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Abstract

Given a finite set V and a set S of permutations of V , the group action graph

GAG(V, S) is the digraph with vertex set V and arcs (v, vσ) for all v ∈ V and
σ ∈ S. Let 〈S〉 be the group generated by S. The Cayley digraph Cay(〈S〉, S) is
called a Cayley cover of GAG(V, S). We define the Kautz digraphs as group action
graphs and give an explicit construction of the corresponding Cayley cover. This is
an answer to a problem posed by Heydemann in 1996.

1 Introduction

The importance of graph symmetry from theoretical and applied points of view has been
emphasized many times; see, for instance, [1, 2, 11, 12, 14]. Furthermore, the idea of
associating a Cayley digraph to a non-symmetric digraph in such a way that the properties
of one gives information about the other has been frequently used. For instance, Fiol et
al. [7, 8, 9] have shown that, in the context of dynamic memory networks, the idea of
associating a Cayley digraph on a permutation group on the set of vertices of the network
plays a central role in a unified approach to the topic. The idea of symmetrization of a
digraph is used by Espona and Serra in [6] to construct Cayley covers of the de Bruijn
digraphs, and by Mansilla and Serra in the context of k-arc transitivity [15, 16]. The
group action graphs defined by Annexstein et al. in [2], give a way to associate to each
non-symmetric digraph a number of Cayley graphs.

The de Bruijn and Kautz digraphs are the iterated line digraphs from the complete
digraph with and without loops, respectively [10]. They are dense digraphs, and they
have high connectivity, and many other good properties [3]. But, in general, they are
not symmetric. Serra and Fiol have calculated the permutation groups of the de Bruijn
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digraph [18]. From them, an explicit construction of the Cayley digraph associated to the
de Bruijn digraphs as group action graphs is known. For Kautz digraphs K(d, n), it is
known for which values of d and n they are Cayley digraphs (see [4]), and, in the case
that d+ 1 is a prime number, Mansilla and Serra [15] gave an explicit construction of the
corresponding Cayley digraph.

The problem 47 posed by Heydemann in [13], consists in giving an explicit construction
of the Cayley digraph associated to the Kautz digraphs K(d, n) considered as group action
graph. Our goal here is to solve this problem for all values of d and n.

The paper is organized as follows. In the next section we give definitions, known
results and a suitable representation of the Kautz digraphs K(d, n). Section 3 is devoted
to an explicit construction of a group Σ = Σ(d, n) and a generating system G for Σ. In
Section 4 we show that the Cayley digraph Cay (Σ,G) is a Cayley regular cover of K(d, n),
the explicit construction asked by Heydemann.

For undefined concepts about group theory we refer to [17], and for undefined concepts
about graph theory we refer to [5].

2 Group action graphs and Kautz digraphs

Given a (finite) set V and a set S of permutations of V , the group action graph (GAG for
short) defined by V and S is the digraph with vertex set V and arcs (v, vσ) for all v ∈ V
and σ ∈ S; it is denoted by GAG(V, S). If we admit multiple arcs, a GAG is regular, the
degree being the cardinality of S. In a natural way, the group 〈S〉 generated by S acts on
V , and GAG(V, S) is strongly connected if and only if the action of 〈S〉 on V is transitive.
In this paper, all digraphs considered are strongly connected.

The concepts of arc-coloring and decompositions into permutations, are closely related
to GAG. Let Γ = (V,E) be a d-regular digraph. An arc-coloring of Γ is an assignment
of an element in {0, . . . , d − 1} to each arc of E in such a way that, for all v ∈ V , the d
arcs incident to v have different assignments, and the d arcs incident from v have different
assignments as well. The element assigned to an arc is called the color of the arc. A set
S = {σ0, . . . , σd−1} of d permutations of V is a decomposition into permutations of Γ if,
for every vertex v ∈ V , (i) (v, vσa) ∈ E for all a ∈ {0, . . . , d − 1}; (ii) vσa = vσb implies
a = b for all a, b ∈ {0, . . . , d− 1}.

