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Abstract

We give a characterization of matchings in terms of the canonical reduced de-
compositions. As an application, the canonical reduced decompositions of 12312-
avoiding matchings are obtained. Based on such decompositions, we find a bijection
between 12312-avoiding matchings and ternary paths.

1 Introduction

A matching on a set [2n] = {1, 2, . . . , 2n} is a graph on [2n] in which every vertex has
degree one. The set of matchings on [2n] is denoted by Mn. Note that |Mn| = (2n−1)!! =
1 · 3 · 5 · · · (2n − 1). The linear representation of a matching is obtained by drawing 2n
points in the plane lying on a horizontal line, and connecting them by n arcs such that
each arc connects two of the points and lies above the points. Fig. 1 gives the linear
representation of the matching {(1, 3), (2, 4), (5, 6)}.

In this paper, we always use the canonical sequential form [13] of a matching on the set
[2n], which is a permutation of the multiset {1, 1, 2, 2, . . . , n, n} obtained in the following
way. Draw the linear representation of the matching, and label the arcs with the numbers
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1 2 3 4 5 6

Figure 1: Linear representation.

1, 2, . . . , n ordered by their leftmost endpoints. Then label each endpoint with the label
of the adjacent arc, and read the labels of the endpoints from left to right. For example,
the matching in Fig. 1 can be also displayed by 121233.

Let π and τ be two sequences. We say π avoids τ or is τ -avoiding, whenever π does
not contain a subsequence with all of the same pairwise comparisons as τ . For example,
the sequence 12342143 is 12123-avoiding, but not 13132-avoiding since it has 14143 as
a subsequence. In such a context τ is usually called a pattern. We denote the set of
τ -avoiding matchings on [2n] by Mn(τ).

The systematic study of pattern avoiding permutations was initiated in 1985 [17].
Starting with the work of Billey, Jockusch and Stanley [3], there has been increasing
interest in the connection between reduced decomposition and pattern avoiding permu-
tation (see [1, 2, 16, 19] and references therein). Other results involving pattern avoiding
matchings appeared in [5–7,9–15,20, 21].

Recently, by using generating functions, Chen, Mansour and Yan [5] show that the
number of 12312-avoiding matchings is given by the 3-Catalan numbers. A combinatorial
proof is also given in [5], which is based on a bijection between matchings and oscillating
tableaux.

The aim of this paper is to give a new bijective proof for the cardinality of Mn(12312).
The idea behind the proof is a new characterization of a matching, which we call the
canonical reduced decomposition. In Section 2, we introduce the necessary notations, and
describe an algorithm to generate the canonical reduced decomposition of a matching. The
canonical reduced decompositions of 12312-avoiding matchings are studied in Section 3.
Finally, in Section 4, we apply the canonical reduced decomposition to obtain a bijection
between 12312-avoiding matchings and ternary paths. Note that a ternary path is a lattice
path in the plane from (0, 0) to (2n, n) with 2n steps E = (1, 0) and n steps N = (0, 1)
and never lying above the line y = x/2.

2 Canonical reduced decompositions of matchings

In this section, we characterize matchings in terms of their canonical reduced decom-
positions. Let S

2
n denote the set of multiset permutations on {1, 1, 2, 2, . . . , n, n}. We

generalize the notion of reduced decompositions of permutations [19] to multiset permu-
tations.

Definition 2.1. For 1 ≤ i ≤ 2n − 1, define a map si : S
2
n → S

2
n such that si acts on an

element π in S
2
n by interchanging the integers in positions i and i+1. We call si a simple

transposition, and write the action of si on the right of π, denoted by πsi. Therefore,

π(sisj) = (πsi)sj.
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For example, 231123s4 = 231213.

Definition 2.2. A reduced decomposition of a multiset permutation π ∈ S
2
n is a sequence

of transpositions si0, si1 , . . . , sit such that π = (1122 · · ·nn)si0si1 · · · sit .

Note that the reduced decomposition of a matching is not unique. For example,
123213 = 112233s1s2s3s4s3 = 112233s2s3s5s4s3. To ensure the uniqueness of the decom-
position, we give the following definition.

Definition 2.3. A reduced decomposition of a matching Λ is canonical if it can be repre-

sented by

Λ = (1122 · · ·nn)σ1σ2 · · ·σk,

where

σi = shi
shi+1 · · · sti , hi ≤ ti (1 ≤ i ≤ k),

hi ∈ {2, 4, . . . , 2n − 2},

h1 > h2 > h3 > · · · > hk.

