̂ similarly.
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Let SNk =
⊎

n1,...,nk≥0 Sn1,...,nk
be a structure class such that |Sn1,...,nk

| = an1,...,nk
. If

there exists a sup-structure class admitting CFG,x1 as its generating function, we shall call
this sup-structure class a Chung-Feller extension of SNk along the first index or associating
the quantity counted by the first index. We say “first index” because the extension rate
is n1 + 1 according to the first sub-index of Sn1,...,nk

.

3.1 Generalized Motzkin paths

We consider step set SM(d) := {U = (1, 1), Dd = (1,−d), L = (1, 0)} to construct general-
ized Motzkin paths of order d.b Obviously, this generalization is motivated by the general-
ized Catalan numbers of order d. Given n, m ∈ N with 0 ≤ m ≤ n, let Ln,m,S

M(d)
consist

of free generalized Motzkin n-paths with exactly m steps L, and M
(d)
n,m =: L+

n,m,S
M(d)

.

Also let M
(d)

N2 =
⊎

n,m≥0 M
(d)
n,m. Define a multivariate generating function for the class

M
(d)
N

as

M(x, s, t) =
∑

P∈M
(d)

N2

xℓ(P )sU(P )tL(P ), (16)

where U(P ) and L(P ) are respectively the numbers of rise steps U and level steps L on P .
To record the number of fall steps Dd is unnecessary, because it equals ℓ(P )−U(P )−L(P ).
We should use only one of U(P ) and L(P ) because U(P ) = d

d+1
(ℓ(P ) − L(P )); however,

we keep both of them because we can trace s as step U ’s footprint in order to distinguish
U from Dd in the following discussion, and we use tL(P ) to deal with Catalan paths and
generalized k-color Motzkin paths.

Let A = AM := xM(x, s, t) and Ā = AM(z, s, t). It is easy to derive the functional
equation M = 1 + t xM + sdxd+1Md+1 by considering three types of paths: of length 0,
with first step L, and with first step U . Then we obtain the fraction condition as

x =
A

1 + t A + sdAd+1
. (17)

With P (A) = A and Q(A) = 1+ t A+sdAd+1, we get P̂ = 1 and Q̂ = t+sd
∑d

k=0 AkĀd−k.
By (10), we derive that

CFM,x(x, s, t, y) =
A
x

Ā
z

1 − sd
∑d

i=1 AiĀd−i+1

= M(x, s, t)M(z, s, t)
∑

m≥0

(

Ā

d
∑

i=1

(sA)i(sĀ)d−i
)m

. (18)

It is easier to interpret CFM,x by a similar form given in Corollary 2.4 rather than
Theorem 2.3. Let us define a sup-structure class as

(LN2,S
M(d)

,W) := {(P, w) | P ∈ LN2,S
M(d)

and w is a minimum point of P}.

bThere is another kind of generalized Motzkin paths defined by the step set {U = (1, 1), D =
(1,−1), L = (h, 0)} (see [2]).
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The point w is called the marked minimum. A new Chung-Feller type result is given as
follows:

Theorem 3.2 The structure set (Ln,m,S
M(d)

,W) can be uniformly partitioned into n + 1

blocks according to the x-coordinates of marked minima. Therefore, (Ln,m,S
M(d)

,W) is a

Chung-Feller extension of M
(d)
n,m associating the length with extension rate n + 1.

Proof. Let us denote J = (LN2,S
M(d)

,W) for short and define a multivariate GF of J
by

GJ (x, s, t, y) :=
∑

(P,w)∈J

xℓ(P )sU(P )tL(P )ywx,

where wx is the x-coordinate of w (similarly, for wy). To prove this theorem, we shall
verify that CFM,x = GJ .

The following proof is modified from the one for Theorem 2.3. We simply decompose
any (P, w) ∈ J piece by piece as follows. On the horizontal line y = wy, there are
isomorphically two pieces of generalized Motzkin paths P[u,w] and P[w,v], where u and v are
respectively the leftmost and the rightmost minima on P . Clearly, the kinds (possibilities)
of (P[u,w], P[w,v]) claim their GF as M(z, s, t) and M(x, s, t).

Connect P L
u and P R

v by contracting u and v into one point. Let P ′ denote this new
path and w′ the point of contraction, which is the unique minimum on P ′. Also let
Dd = [w′′, w′] be the fall step reaching w′, and u′ be the leftmost minimum on P ′L

w′′. In
addition, let v′ be the last point that P ′ intersects the line y = u′

y. Suppose i = u′
y − w′

y.
Clearly, 1 ≤ i ≤ d. For a fixed i, It is a routine check that the kinds of P ′

[u′,v′] claim their
GF as Ā(sA)i(sĀ)d−i. Precisely, (sĀ)d−i represents P ′

[u′,b], where R = [a, b] is the last rise
step on P ′

[u′,w′′] such that by = w′′
y . Note that b = w′′ is possible. Moreover, Ā represents

P ′
[b,w′] and (sA)i represents P ′

[w′,v′]. Here we find that s is a clear footprint of step U .