The two concepts, arc-coloring and decomposition into permutations, are equivalent.
Indeed, given an arc-coloring of Γ, for each color a ∈ {0, . . . , d − 1} and each v ∈ V , let
vσa be the unique vertex adjacent from v by an arc of color a. Then, the map σa:V → V
defined by v 7→ vσa is a permutation of V , and the set S = {σ0, . . . , σd−1} is a decom-
position of Γ into permutations. Conversely, given a decomposition into permutations
S = {σ0, . . . , σd−1} of Γ, if we assign to the arc (v, vσa) the color a, then we obtain
an arc-coloring of Γ. It is well known that, as a consequence of Hall’s matching theo-
rem, every d-regular digraph admits an arc-coloring (in fact, in general, it admits many
arc-colorings).

A decomposition into permutations S of a d-regular digraph Γ = (V,E) allows us to
see Γ as a GAG. Indeed, Γ is just the GAG defined by V and S, that is, Γ = GAG (V, S).
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As, in general, Γ admits many decompositions into permutations, the digraph Γ can be
seen as a GAG in many ways.

Given a group Ω, and a generating system S for Ω, the Cayley digraph Cay (Ω, S) is
the digraph which has Ω as set of vertices and each vertex v is adjacent to the vertices
vs, with s ∈ S. If Γ is a d-regular digraph and S is a decomposition into permutations
of Γ, the Cayley graph Cay(〈S〉, S) is called a Cayley regular cover of Γ. As pointed out
in [2], the digraph Γ is a quotient digraph of each of its regular covers. Indeed, fixed a
vertex v, the map f : Cay(〈S〉, S) → Γ defined by f(σ) = vσ is a digraph homomorphism
onto Γ, and, for all u ∈ V , the set f−1(u) has the cardinality of the stabilizer in 〈S〉 of v.

The de Bruijn digraph B(d, n) is the digraph with vertex set Z
n
d and each vertex

z0 . . . zn−1 is adjacent to the d vertices z1 . . . zn with zn ∈ Zd. Clearly, B(d, n) is d-regular.
The digraph B(d, 1) is the complete digraph with loops on d vertices K+

d = Cay(Zd,Zd).
For n ≥ 2, the digraphs B(d, n) are iterated line digraphs B(d, n) = LB(d, n − 1) =
Ln−1B(d, 1), see [10]. For a ∈ Zd, the map σa: Z

n
d → Z

n
d defined by (z0 . . . zn−1)

σa =
z1 . . . zn−1(z0+a) is a permutation of Z

n
d , and the set S = {σ0, . . . , σd−1} is a decomposition

of B(d, n) into permutations. The Cayley regular cover Cay(〈S〉, S) associated to these
permutations is known, see [15].

The Kautz digraph K(d, n) is the d-regular digraph with vertex set V = {z0 . . . zn−1 ∈
Z
n
d+1 : zi 6= zi+1 for i = 0, . . . , n − 2}, and each vertex z0 . . . zn−1 is adjacent to the

d vertices z1 . . . zn−1zn with zn ∈ Zd+1 \ {zn−1}. The digraph K(d, 1) is the complete
digraph without loops on d + 1 vertices Kd+1 = Cay(Zd+1,Zd+1 \ {0}). For n ≥ 2,
the digraphs K(d, n) are iterated line digraphs K(d, n) = LK(d, n − 1) = Ln−1K(d, 1),
see [10]. The trivial case d = 1 gives K(1, n) ≃ K(1, 1) ≃ Cay(Z2, {1}), so in what follows
we assume d ≥ 2. When d + 1 is a prime number, Fiol et al. [8] give a representation of
K(d, n) and a decomposition of K(d, n) into permutations for which the corresponding
Cayley regular cover is explicitly obtained by Mansilla and Serra in [15]. Our explicit
construction for all values of (d, n) is based in a similar description of the Kautz digraph
and in a decomposition into permutations which uses this description.

