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Abstract

A vertex v of a graph G is a boundary vertex if there exists a vertex u such that
the distance in G from u to v is at least the distance from u to any neighbour of
v. We give a full description of all graphs that have exactly four boundary vertices,
which answers a question of Hasegawa and Saito. To this end, we introduce the
concept of frame of a graph. It allows us to construct, for every positive integer
b and every possible “distance-vector” between b points, a graph G with exactly
b boundary vertices such that every graph with b boundary vertices and the same
distance-vector between them is an induced subgraph of G.

1 Introduction

Let G = (V, E) be a graph. A vertex v ∈ V is a boundary vertex of G if there exists a
vertex u ∈ V such that d(u, v) ≥ d(u, w) for all neighbours w of v. Such a vertex u is
then called a witness for v. The boundary of G is the set B(G) of boundary vertices of
G.

The notion of boundary of a graph was introduced by Chartrand et al. [2, 3] and
studied further by Cáceres et al. [1], Hernando et al. [5], and Hasegawa and Saito [4].
In a short note [6], we gave a tight bound (up to a constant factor) on the order of the
boundary of a graph in function of its maximum (or minimum) degree, thereby settling a
problem suggested by Hasegawa and Saito [4].
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Note that all vertices of a disconnected graph are boundary vertices. Hence we shall
restrict attention to connected graphs in the rest of the paper. Every graph with more
than one vertex has at least two boundary vertices, namely the endvertices of a longest
path. As noted by Hasegawa and Saito [4], a connected graph has exactly two boundary
vertices if and only if it is a path. In addition, they described all connected graphs with
exactly three boundary vertices. Attaching a path P to a vertex v of a graph G means
taking the disjoint union of G and P and identifying v with an end-vertex of P . A path
of arbitrary length may have length 0.

Theorem 1 (Hasegawa and Saito [4]). A connected graph G has exactly three boundary
vertices if and only if either

(i) G is a subdivision of K1,3; or

(ii) G can be obtained from K3 by attaching exaclty one path (of arbitrary length) to
each of its vertices.

Hasegawa and Saito [4] asked for a characterisation of all graphs with four boundary
vertices. The aim of the current paper is to provide such a characterisation. The statement
of our main result requires a number of definitions and we therefore postpone it until the
next section.

An important tool in our proof is the concept of the frame of a graph, which is of
independent interest. The frame is the vector of all distances between the boundary
vertices. In Section 3 we study frames in general. In particular, for every positive integer
b and every possible “distance-vector” between b points, we explicitly construct a graph
F with exactly b boundary vertices such that every graph with b boundary vertices and
the same distance-vector between them is an induced subgraph of F .

Let us note that Hasegawa and Saito [4] proved that any connected graph with exactly
four boundary vertices has minimum degree at most 6. Our description shows that the
minimum degree is in fact never more than 3.

2 Statement of the main result

Before giving the description of all connected graphs with four boundary vertices, we need
to introduce several definitions. The reader may find the next batch of definitions easier
to digest by looking at figure 1 below.

Definition 2. Let a and c be two positive integers.

• The (a × c)-grid is the graph Ga×c with vertex set

V 0
a×c :=

{

(x, y) ∈ N2
∣

∣ 0 ≤ x ≤ a and 0 ≤ y ≤ c
}

and an edge between vertices of Euclidean distance 1. Note that with our definition,
the (a × c)-grid has (a + 1) · (c + 1) vertices and not a · c as is customary.
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• The graph Na×c has vertex set Va×c := V 0
a×c ∪ V 1

a×c, where

V 1
a×c :=

{(

x +
1

2
, y +

1

2

)
∣

∣

∣

∣

(x, y) ∈ N2, 0 ≤ x < a and 0 ≤ y < c

}

.

There is an edge between two vertices if the Euclidean distance is at most 1.

• If a > 2 then Xa×c is the subgraph of N(a−1)×c induced by

V(a−1)×c \
{

(x, y) ∈ N2
∣

∣ 0 < x < a − 1 and y ∈ {0, c}
}

.