Therefore, the kinds of P ′
[u′,v′] for all 1 ≤ i ≤ d claim their GF as Ā

∑d
i=1(sA)i(sĀ)d−i.

Now connect P L
u′ and P R

v′ by contracting u′ and v′ into one point, and do the same
work as the last paragraph until we get a single point. It is now clear that why there is a
exponent m in Eq. (18). The proof of CFM,x = GJ is now complete.

Let L(n+1,1),m,S
M(d)

consist of free generalized Motzkin paths ending at (n + 1, 1) with
exactly m step L. We immediately get the next result by the above theorem.

Corollary 3.3 The structure set L(n+1,1),m,S
M(d)

can be uniformly partitioned into n + 1
blocks according to the x-coordinates of rightmost minima. Therefore, L(n+1,1),m,S

M(d)
is

a Chung-Feller extension of M
(d)
n,m with extension rate n + 1.

From the view of the above two results, Theorem 2.3 and Corollary 2.4 now become
the special case as d = 1 and also all m (0 ≤ m ≤ n) are considered at a time.

Note that M(x, s, 0) = C(d)(xd+1sd), because plugging t = 0 forces us considering
only those paths without step L, which are the Catalan paths of order d. Here, we
derive a various kind of extension for C

(d)
n . It is various compared with the previous know

CF-properties for the extension rates are different.
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Corollary 3.4 The structure sets L((d+1)n+1,1),S
C(d)

and (L(d+1)n,S
C(d)

,W) are both Chung-

Feller extensions of C
(d)
n associating the length of the path with extension rate dn + n + 1.

By this CF property, one easily derives a various formula for the generalized Catalan
number:

c(d)
n =

1

dn + n + 1

(

dn + n + 1

n

)

.

Particularly when d = 1, we get

cn = |Dn| =
1

2n + 1

(

2n + 1

n

)

. (19)

A bijective proof of this identity was given in [31].

3.2 Generalized k-color Motzkin paths

Let k be a fixed positive integer. By assigning one of k different colors for each step L

on a normal Motzkin path, one defines a k-colored Motzkin path (see [10, 25]). By the
same way, we can define generalized k-color Motzkin paths of order d, and denote the
corresponding set by a CM(k,d)

n and CM(k,d)
n,m . In particular, we have CM(1,d)

n = M
(d)
n and

CM(1,d)
n,m = M

(d)
n,m.

Assigning k colors is equivalent to enlarging both M
(d)
n,m and L(n+1,1),m,S

M(d)
by km

times. Therefore, CM(k,d)
n,m has k-color L(n+1,1),m,S

M(d)
as its CF extension with rate n + 1

by Corollary 2.4.
Actually, we can derive more than that by considering the generating function

CM(x, s, L1, . . . , Lk) :=
∑

ℓ,r,c1,...,ck≥0

mℓ,r,c1,...,ck
xℓsrLc1

1 · · ·Lck

k

= M(x, s, L1 + · · ·+ Lk), (20)

where mℓ,r,c1,...,ck
is the number of the generalized k-color Motzkin paths of order d whose

length are ℓ, and who have r steps U and c1, . . . , ck steps L colored respectively by 1, . . . , k.
In (20), M is defined as in (16) and replacing t by L1 + · · · + Lk is a trivial trick. The
generating function of Chung-Feller extension along the first index with respect to CM
is

CFCM(x, s, L1, . . . , Lk, y) :=
∑

ℓ,r,c1,...,ck

mℓ,r,c1,...,ck
xℓsrLc1

1 · · ·Lck

k (1 + y + · · ·+ yℓ)

= CFM,x(x, s, L1 + · · ·+ Lk, y), (21)

Note that the first identity is by definition and the second one follows (20).
Let CM(k,d)

n,c1,...,ck
⊆ CM(k,d)

n consist of all n-paths that have c1, . . . , ck steps L colored
respectively by 1, . . . , k. Let (Ln,c1,...,ck,S

M(d)
,W) and L(n+1,1),c1,...,ck,S

M(d)
consist of the

corresponding paths that also have c1, . . . , ck steps L colored respectively by 1, . . . , k.
By (21), the interpretation of CFCM can be easily followed from Theorem 3.2 and Corol-
lary 3.3. Therefore, we conclude a general result:
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Theorem 3.5 The structure sets (Ln,c1,...,ck,S
M(d)

,W) and L(n+1,1),c1,...,ck,S
M(d)

are both

Chung-Feller extensions of CM(k,d)
n,c1,...,ck

with extension rate n + 1.