To avoid inconsistencies of notation, for an integer m ≥ 2, we take the set of integers
{0, 1, . . . , m − 1} (and not equivalence classes of integers) as the elements of the cyclic
group Zm of order m generated by 1. In this way, as a set Zd is a subset (but not
a subgroup) of Zd+1 and, if c ∈ Zd and and z ∈ Zd+1, the sum z + c in Zd+1 has a
non-ambigous meaning.

For a ∈ Zd, the map τa: Zd+1 → Zd+1 defined by xτa = x + a + 1 is a permutation of
Zd+1, and the set S = {τ0, . . . , τd−1} is a decomposition of Kd+1 into permutations, and
the arc (z, zτa) is said to be of color a. As K(d, n) = Ln−1K(d, 1), each vertex in K(d, n)
is a walk z0 . . . zn−1 in K(d, 1), which is completely determined by the initial vertex z0
and the sequence of colors c = c0 . . . cn−2 of the successive arcs (z0, z1), . . . , (zn−2, zn−1)
in K(d, 1). Denoting the vertex z0 . . . zn−1 of K(d, n) by (z0, c) = (z0, c0 . . . cn−2), the
vertex set of K(d, n) can be identified with Zd+1 × Z

n−1
d , and each vertex (z, c0 . . . cn−2)

is adjacent in K(d, n) to the d vertices (z + c0 + 1, c1 . . . cn−2cn−1) with cn−1 ∈ Zd. From
now on, we take this description for K(d, n).

Let V = Zd+1×Z
n−1
d be the vertex set of K(d, n). For each a ∈ Zd, the map σa:V → V
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defined by (z, c0 . . . cn−2)
σa = (x+c0+1, c1 . . . cn−2(c0+a)) is a permutation of V , and the

set S = {σ0, . . . , σd−1} is a decomposition of K(d, n) into permutations. Thus, K(d, n)
is the group action graph K(d, n) = GAG (V, S). In what follows we give an explicit
description of the Cayley regular cover Cay(〈S〉, S) of K(d, n) = GAG (V, S).

3 The group

Let ψ be the shift automorphism of Z
n−1
d defined by ψ(a0, . . . , an−2) = (a1, . . . , an−2, a0).

The map i 7→ ψi is a group homomorphism from Zn−1 to Aut Z
n−1
d , the automorphism

group of Z
n−1
d , so we can form the semidirect product Zn−1 ⋊ Z

n−1
d with the operation

defined by (i, a)(j,b) = (i+ j, ψj(a) + b).
Let Hd

d+1 be the subgroup of Z
d
d+1 formed by the elements with sum of coordinates

equal to zero:

Hd
d+1 = {(x0, . . . , xd−1) ∈ Z

d
d+1 : x0 + · · · + xd−1 = 0}.

The group Hd
d+1 has order |Hd

d+1| = (d+ 1)d−1. Let φ be the shift automorphism of Hd
d+1

defined by φ(x0, . . . , xd−1) = (x1, . . . , xd−1, x0). If a = (a0, . . . , an−2) ∈ Z
n−1
d , we define

φa = (φa0 , φa1 , . . . , φan−2): (Hd
d+1)

n−1 → (Hd
d+1)

n−1

by
φa(x0, . . . ,xn−2) = (φa0(x0), . . . , φ

an−2(xn−2)).

Clearly, φa is an automorphism of (Hd
d+1)

n−1. Denote by ψ the shift automorphism of
(Hd

d+1)
n−1 defined by ψ(x0, . . . ,xn−2) = (x1, . . . ,xn−2,x0). (Note that we use the same

symbol ψ for the shift automorphism of Z
n−1
d and for the shift automorphism of (Hd

d+1)
n−1.