If a = 2 then X2×c is the subgraph of N1×c obtained by removing the edge between
the vertices (0, 0) and (1, 0), and the edge between the vertices (0, c) and (1, c).
If a = 1 and c > 1 then we take the same construction with a and c swapped,
i.e. Xa×c := Xc×a. Moreover, we let X1×1 be K4, the complete graph on four
vertices. Note that Xa×c is isomorphic to Xc×a.

• The graph Ta×c is the subgraph of Na×(c+1) induced by

Va×(c+1) \ ({(0, y) | y ∈ N} ∪ {(x, y) |x < a and y ∈ {0, c + 1}}) .

• Let G1
a×c and G2

a×c be two copies of the (a × c)-grid with vertex sets

V1 := {vx,y | 0 ≤ x ≤ a, 0 ≤ y ≤ c} and V2 := {wx,y | 0 ≤ x ≤ a, 0 ≤ y ≤ c} ,

respectively. The graph Da×c is obtained from G1
a×c and G2

a×c by identifying vx,y

with wx,y for all x and y such that x ∈ {0, a} or y ∈ {0, c}; and adding an edge
between vx,y and wx,y whenever 0 < x < a and 0 < y < c, and an edge between
wx,y+1 and vx+1,y whenever 0 ≤ x < a and 0 ≤ y < c.

• The graph La×c is obtained from Da×c by removing the vertices wx,y for x ∈
{1, 2, . . . , a − 1} and y ∈ {1, 2, . . . , c − 1}.

It is straightforward to check that each of the graphs Na×c, Xa×c, Ta×c, Da×c and La×c

has exactly four boundary vertices.

Definition 3. A set W ⊆ R2 is axis slice convex if

• whenever both (x1, y) and (x2, y) belong to W and x1 < x2, then
{(x, y) |x1 6 x 6 x2} ⊆ W ; and

• whenever both (x, y1) and (x, y2) belong to W and y1 < y2, then
{(x, y) | y1 6 y 6 y2} ⊆ W .

We are now in a position to state the characterisation of all connected graphs with four
boundary vertices. Figure 2 provides examples of graphs from each of the nine families
mentioned below.
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N4,3

X4,3 T4,3

D4,3 L4,3

Figure 1: The graphs N4×3, X4×3, T4×3, D4×3 and L4×3.
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Theorem 4. A connected graph G has exactly four boundary vertices if and only if it is
either

(i) a subdivision of K1,4; or

(ii) a subdivision of the tree with exactly four leaves and two vertices of degree 3; or

(iii) a graph obtained from one of the trees of (ii) by removing a vertex of degree 3 and
adding all edges between its three neighbours; or

(iv) the complete graph K4 on four vertices with exactly one path (of arbitrary length)
attached to each of its vertices; or

(v) a subgraph of Na×c induced by V 0
a×c ∪ (W ∩ V 1

a×c) for some axis slice convex set
W ⊆ R2, with exactly one path (of arbitrary length) attached to each of its boundary
vertices; or

(vi) the graph Xa×c with exactly one path (of arbitrary length) attached to each of its
boundary vertices; or

(vii) a subgraph of Ta×c induced by V 1
a×(c+1) ∪ (W ∩ V 0

a×(c+1)) for some axis slice convex

set W ⊆ R2 that contains (a, 0) and (a, c + 1), with exactly one path (of arbitrary
length) attached to each of its boundary vertices; or

(viii) the graph Da×c with exactly one path (of arbitrary length) attached to each of its
boundary vertices; or

(ix) the graph La×c with exactly one path (of arbitrary length) attached to each of its
boundary vertices.

Our main tool in the proof of Theorem 4 is the frame of a graph, which we introduce
and study next.

3 The frame of a graph

Definition 5. A frame is a metric space (X, d) where X is a finite set and d : X2 → N
is an integer-valued distance function.

Let G = (V, E) be a graph with boundary B := {B1, . . . , Bb}. The pair F (G) :=
(B, dG), where dG is the distance in the graph G, is a frame. It is the frame of the graph
G. For each vertex v ∈ V we define the position vector

ϕ(v) := (dG(v, B1), . . . , dG(v, Bb)) ,

that represents its distances from the boundary vertices. For x, y ∈ Rb, let d∗(x, y) be
the L∞-distance between x and y, i.e.

d∗(x, y) := max
16i6b

|xi − yi| .
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Figure 2: (Examples of) all types of connected graphs with 4 boundary vertices. The
shading indicates the axis slice convex sets.
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Throughout the rest, we make use of the following observation [6, Lemma 3], which also
appeared implicitly in former papers [2, 3].