Remark We can also extend M(x, s, t) along its second index. By the functional identity
M = 1 + t xM + sdxd+1Md+1 given in Subsection 3.1, we get

s = (1 − tx)A − xd+1Ad+1, (22)

where A := sM. In particular, provided t = 0 (which means no L steps), x = 1 and then
s replaced by x, this fraction condition will agree with (5). Thus, we expect to re-derive
the classical Chung-Feller theorem in this special case. Indeed, (22) can support another
version of CF-property for the generalized Motzkin paths of order d. We leave this as an
exercise or the reader may refer to [19].

4 The Schröder paths

We explore another two examples of the Chung-Feller property in the rest of the paper.
Let SCn = L+

2n,SSC
with SSC = {U = (1, 1), D = (1,−1), L2 = (2, 0)}. These lattice paths

are called the (large) Schröder n-paths and the cardinality |SCn| is the nth Schröder
number (see [24, 30]). Note that n means the semi-length here. Let

SC(x, u, w) =
∑

P∈SCN

xℓ(P )/2uU(P )wL2(P )

be the generating function of the Schröder paths. The benefit by adopting exponent U(P )
is mentioned at the end of the last section. It is easy to derive that SC = 1 + xwSC +
xuSC 2, where xw represents a level step L2 and xu represents a U together with a D.
So we have

x =
A − uA2

1 + wA
, (23)

where A = A(x, u, w) := xSC(x, u, w), and then P = A − uA2, Q = 1 + wA, P̂ =
1 − uA − uĀ, and Q̂ = w. By (8), we obtain

CFSC,x(x, u, w, y) =
1 + wA + wĀ + w2AĀ

1 − uA − uĀ − uwAĀ

= (1 + wA + wĀ + w2AĀ)
∑

m≥0

(uA + uĀ + uwAĀ)m.

To explore the structure represented by CFSC,x, we separate the formula above into
two parts. One is CFa(x, u, w) that contains only powers of A and no powers of Ā (so it
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is independent on y) and the other is CFb(x, u, w, y). Precisely, we have

CFa = (1 + wA)
∑

m≥0

(uA)m, (24)

CFb = (1 + wA)
(

∑

m1≥0

uAm1
)

(uĀ + uwAĀ)
∑

m2≥0

(uA + uĀ + uwAĀ)m2

+(wĀ + w2AĀ)
∑

m≥0

(uA + uĀ + uwAĀ)m

=
[

CFauĀ + CFauAwĀ + wĀ + wAwĀ
]

×
∑

m≥0

(uA + uĀ + uAwĀ)m (25)

Because CFa(x, u, w) = CFSC,x(x, u, w, 0) = SC(x, u, w), we shall explore how CFa in-
terprets the Schröder paths. As a benefit, this interpretation triggers our argument on
CFb.

The formula (1 + wA)
∑

m≥0(uA)m symbolizes the last-prairie decomposition of every
path in SCN, where a prairie means a step L2 on the x-axis (or the horizon). Clearly,

uA = uxSC = the GF of the paths in form “U -a Schröder path-D.”

and we call a path or subpath in this form a hill. If a path P ∈ SCN has no prairie, then it
is a combination of contiguous hills; thus, P is one of 1×

∑

m≥0(uA)m. If P has a prairie,
then it is one of wA ×

∑

m≥0(uA)m, where the wx in wA = wxSC is what we call the
last-prairie on P . In other words,

wA = the GF of the paths in form “a Schröder path-L2.”

The way we interpret wA is the key for the argument on CFb. In addition, a subpath
related to uĀ is called a vale, because

uĀ = the GF of the paths in form “D-a weakly flaw Schröder path-U .”