In particular, the canonical reduced decomposition of the matching 1122 · · ·nn is
empty, while the canonical reduced decomposition of the matching 12 · · ·nn · · · 21 has
the following form

12 · · ·nn · · · 21 = (1122 · · ·nn)(s2n−2s2n−1)(s2n−4s2n−3s2n−2s2n−1) · · · (s2s3 · · · s2n−1).

Theorem 2.4. The canonical reduced decomposition of a matching in Mn is unique.

Proof. We prove the contrapositive: Suppose a matching Λ in Mn has two canonical
reduced decompositions

Λ = (1122 · · ·nn)σ1σ2 · · ·σk = (1122 · · ·nn)σ̂1σ̂2 · · · σ̂m,

where σi = shi
shi+1 · · · sti (1 ≤ i ≤ k) and σ̂i = sbhi

sbhi+1
· · · sbti

(1 ≤ i ≤ m).

We shall show σi = σ̂i for any i. The first step is to prove σ1 = σ̂1, equivalently, to
prove h1 = ĥ1 and t1 = t̂1. We consider the following three cases:

1. h1 > ĥ1: The element of 1122 · · ·nn in position h1 will be transferred to position
t1 + 1 by the action of σ1, that is to say,

(1122 · · ·nn)σ1 = 1122 · · ·

(
h1

2
− 1

) (
h1

2
− 1

)
position h1−1

↑

h1

2

(
h1

2
+ 1

)
· · ·

position t1+1

↑

h1

2
· · · .

Since h1 > h2 > · · · > hk, the action of σ2 · · ·σk on (1122 · · ·nn)σ1 preserves the
relative order of integers h1

2
, h1

2
+ 1, . . . , n. It implies Λ = (1122 · · ·nn)σ1σ2 · · ·σk

has the subsequence
h1

2

(
h1

2
+ 1

)
· · ·

h1

2
· · · .
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However, observing that h1 > ĥ1 and ĥ1 > ĥ2 > · · · > ĥm, the matching Λ =
(1122 · · ·nn)σ̂1σ̂2 · · · σ̂m has the subsequence h1

2

h1

2

(
h1

2
+ 1

)
· · · , which gives a con-

tradiction.

2. h1 < ĥ1: The proof is similar as Case 1 and we omit it.

3. h1 = ĥ1, t1 6= t̂1: Similar analysis as Case 1, for Λ = (1122 · · ·nn)σ1σ2 · · ·σk, the
subsequence composed of integers h1

2
, h1

2
+ 1, . . . , n has the form

h1

2

(
h1

2
+ 1

)
· · ·

h1

2
· · · ,

where there exist t1−h1+1 elements between the two appearances of h1

2
. Meanwhile,

for Λ = (1122 · · ·nn)σ̂1σ̂2 · · · σ̂m, the subsequence composed of integers h1

2
, h1

2
+

1, . . . , n has the form
h1

2

(
h1

2
+ 1

)
· · ·

h1

2
· · · ,

and there are t̂1−h1+1 elements between the two appearances of h1

2
. This contradicts

that t1 6= t̂1.

It follows that σ1 = σ̂1. The proof of σi = σ̂i for i ≥ 2 is analogous.

Note that the product sisi+1 · · · sj is equivalent to the cyclic permutation on the seg-
ment from position i to position j +1. For Λ ∈ Mn, we describe an algorithm to generate
the canonical reduced decomposition of Λ.

Algorithm:

1. Let Λ1 := Λ. For 1 ≤ i ≤ n, find the position, say ℓ, of the second appearance of i
in Λi:

(1.1) If ℓ = 2, define σn+1−i to be the empty word;

(1.2) If ℓ > 2, define σn+1−i = s2is2i+1 · · · s2i+ℓ−3;

(1.3) Generate Λi+1 by deleting the two elements i in Λi;

2. The canonical reduced decomposition of Λ is the product of non-empty words
σ1, σ2, . . . , σn.

For example,

Λ1 = 12331442
i=1
−→
ℓ=5

σ4 = s2s3s4, Λ2 = 233442
i=2
−→
ℓ=6

σ3 = s4s5s6s7,

Λ3 = 3344
i=3
−→
ℓ=2

σ2 is empty, Λ4 = 44
i=4
−→
ℓ=2

σ1 is empty.