In both cases ψ is a shift of vectors of length n− 1, while φ is applied to vectors of length
d.) For each (i, a) ∈ Zn−1 ⋊ Z

n−1
d , the map ψ−iφ−a is an automorphism of (Hd

d+1)
n−1.

Moreover, from the fact that φaψ = ψφψ
−1(a), the map f : Zn−1⋊(Zd)

n−1 → Aut(Hd
d+1)

n−1,
defined by f(i, a) = ψ−iφ−a is a group homomorphism. Indeed, we have

f(i, a)f(j,b) = (ψ−iφ−a)(ψ−jφ−b)

= ψ−i(φ−aψ−j)φ−b

= ψ−iψ−jφψ
j(−a)φ−b

= ψ−(i+j)φ−(ψj(a)+b)

= f(i+ j, ψj(a) + b)

= f((i, a)(j,b)).

Consider the semidirect product Σ′(d, n) =
(

Zn−1 ⋊ Z
n−1
d

)

⋊(Hd
d+1)

n−1, with the operation
defined by

(i, a,X)(j,b,Y) =
(

i+ j, ψj(a) + b, X + ψ−iφ−a(Y)
)

.
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Let Σ(d, n) be the direct product Σ′(d, n) × Z2 if d is odd and n is even, and Σ(d, n) =
Σ′(d, n) otherwise. The order of Σ(d, n) is

|Σ(d, n)| =

{

2(n− 1)dn−1(d+ 1)(d−1)(n−1), if d is odd and n is even;

(n− 1)dn−1(d+ 1)(d−1)(n−1), otherwise.

Now, we shall show a generating system for Σ(d, n). First, let us introduce some
notation to make it easier to write some elements in Σ(d, n). Let e0 = 10 . . . 0, . . . , en−2 =
0 . . . 01, be the vectors of the canonical base of Z

n−1
d . If a ∈ Zd, then aei is the vector

0 . . . 0a0 . . . 0 with a in the i-th position (positions are counted from 0 to n − 2). Both
the zero vector of Z

n−1
d and the zero vector of Hd

d+1 are denoted by 0, while the zero
vector of (Hd

d+1)
n−1 is denoted by O. With this notation, the neutral element of Σ(d, n)

is O = (0, 0,O, 0) if d is odd and n even and O = (0, 0,O) otherwise. We define v =
1 . . . 12 ∈ Hd

d+1 and Xv = (v, 0, . . . , 0) ∈ (Hd
d+1)

n−1. For each j ∈ {0, . . . , d − 2}, let
gj = 0 . . . 010 . . . d be the vector of Hd

d+1 with the j-th coordinate equal to 1, the last
coordinate equal to d = −1, and the remaining coordinates equal to zero. Note that the
vectors g0, . . . , gd−2 form a generating system for Hd

d+1.
For each a ∈ Zd define G(a) ∈ Σ(d, n) by G(a) = (1, aen−2,Xv, 1) if d is odd and n is

even, and G(a) = (1, aen−2,Xv) otherwise.

Proposition 1 The set {G(0), G(1)} is a generating system for Σ(d, n).

Proof It is sufficient to define elements U , E(r) (0 ≤ r ≤ n−2), and F (r, s) (0 ≤ r ≤ n−2
and 0 ≤ s ≤ d− 2), in the subgroup 〈G(0), G(1)〉 of Σ = Σ(d, n) generated by G(0) and
G(1) and to show that the elements U , E(r) and F (r, s) form a generating system for Σ.

First consider the case when d is even or n is odd, i.e., when Σ does not have the
factor Z2. Direct calculations give

G(1)n−2 = (n− 2, 01 . . . 1, (v, . . . ,v, 0)) ,

G(0)G(1)n−2 = (0, 01 . . . 1, (v, . . . ,v)) ,
(

G(0)G(1)n−2
)d

= (0, 0, (−v, 0, . . . , 0)) = (0, 0, −Xv).