Here is one more tool we need. In (25), the summation of the trinomial powers is
rearranged as follows

G :=
∑

m≥0

(uA + uĀ + uAwĀ)m (26)

=
(

∑

m1≥0

(uA + uĀ)m1

)(

1 + uAwĀG
)

. (27)

We claim that G is the generating function of the structure set denoted and defined
as

G := {P ∈ L2N,SSC
| there is no prairie before the first hill of P}. (28)

A easy consequence of this claim is that the exponent of y in G equals the number of
prairies and flaw steps D on each P ∈ G.
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Now let us verify the claim. By definition, P shall begin with a U or a D; otherwise
ℓ(P ) = 0. If P has no prairie, then it is a combination of hills and vales; so P is one
of
∑

m1≥0(uA + uĀ)m1 × 1 in (27). Suppose P has a prairie and a step L2 located in

[v, v + 2] is the first prairie. By definition, some hills exist on P L
v . Among these hills,

suppose the last one lies over the interval [h0, h1]. Starting at v to the right until the next
hill or until the end of P if the next hill does not exist, we locate the last prairie L2 in
the interval [w − 2, w]. It is easy to realize that subpath P[h0,w] is one of uAwĀ, and the
subpath P L

h0
is one of

∑

m1≥0(uA + uĀ)m1 . Since the subpath P R
w is again the type that

before the first hill there is no prairie, it is one of G. Therefore, the whole P is one of
∑

m1≥0(uA + uĀ)m1 × uAwĀG in (27). Now our claim follows.
We define a new structure set as

(L2N,SSC
,V) := {(P, v) | P ∈ L2N,SSC

and v is a marked point on P such that

P L
v is a Schröder path and the succeeding step of v is not U}.

By definition, v must be an even integer point on the x-axis, and either it is the right
end of P or its succeeding step is D or L2. We claim that the generating function of
(L2N,SSC

,V) is exactly CFSC,x(x, u, w, y), where the exponent of y counts the number of
flaw steps D and prairies L2 on the subpath P R

v (or the semi-length of all weakly flaw
steps on P R

v )—we will call these steps the y-related steps for short. For independent on y,
CFa should be the generating function of those (P, v) ∈ (L2N,SSC

,V) that have v locating
at the end of P . It is correct. Because P L

v is a normal Schröder path and the fact P = P L
v

verifies the set of this kind of (P, v) isomorphic to SCN.
Now we are led to verify that the rest of (P, v) ∈ (L2N,SSC

,V), each of which has at
least a y-related step, yield the generating function CFb(x, u, w, y). Because a y-related
step appears, v cannot be the right end of P , and then P R

v starts with a D or L2. The
following argument has four cases according to the four terms inside the bracket of (25).

Case I: When no prairie exists before the first hill of P R
v or before the end of P R

v if
no hill exists. In this case, the subpath P R

v must start with a D, or vale in other words.
Suppose this vale located in [v, q]. It is clear that P L

v , P[v,q] and P R
q claim ones of CFa,

uĀ and G respectively. Therefore, this case claims the first term in the bracket of (25)
multiplied by G. Note that the y-related steps yields by uĀ and G, and then the count
starts at v.

For the remaining three cases II, III and IV, let [q − 2, q] be the location of the last
prairie L2 before the first hill of P R

v or before the end if no hill exists on P R
v . So P[v,q] is

one of wĀ = zwSC(z, u, w), where the factor zw represents this last prairie. For all four
cases, the subpath P R

q is one of G. In addition, wĀG represents P R
v and is a common

factor of the remaining three cases. This common factor is the only source of y’s exponent;
so the count of the y-related steps starts at v again.

Case II: When the subpath P L
v is empty. So nothing need to be multiplied by wĀG.

The third term in the bracket of (25) matches this case.
Case III: When the preceding step of v is a U . Then P L

v claims one of CFauA.
Case IV: When the preceding step of v is a L2. Then P L

v claims one of wA.
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Figure 1: structure set (L4,SSC
,V) and y-related steps

The whole proof is now complete. We show (L4,SSC
,V) by Figure 1 and conclude the

argument above by the following properties.

Theorem 4.1 (a) The structure set (L2n,SSC
,V) is a Chung-Feller extension of the (large)

Schröder n-paths. (b) Let An,m ⊆ (L2n,SSC
,V) (respectively Bn,m ⊆ SCn) consist of those

paths with m steps L2. Then we have |An,m| = (n+1) |Bn,m|. (c) The k-colored (L2n,SSC
,V)

(or a weighted one) is a Chung-Feller extension of the k-colored (weighted) SCn. (d) Given
m = (m1, . . . , mk) with each mi ∈ N. Let An,m ⊆ (L2n,SSC

,V) (respectively Bn,m ⊆ SCn)
consist of the paths that have mi steps L2 colored by i. Then we have |An,m| = (n +
1) |Bn,m|.

In part (b), “k-colored” means that L2 has k different colors, and “weighted” means the
same idea of the weight function Ωw mentioned in the last section.

Given P ∈ L2N,SSC
, a weight function of P is defined by

Ψ(P ) := 1 + the number of prairies before the first flaw step of P.

The Ψ-weighted L2N,SSC
is an alias of (L2N,SSC

,V). The idea of weighting is also demon-
strated in Figure 1 where a same path appears as many times as its weight.