Thus, the canonical reduced decomposition of 12331442 is (s4s5s6s7)(s2s3s4).

Let Λ∗ be the matching obtained by subtracting 1 from each element of Λ2. It is
constructive to notice the following corollary.
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Corollary 2.5. The canonical reduced decomposition of Λ∗ is the product of non-empty

words σ1, σ2, . . . , σn−1 after subtracting 2 from the index of each simple transposition.

For example, for Λ = 12331442, we have Λ∗ = 122331 and the canonical reduced
decomposition of Λ∗ is (s2s3s4s5).

Extending the definition of the inversion on permutations [2, 4], an inversion of a
matching π1π2 · · ·π2n is a pair (πi, πj), where 1 ≤ i < j ≤ 2n and πi > πj.

Corollary 2.6. If σ is the canonical reduced decomposition of a matching Λ ∈ Mn, then

Λ has k inversions if and only if σ has exactly k simple transpositions.

3 Canonical reduced decompositions for Mn(12312)

In this section, we restrict the canonical reduced decompositions to 12312-avoiding match-
ings. We present the following result by inheriting the notations of Λ and Λ∗ in the
preceding section.

Theorem 3.1. Let σ = σ1σ2 · · ·σk be the canonical reduced decomposition of Λ, where

σi = shi
shi+1 · · · sti for 1 ≤ i ≤ k. Then we have

Λ ∈ Mn(12312) ⇔ tj ≥ ti or tj ≤ hi − 2, for 1 ≤ i < j ≤ k. (3.1)

Proof. The cases for k = 0, 1 are trivial. Now we consider k ≥ 2.

Observe that Λ ∈ Mn(12312) indicates Λ∗ ∈ Mn−1(12312). We use induction on n.
Clearly, the statement (3.1) is true for n = 1, 2. By induction hypothesis, we have

Λ∗ ∈ Mn−1(12312) ⇔ t∗j ≥ t∗i or t∗j ≤ h∗
i − 2, for 1 ≤ i < j ≤ m, (3.2)

where σ∗
1σ

∗
2 · · ·σ

∗
m is the canonical reduced decomposition of Λ∗ and σ∗

i = sh∗

i
sh∗

i +1 · · · st∗i
.

For Λ, let ℓ denote the position of the second appearance of 1. Here are two cases:

1. If ℓ = 2, then m = k, hi = h∗
i + 2, and ti = t∗i + 2 for 1 ≤ i ≤ k. Moreover, in this

case, Λ ∈ Mn(12312) if and only if Λ∗ ∈ Mn−1(12312). By (3.2), we have

Λ ∈ Mn(12312) ⇔ t∗j ≥ t∗i or t∗j ≤ h∗
i − 2 ⇔ tj ≥ ti or tj ≤ hi − 2,

for 1 ≤ i < j ≤ k.

2. If ℓ > 2, then m = k − 1, hi = h∗
i + 2, ti = t∗i + 2, for 1 ≤ i ≤ k − 1, and

σk = s2s3 · · · sℓ−1,

which gives hk = 2 and tk = ℓ − 1. In this case, we prove (3.1) in two steps:

Step 1.(⇐) By (3.2), we get Λ∗ ∈ Mn−1(12312). So it is sufficient to show that Λ
does not contain a subsequence

1, . . . , i1, . . . , i2, . . . , 1, . . . , i1
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where i2 > i1 > 1. Furthermore, we need only show that Λ does not have a
subsequence

1, . . . ,
hi0

2
, . . . ,

hi0

2
+ 1, . . . , 1, . . . ,

hi0

2
, (3.3)

where
hi0

2
+ 1 is the first appearance in Λ. By contradiction, choose a subsequence

of the form (3.3) such that hi0 is minimal. This implies that the element
hi0

2
+ 1 in

(3.3) is in position hi0 −1 of Λ. Notice that the second appearance of 1 in (3.3) is in

position tk + 1 of Λ, and the position of the second appearance of
hi0

2
in (3.3) is not

after the position ti0 + 1 in Λ. It follows that tk + 1 > hi0 − 1 and tk + 1 < ti0 + 1.
Thus, we deduce that tk > hi0 − 2 and tk < ti0 , which is a contradiction to the right
hand side of (3.1).