Define W = (G(0)G(1)n−2)
d

= (0, 0, −Xv) and U = WG(0) = (1, 0,O). Clearly,
U ∈ 〈G(0), G(1)〉, and for any element (i, a,X) ∈ Σ, we have

(i, a,X)U = (i+ 1, a,X). (1)

Let E(0) = WG(1)U−1 = (0, e0,O) and, for 1 ≤ r ≤ n− 2, define

E(r) = U rE(0)U−r = (0, er,O).

Then, E(r) ∈ 〈G(0), G(1)〉 and, for any element (i, a,X) ∈ Σ, we have

(i, a,X)E(r) = (i, a + er,X). (2)
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Now, for 0 ≤ r ≤ n− 2 and 0 ≤ s ≤ d− 2, we define

F (r, s) = U rW E(0)s+1W−1E(0)−(s+1)

= U r (0, (s+ 1)e0, −Xv) (0, −(s+ 1)e0, Xv)

= (r, 0, O) (0, 0, (gs, 0, . . . , 0))

=
(

r, 0, ψ−r(gs, 0, . . . , 0)
)

.

Clearly, F (r, s) ∈ 〈G(0), G(1)〉, and, for any element (0, 0,X) ∈ Σ, we have

(0, 0, X)F (r, s) = (r, 0, X + ψ−r(gs, 0, . . . , 0)). (3)

Note that if X = (x0, . . . ,xn−2), then X + ψ−r(gs, 0, . . . , 0) is the vector obtained from
X by adding gs to xr, that is, by adding 1 to the s-th coordinate of xr and −1 to the last
coordinate of xr.

Let (i, a,X) ∈ Σ. Since g0, . . . , gd−2 is a generating system for Hd
d+1, according to (3),

an appropriate product of F (r1, s1) · · ·F (rk, sk) gives an element of the form (j, 0,X).
Because of (2), multiplying on the right by an appropriate product E(r1) · · ·E(rℓ) we can
obtain (j, a,X). Finally, because of (1), a product on the right by U i−j gives (i, a,X).
We conclude that the elements U , E(r), and F (r, s) in 〈G(0), G(1)〉 form a generating
system for Σ. Hence, 〈G(0), G(1)〉 = Σ.

Now consider the case when d is odd and n is even; in this case, both n−1 and d(n−1)
are odd. Therefore,

G(1)n−1 = (0, 1 . . . 1, (v, . . . ,v), 1),

G(1)(n−1)d = (0, 0,O, 1).

Define U , E(r) and F (r, s) in terms of G(0) and G(1) in the same way as before. Given
any element A = (i, a,X, α) ∈ Σ, a suitable product of F (r, s)’s, E(r)’s and U ’s gives an
element (i, a,X, β). Now, multiplying by G(1)(n−1)d if necessary, we obtain A. So, in this
case, Σ = 〈G(0), G(1)〉, as well. �

By Proposition 1, it is clear that the set S = {G(0), . . . , G(d − 1)} is a generating
system for Σ(d, n), too.

4 The Cayley cover

Recall that we have defined K(d, n) as the digraph with V = Zd+1 × Z
n−1
d as vertex set

and each vertex (z, c0 . . . cn−2) adjacent to the vertices (z + c0 + 1, c1 . . . cn−2cn−1) with
cn−1 ∈ Zd. Moreover, we consider the arc-coloring corresponding to the permutations σa
defined by (z, c0 . . . cn−2)

σa = (z + c0 + 1, c1 . . . cn−2(c0 + a)).
To define an action of the group Σ = Σ(d, n) constructed in the previous section on

V , the following notation will be used. Let h = (1, . . . , d − 2, d − 1, 0) ∈ Z
d
d+1. For

x = (x0, . . . , xd−1) ∈ Hd
d+1, define h · x = x0 + 2x1 + · · · + (d− 1)xd−2 with operations in