Lemma 6. Each shortest path of G extends to a shortest path between two boundary
vertices.

We now prove that the L∞-distance of the position vectors of vertices of a graph is
the same as their distance in the graph.

Lemma 7. d∗(ϕ(u), ϕ(v)) = dG(u, v) for all u, v ∈ V (G).

Proof of Lemma 7. Let B := {B1, . . . , Bb} be the boundary of G. Fix two vertices u and
v of G. For each i ∈ {1, 2, . . . , b},

ϕ(u)i = dG(u, Bi) ≤ dG(u, v) + dG(v, Bi) = dG(u, v) + ϕ(v)i .

So dG(v, u) = dG(u, v) ≥ ϕ(u)i − ϕ(v)i, and hence dG(u, v) ≥ |ϕ(u)i − ϕ(v)i|. Therefore
dG(u, v) ≥ d∗(u, v).

By Lemma 6, any shortest path between v and u extends to a shortest path P between
two boundary vertices, say Bi and Bj . If Bi is the endvertex of P closer to u then

ϕ(v)i = dG(v, Bi) = dG(v, u) + dG(u, Bi) = dG(v, u) + ϕ(u)i .

Consequently, dG(v, u) = ϕ(v)i − ϕ(u)i ≤ d∗(u, v), which finishes the proof. �

The next lemma states two properties of the position vectors.

Lemma 8. Let G = (V, E) be a graph with boundary B := {B1, . . . , Bb}. For every vertex
u ∈ V , the position vector ϕ(u) has the following properties.

(i) ϕ(u)i + ϕ(u)j ≥ dG(Bi, Bj) for every i, j ∈ {1, . . . , b}; and

(ii) for every i ∈ {1, . . . , b}, there exists j ∈ {1, . . . , b} such that ϕ(u)i + ϕ(u)j =
dG(Bi, Bj).

Proof. Part (i) is a direct consequence of the triangle inequality:

ϕ(u)i + ϕ(u)j = dG(u, Bi) + dG(u, Bj) ≥ dG(Bi, Bj) .

Part (ii) follows from Lemma 6, since for every vertex u and every boundary vertex
Bi there exists a shortest path between Bi and Bj containing u, for some index j ∈
{1, 2, . . . , b}. �

Definition 9. Suppose that F = (X, d) is a frame with X = {B1, . . . , Bb}. We associate
a graph F = F (F ) with the frame F , called the frame-graph corresponding to F . The
vertex set V (F ) consists of the set of b-dimensional integer vectors x = (x1, . . . , xb) ∈

(Z+)
b

that satisfy

(F1) xi + xj ≥ d(Bi, Bj) for every (i, j) ∈ {1, 2, . . . , b}2; and
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(F2) for every i ∈ {1, 2, . . . , b} there exists j ∈ {1, 2, . . . , b} such that xi +xj = d(Bi, Bj).

If x, y ∈ V (F ) then xy ∈ E(F ) if and only if d∗(x, y) = 1.

For instance, if X = {B1, B2, B3, B4} and the distance function is given by

d(B1, B2) = 2, d(B1, B3) = 3, d(B1, B4) = 1,
d(B2, B3) = 2, d(B2, B4) = 3, d(B3, B4) = 2,

then

V (F ) = {(0, 2, 3, 1), (1, 1, 2, 2), (1, 2, 2, 1), (1, 3, 2, 0),

(2, 0, 2, 3), (2, 1, 1, 2), (2, 2, 1, 1), (3, 2, 0, 2)}

and F is isomorphic to T2×1 (see Figure 3).

(3, 2, 0, 1)

(2, 0, 2, 3)

(2, 1, 1, 2)

(1, 3, 2, 0)

(0, 2, 3, 1)

Figure 3: A frame-graph.

Note that the vector ϕ(Bk) = (d(Bk, B1), . . . , d(Bk, Bb)) is in V (F ) for k ∈ {1, . . . , b}.
We state and prove three lemmas. Recall that d∗(x, y) := maxi |xi − yi| is the L∞-

distance between x and y.