Step 2.(⇒) By (3.2), we have t∗j ≥ t∗i or t∗j ≤ h∗
i − 2 for 1 ≤ i < j ≤ k − 1. This

gives tj ≥ ti or tj ≤ hi − 2 for 1 ≤ i < j ≤ k − 1. Then it suffices to prove that
tk ≥ ti or tk ≤ hi − 2 for 1 ≤ i ≤ k − 1. Otherwise, choose i0 to be the maximal
index such that tk < ti0 and tk > hi0 − 2. This implies that the second appearance

of
hi0

2
in Λ is in position ti0 + 1. Notice that the second appearance of 1 in Λ is in

position tk + 1, and the position of the first appearance of
hi0

2
+ 1 is not after the

position hi0 + 1 in Λ. Therefore, there exists a subsequence of Λ with the following
form

1, . . . ,
hi0

2
, . . . ,

hi0

2
+ 1, . . . , 1, . . . ,

hi0

2
, . . .

which contradicts that Λ is 12312-avoiding.

4 Bijection between ternary paths and Mn(12312)

Chen, Mansour and Yan [5] show that the number of 12312-avoiding matchings on [2n]
equals the 3-Catalan numbers [18, Sequence A001764], namely,

|Mn(12312)| =
1

2n + 1

(
3n

n

)
.

Note that the 3-Catalan numbers also count ternary paths of length 3n. A ternary path

of length 3n is a lattice path in the plane from (0, 0) to (2n, n) with 2n steps E = (1, 0)
and n steps N = (0, 1) and never lying above the line y = x/2. For example, a ternary
path P = EEEEENEEENEENENENN is shown in Fig. 2.

The purpose of this section is to establish a bijection between Mn(12312) and ternary
paths of length 3n. We follow the approach of some known results [2,8] to pattern avoiding
permutations. Moreover, our bijection will rely on the canonical reduced decompositions
of 12312-avoiding matchings.

By Definition 2.3 and Theorem 3.1, σ1σ2 · · ·σk is the canonical reduced decomposition
of Λ ∈ Mn(12312), where σi = shi

shi+1 · · · sti for 1 ≤ i ≤ k, if and only if the set of
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(0,0) 1 2 3 4 5 6 7 8 9 10 11 12

y = x/2

x

y

C0 C1

C2 C3

C4

Figure 2: The strip decomposition.

parameters {(hi, ti)|1 ≤ i ≤ k} satisfies

h1 > h2 > · · · > hk, (4.1)

ti ≥ hi ∈ {2, 4, . . . , 2n − 2}, (1 ≤ i ≤ k), (4.2)

tj ≥ ti or tj ≤ hi − 2, (1 ≤ i < j ≤ k). (4.3)

For a ternary path P , our bijection involves all the unit cells enclosed by P . Explicitly,
a cell enclosed by P means that the cell is totally in the region surrounded by P and
y = x/2. We give an x-labeling of these cells: Each cell with corner points (i, j), (i+1, j),
(i+1, j +1) and (i, j +1), receives a label i. We call a cell with an even (resp. odd) label
an even cell (resp. odd cell) for short. A cell enclosed by P is self-dependent if the cell
immediately to its South-West is not enclosed by P . We define the ladder strip of P as
follows:

1. If P = (EEN)n, that is, P is composed of n consecutive segments EEN , then P
has no self-dependent cell. Define the ladder strip of P to be the empty set;

2. Otherwise, denote C0 the even self-dependent cell enclosed by P , which is labeled
with the maximal integer. Define the ladder strip of P to be the maximal sequence
of cells C0, C1, C2, . . ., where C2i+1 is the adjacent cell to the East of C2i and C2i+2

is the adjacent cell to the North-East of C2i+1 for each i.

Fig. 2 illustrates the x-labeling of a ternary path, whose ladder strip consists of the gray
cells C0, C1, C2, C3, C4 with labels 6, 7, 8, 9, 10.