Zd+1. Moreover, when d is odd, we denote by m the element m = (d+ 1)/2 of Zd+1.
The action is defined depending on the parity of d and n. Define ρ : V × Σ → V ,

ρ(v, A) = vA as follows:
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• if d is even,

(z, c) (i, a,X) =

(

z + h ·
n−2
∑

ℓ=0

φ−cℓ(xℓ), a + ψi(c)

)

;

• if d and n are odd,

(z, c) (i, a,X) =

(

z + h ·

n−2
∑

ℓ=0

φ−cℓ(xℓ) + ε(i)m, a + ψi(c)

)

,

where ε(i) = 0 if i is even and ε(i) = 1 if i is odd.

• if d is odd and n is even,

(z, c) (i, a,X, α) =

(

z + h ·
n−2
∑

ℓ=0

φ−cℓ(xℓ) + αm, a + ψi(c)

)

.

Then, we have:

Proposition 2 The map ρ is a faithful action of Σ on V .

Proof First, we show that ρ is an action. In all cases it is easy to check that if O
is the neutral element in Σ, then ρ(v, O) = v for every vertex v. We shall check that
ρ(ρ(v, A), B) = ρ(v, AB)) for every vertex v and all A,B ∈ Σ. Consider first the case
when d is even, and put v = (z, c), A = (i, a,X) and B = (j,b,Y). We have,

[(z, c) (i, a,X)] (j,b,Y) =
(

z + h ·
n−2
∑

ℓ=0

φ−cℓ(xℓ), a + ψi(c)
)

(j,b,Y)

=
(

z + h ·
n−2
∑

ℓ=0

φ−cℓ(xℓ) + h ·
n−2
∑

ℓ=0

φ−aℓ−cℓ+i(yℓ),

ψj(a + ψi(c)) + b
)

.

=
(

z + h ·

n−2
∑

ℓ=0

φ−cℓ(xℓ) + h ·

n−2
∑

ℓ=0

φ−aℓ−i−cℓ(yℓ−i),

ψj(a) + ψi+j(c) + b
)

.

=
(

z + h ·

n−2
∑

ℓ=0

φ−cℓ(xℓ + φ−aℓ−i(yℓ−i)),

ψi+j(c) + ψj(a) + b
)

= (z, c)
(

i+ j, ψj(a) + b, X + ψ−iφ−a(Y)
)

= (z, c) [(i, a,X) (j,b,Y)] .
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Consider the second case, when both d and n are odd. By the same argument as in
the case d even, now one must add ε(i)m+ε(j)m to the initial vertex of [(z, c)A]B. Since
m has order 2, we have mε(i) +mε(j) = mε(i+ j), which is what must be added to the
initial vertex of (z, c)(AB). Thus, in this case, ρ is an action, as well.

An analogous argument applies to the third case, when d is odd and n is even. If
A = (i, a,X, α) and B = (j,B,Y, β), one must add mα + mβ to the initial vertex of
[(z, c)A]B, and m(α + β) = mα +mβ, to the initial vertex of (z, c)(AB).

Now we shall see that the action is faithful. Consider first the case when d is even.
Assume that (z, c)(i, a,X) = (z, c) for all vertices (z, c). By taking c = 0, we get
0 = c = a + ψi(c) = a + 0 = a. For c = e0, we have e0 = a + ψi(e0) = ψi(e0), so i = 0.
Finally, take z = 0 and c = qej . Then

0 = h ·

n−2
∑

ℓ=0

φ−cℓ(xℓ) = h ·

(

φ−q(xℓ) +
∑

ℓ 6=j

xℓ

)

. (4)

Analogously, for z = 0 and c = (q + 1)ej , we have

0 = h ·

n−2
∑

ℓ=0

φ−cℓ(xℓ) = h ·

(

φ−q−1(xℓ) +
∑

ℓ 6=j

xℓ

)

. (5)