Lemma 10. dF (x, y) = d∗(x, y) for all x, y ∈ V (F ).

Proof. Let x and y be two vertices of F and set t := d∗(x, y). Since there is a coordinate
in which x and y differ by t, it follows from the definition of F that dF (x, y) ≥ t.

We now show that dF (x, y) ≤ d∗(x, y) for any two vertices x and y by induction on
t := d∗(x, y) > 0. If t = 0 then xi = yi for all i, so x = y. If t = 1 then xy ∈ E(F ) by the
definition of F , and hence dF (x, y) = 1. If t > 1 then we show that there exists a vector
x′ ∈ V (F ) such that xx′ ∈ E(F ) and d∗(x′, y) < t. This yields the desired result, because
by the induction hypothesis dF (x′, y) < t, and therefore dF (x, y) ≤ t.

For every i ∈ {1, 2, . . . , b}, let x′

i be the smallest of xi − 1, xi and xi + 1 that satisfies
x′

i + x′

j ≥ d(Bi, Bj) for every j < i and |x′

i − yi| < t. First, we need to show that at least
one of xi − 1, xi and xi + 1 satisfies the last two conditions.

Assume that x′

1, . . . , x
′

i−1 are defined for some integer i > 1. The choice x′

i = xi + 1
ensures that x′

i +x′

j ≥ (xi +1)+(xj−1) = xi +xj ≥ d(Bi, Bj) by (F1). If |xi + 1 − yi| < t
then xi +1 is a possible choice. If |xi + 1 − yi| ≥ t then let x′

i = yi+t−1. Since xi ≤ yi+t,
it follows that xi − 1 ≤ x′

i ≤ xi. As t > 2, for every j < i

x′

j + x′

i ≥ yj − (t − 1) + yi + t − 1 = yj + yi ≥ d(Bi, Bj) .
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Therefore, yi + t − 1 ∈ {xi − 1, xi} is a possible choice.
Now we show that x′ ∈ V (F ). By the definition, x′

i+x′

j ≥ d(Bi, Bj). If x′

i = xi−1 then
since x ∈ V (F ) there exists j such that xi+xj = d(Bi, Bj). So x′

i+x′

j ≤ (xi−1)+(xj+1) =
d(Bi, Bj). If x′

i > xi − 1 then x′

i − 1 was not a possible choice. Thus, either there exists
j < i such that x′

j+x′

i−1 < d(Bj, Bi) in which case x′

j+x′

i ≤ d(Bi, Bj), or |x′

i − 1 − yi| ≥ t
in which case x′

i = yi − t + 1. Since y ∈ V (F ), there exists j such that yi + yj = d(Bi, Bj).
Therefore, since t > 2,

x′

i + x′

j ≤ (yi − t + 1) + (yj + t − 1) = d(Bi, Bj) .

This concludes the proof. �

Note that by Lemma 10 the graph F is connected, since any two vertices are at a finite
distance in F .

Lemma 11. For all x ∈ V (F ) and i ∈ {1, . . . , b}, it holds that xi = dF (x, ϕ(Bi)).

Proof. By Lemma 10, it suffices to prove that xi = d∗(x, ϕ(Bi)). Since d∗(x, ϕ(Bi)) =
maxj |xj − d(Bi, Bj)|, it follows that xi 6 d∗(x, ϕ(Bi)). We will now prove that xi >

|xj − d(Bi, Bj)| for all j, which yields the result.
Fix an index j 6= i. Since xi + xj ≥ d(Bi, Bj), we obtain xi ≥ d(Bi, Bj) − xj . So it

only remains to show that xi > xj − d(Bi, Bj). Since x ∈ V (F ), there exists k such that
xj + xk = d(Bj, Bk). Therefore

xj = d(Bj , Bk) − xk ≤ d(Bj , Bk) − (d(Bi, Bk) − xi)

≤ xi + d(Bi, Bj).

Thus xi ≥ xj − d(Bi, Bj), which concludes the proof. �

Lemma 12. The boundary of F is {ϕ(B1), . . . , ϕ(Bb)}.