Suppose the ternary path P has k even self-dependent cells. We give the strip decom-

position of P recursively by the following steps:

1. If k = 0, then the strip decomposition of P is the empty set;

2. Otherwise, decompose P into P1L1, where L1 is the ladder strip of P and P1 is the
ternary path obtained from P by deleting L1. We can associate L1 with a sequence
of simple transpositions, say σ1 = sisi+1 · · · sj, where {i, i + 1, . . . , j} is the set of
labels in L1. Define h1 := i, and t1 := j;
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3. Repeat the above procedures for the ternary path P1, we will get σ2. Furthermore,
we can find σ3, . . . , σk by applying this step recursively. Then a set of parameters
{(hi, ti)|1 ≤ i ≤ k} is obtained;

4. The strip decomposition of P is σ = σ1σ2 · · ·σk.

See Fig. 2 for an example, the ternary path

P = EEEEENEEENEENENENN

can be decomposed into P1L1, where P1 = EEEEENENEENEENEENN and L1 is
the ladder strip of P with labels 6, 7, 8, 9, 10. Thus σ1 = s6s7s8s9s10. Moreover, the strip
decomposition of P is

σ = σ1σ2σ3 = (s6s7s8s9s10)(s4)(s2s3s4s5s6s7s8s9s10s11).

Let Λ = (1122 · · ·nn)σ. Now we are led to the following results.

Lemma 4.1. Λ is a matching, and σ is the canonical reduced decomposition of Λ.

Proof. It suffices to show that σ satisfies the conditions (4.1) and (4.2). The condition
(4.2) for σ is straightforward. To certify the condition (4.1) for σ, we first prove h1 > h2.

Recall that h2 is the label of an even self-dependent cell, denoted by C, enclosed by
P1. Obviously, C is an even cell enclosed by P . We claim that C is also self-dependent
in P : Otherwise, the adjacent cell, say Ĉ, to the South-West of C is enclosed by P but
not by P1. It implies that Ĉ belongs to the ladder strip L1 of P . Notice that Ĉ is an odd
cell. By the construction of L1, Ĉ is followed by the even cell C in L1. This contradicts
that C is enclosed by P1.

By the above claim, h2 is the label of an even self-dependent cell enclosed by P . Since
h1 is the maximal label of the even self-dependent cells in P , one sees that h1 ≥ h2.
Observing that all the even self-dependent cells enclosed by P have distinct labels, we
deduce h1 > h2. Recursively, the condition (4.1) is true for σ.

Lemma 4.2. Λ is a 12312-avoiding matching.

Proof. By Lemma 4.1, it remains to show that σ satisfies the condition (4.3).

Let Li and Lj denote two ladder strips derived by the strip decomposition of P . In
addition, the associated sequences of simple transpositions are σi = shi

shi+1 · · · sti and
σj = shj

shj+1 · · · stj respectively. Assume that i < j. We have the following cases.

If tj ≤ hi − 2, the condition (4.3) follows immediately.

Otherwise, tj ≥ hi − 1. According to (4.1) and (4.2), we obtain tj ≥ hi − 1 > hj . By
the construction of Lj , there is a cell, say D, in Lj labeled with hi − 1. It follows that D
is an odd cell. Note that each cell enclosed by P and touching the line y = x/2 is even.

Hence, D is not a cell touching y = x/2. This implies that the adjacent cell, say D̂, to

the West of D is enclosed by P . Moreover, D̂ is a cell in Lj.
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Let B0, B1, B2, . . . and . . . , D̂, D, . . . be the sequences of cells in Li and Lj , respectively.
Since the cell B0 is self-dependent and labeled with hi, we derive that B0 is in a column
adjacent to D and in a row not higher than D. See Figure 3 for the relative positions of
cells in Li and Lj . Clearly, for each cell Bk in Li, there is a cell in Lj , denoted by Ak,
which is in the same column as Bk. By the labeling rules, Ak and Bk have the same label.
Therefore, the labels ti and tj of the ending cells in Li and Lj must satisfy tj ≥ ti. This
completes the proof.

bD D

A0A1

A2A3

A4 ···

···
···

···
···

···

B0B1

B2B3

B4

···

y = x/2

A line parallel to y = x/2

Figure 3: The relative positions of cells in Li and Lj .

Conversely, for a set of parameters {(hi, ti)|1 ≤ i ≤ k} satisfying the conditions (4.1)–
(4.3), one sees that the procedures are reversible to construct a ternary path. Therefore,
we conclude with the following theorem.

Theorem 4.3. There is a bijection between the set of ternary paths of length 3n and

Mn(12312).

By the strip decomposition and Corollary 2.6, we easily derive the following result.

Corollary 4.4. For a ternary path P , the number of unit cells enclosed by P equals the

number of inversions in the corresponding matching.
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