Subtracting (5) from (4), we obtain

h ·
(

φ−q(xj) − φ−q−1(xj)
)

= 0. (6)

If y = (y0, . . . , yd−1) = φ−q(xj), since y ∈ Hd
d+1, we have yd−1 = −(y0 + · · ·+ yd−2). Then,

0 = h · (y − φ−1(y))

= 1(y0 − yd−1) + 2(y1 − y0) + · · ·+ (d− 2)(yd−1 − yd−2)

= −y0 − y1 − · · · − yd−2 − (d− 1)yd−1

= −yd−1 − (d− 1)yd−1

= yd−1.

Thus, the (d− 1)-rst coordinate of y = φ−q(xj) is 0, that is, the (j − q)-th coordinate of
xj is zero. Since this is for all j ∈ {0, . . . , n − 1} and q ∈ {0, . . . , d − 1}, we obtain that
X = O.

Consider now the case when d is odd. By the same argument as in the d even case,
the values i = 0 and a = 0 are deduced. If n is also odd, then mε(i) = mε(0) = 0, and
equalities (4) and (5) can be obtained. By the same argument we get X = O. If n is
even, equations (4) and (5) must be changed to

0 = h ·

(

φ−q(xℓ) +
∑

ℓ 6=j

xℓ

)

+mα, and 0 = h ·

(

φ−q−1(xℓ) +
∑

ℓ 6=j

xℓ

)

+mα,
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and, by subtraction, the equality (6) is obtained. In the same way, we get X = O. Then,
we have (0, 0) = (0, 0)(i, a,O, α) = (0, 0)(0, 0,O, α) = (mα, 0). As α ∈ {0, 1} and m is
of order 2, we obtain α = 0. �

Next, we check that the permutations on V defined by the elements G(a) in Σ act
correctly.

Proposition 3 For each a ∈ Zd and each vertex (z, c) of K(d, n), the vertex adjacent

from (z, c) by an arc of color a is (z, c)σa = (z, c)G(a).

Proof Let c = c0 . . . cn−2 ∈ Z
n−1
d and Xv = (x0, . . . ,xn−2) = (v, 0, . . . , 0). First, we

calculate h ·
∑n−2

ℓ=0 φ
−cℓ(xℓ).

For even d,

h ·

n−2
∑

ℓ=0

φ−cℓ(xℓ) = h · φ−c0(v)

= (1 + 2 + · · · + (d− 1)) + c0

= (d− 1)
d

2
+ c0

= (d+ 1)
d− 2

2
+ 1 + c0

= 1 + c0.

If d and n are odd,

h ·
n−2
∑

ℓ=0

φ−cℓ(xℓ) + ε(1)m = (1 + 2 + · · ·+ (d− 1)) + c0 +m

= d
d− 1

2
+ c0 +

d+ 1

2

= (d+ 1)
d− 1

2
+ 1 + c0

= 1 + c0.

Analogously, if d is odd and n is even,

h ·

n−2
∑

ℓ=0

φ−cℓ(xℓ) +m = 1 + c0.

Thus, in any case,

(z, c)G(a) = (z + c0 + 1, aen−2 + φ(c) = (z + c0 + 1, c1 . . . cn−2(c0 + a)) = (z, c)σa . �

Putting together the description of K(d, n) as a GAG, and Propositions 1, 2, and 3,
we have the main theorem:
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Theorem 1 (i) The Kautz digraph is the group action graph K(d, n) = GAG(V, S)
where V = Zd+1 × Z

n−1
d , and S is the set S = {σa : a ∈ Zd} of permutations of V

defined by (z, c0 . . . cn−2)
σa = (z + c0 + 1, c1 . . . cn−2(c0 + a)).

(ii) The group generated by S is Σ(d, n), and

Cay (Σ(d, n), {G(0), . . . , G(d− 1)})

is a Cayley regular cover of K(d, n) = GAG(V, S).
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