Corollary 4.2 The total weight in the Ψ-weighted L2n,SSC
is n+1 times the nth Schröder

number |SCn|.

5 The little Schröder paths

In this section, we deal with the little Schröder paths that are paths in SCN containing
no prairie, i.e., no step L2 lies on the x-axis. We use LSn to denote the set of the little
Schröder paths of semi-length n and let LS(x, u, w) =

∑

P∈LSN
xℓ(P )/2uU(P )wL2(P ) be the

generating function. It is easy to derive that LS = 1 + xuSC × LS, and then

LS =
1

1 − uA
, (29)
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where A = ASC = xSC not xLS. The approach here is different from all previous
CF extensions in this paper. We have xLS = A

1+wA
by multiplying (29) by x = A−uA2

1+wA

(see (23)). By Definition 2.1, we get

CFLS(x, u, w, y) =
xLS(x) − zLS(z)

x − z

=
( A

1 + wA
−

Ā

1 + wĀ

)/(A − uA2

1 + wA
−

Ā − uĀ2

1 + wĀ

)

=
1

1 − uA − uĀ − uwAĀ

=
∑

m≥0

(uA + uĀ + uAwĀ)m. (30)

The last formula is the same as (26). Therefore, CFLS is the generating function of G
defined in (28), and the exponent of y is the semi-length of all weakly flaw steps. We
conclude the argument above by following properties.

Theorem 5.1 (a) The structure set G is a Chung-Feller extension of the little Schröder
paths. (b) Let An,m ⊆ G (respectively Bn,m ⊆ LSN) consist of those paths of length 2n
with m steps L2. Then we have |An,m| = (n + 1) |Bn,m|. (c) Let k ≥ 1. The (weighted re-
spectively) k-colored G is a Chung-Feller extension of the (weighted respectively) k-colored
little Schröder paths. (d) Given m = (m1, . . . , mk) with each mi ∈ N. Let An,m ⊆ G
(respectively Bn,m ⊆ LSN) consist of 2n-paths that have mi steps L2 colored by i. Then
we have |An,m| = (n + 1) |Bn,m|.

We demonstrate another CF extension of LSn by explaining

CFLS(x, 1, 1, y) =
∑

m≥0

(A + Ā + AĀ)m.

Note that A = xGSC symbolizes lifted Schröder paths, i.e., paths of form U -a Schröder
path-D. Similarly, Ā represents those paths of form D-a weakly flaw Schröder path-U .
No doubt that (A + Ā)m represents concatenations of subpaths in these two forms. Let
Kn ⊆ L2n,SC consist of the paths without prairie. The generating function of KN is exactly
∑

m≥0(A+ Ā)m. But how about AĀ? We have to use a proper weight function to explain
CFLS(x, 1, 1, y). Given a path P ∈ KN, let δ(P ) be the number of consecutive D-D’s on
P that cross the x-axis, i.e., the number of AĀ-type subpaths of P . Once an AĀ-type
subpath appears in P , at the same we shall consider this subpath as two components,
namely A and Ā, and also consider it a single component, namely AĀ. By this way
we define a weight function as ω(P ) = 2δ(P ) and then CFLS(x, 1, 1, y) is equal to the
generating function defined by

∑

P∈KN

ω(P )xℓ(P )/2yf(P )/2,

where f(P ) is the total length of the flaw steps on P .
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Figure 2: The ω-weighted K3. The numbers are the weight and the semi-length of flaw
steps.

Theorem 5.2 The ω-weighted Kn is a Chung-Feller extension of the little Schröder n-
paths.

We show Figure 2 to demonstrate ω-weighted K3. Since |LS3| = 11, the total weight of K3

is 44. Be aware of that the analogous properties as parts (b), (c) and (d) in Theorem 5.1
cannot apply here, because we plug u = w = 1 into CFLS and then blur the distinction
between steps U and L2.

The final remark and the acknowledgements

The ballot problem is a more general problem and draws our further interest. In a survey
paper of Renault [22], four different proofs of the ballot theorem were reviewed, including
the cycle lemma and the uniform partition method. Different from the previous bijective
proofs, our study actually open a new branch for the uniform partition method by using
generating functions. Several follow-up researches have been done by Huan, Ma and Yeh.
Please, refer to [14, 19, 20].

The authors would like to thank the anonymous referees for many valuable comments
and suggestions.
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146 (1995) 247–262.

[31] W.-J. Woan, Uniform partitions of lattice paths and Chung-Feller generalizations,
Amer. Math. Monthly, 108 (2001) 556–559.

the electronic journal of combinatorics 18 (2011), #P104 20