Proof. Let x be a boundary vertex of F and y be a witness for x. Set t := dF (x, y).
We first prove that there exists i ∈ {1, . . . , b} such that yi = xi + t. By Lemma 10,
there exists j ∈ {1, . . . , b} such that t = |xj − yj|. If yj = xj + t then we set i := j. If
yj = xj − t then since there exists i such that xj + xi = d(Bi, Bj) by (F2), we obtain
xi = d(Bi, Bj) − xj = d(Bi, Bj) − yj − t ≤ yi − t using (F1). As yi ≤ xi + t, it follows
that yi = xi + t. Since dF (ϕ(Bi), y) = yi = xi + t = dF (ϕ(Bi), x) + dF (x, y), there is a
shortest path between ϕ(Bi) and y that contains x. Since y is a witness for x, we infer
that x = ϕ(Bi). Thus, B(F ) ⊆ {ϕ(B1), . . . , ϕ(Bb)}.

To finish the proof, we need to show that ϕ(Bi) is a boundary vertex of F for each
i ∈ {1, 2, . . . , b}. Pick an arbitrary i, and let j be such that Bj is a witness for Bi in G
(such a j exists by Lemma 6). We show that ϕ(Bj) is also a witness for ϕ(Bi) in F . Let
x ∈ V (F ) be a neighbour of ϕ(Bi), and suppose that dF (x, ϕ(Bj)) > dF (ϕ(Bi), ϕ(Bj)).
Then there exists a ϕ(Bj)x-path of length dF (x, ϕ(Bj)) that goes through ϕ(Bi). We
already know that B(F ) ⊆ {ϕ(B1), . . . , ϕ(Bb)}, so that this path must extend to a
shortest ϕ(Bi)ϕ(Bk)-path for some k by Lemma 6. Hence, dG(Bj , Bi) + dG(Bi, Bk) =
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dF (ϕ(Bj), ϕ(Bi)) + dF (ϕ(Bi), ϕ(Bk)) = dF (ϕ(Bj), ϕ(Bk)) = dG(Bj , Bk). So in G there
must also be a path of length dG(Bj , Bk) going through Bi. But this implies Bi has a
neighbour v with dG(v, Bj) = dG(Bi, Bj) + 1, which contradicts the assumption that Bj

is a witness for Bi in G.
Hence, ϕ(Bi) is a boundary vertex of F for all i ∈ {1, 2, . . . , b}. This concludes the

proof. �

The next theorem summarizes the previous study.

Theorem 13. Let F be a frame on the points B1, . . . , Bb, and suppose that the graph G
has frame F . Set F := F (F ). Then the map

ϕ : V (G) −→ V (F )
v 7−→ ϕ(v) = (dG(v, B1), . . . , dG(v, Bb))

is an embedding of G into F as an induced subgraph. Moreover, the set {ϕ(B1), . . . , ϕ(Bb)}
is precisely the boundary of F and dG(u, v) = dF (ϕ(u), ϕ(v)) for all vertices u, v ∈ V (G).

Note that the theorem in particular implies that F has frame F (if we identify ϕ(Bi)
with Bi).

Proof of Theorem 13. That ϕ is an embedding, and G is an induced subgraph of F follows
directly from Lemma 7, Lemma 8 and the definition of F . By Lemma 10 and Lemma 7
it follows that dG(u, v) = d∗(ϕ(u), ϕ(v)) = dF (ϕ(u), ϕ(v)). By Lemma 12 the boundary
of F is {ϕ(B1), . . . , ϕ(Bb)}. �

4 The frame of a graph with four boundary vertices

and minimum degree at least 2

In this section we study the graph F corresponding to (the frame of) a connected graph
G with four boundary vertices and minimum degree at least 2 (vertices of degree 1 are
dealt with later on). In view of Theorem 13, we identify v ∈ V (G) with ϕ(v) ∈ V (F ) for
the ease of exposition.

Let B1, B2, B3 and B4 be the boundary vertices of F and G. By assumption, each of
them has degree at least 2.

Lemma 14. Let G be a graph with minimum degree at least 2. For every B ∈ B(G),
there exist two distinct vertices A1 and A2 in B(G)\{B}, such that the shortest BA1-path
and the shortest BA2-path in G are unique, and these two paths only have the vertex B
in common.

Proof. We consider two cases.

Case 1: There exists a shortest path between two boundary vertices A1 and A2 containing
B. We assert that the path A1B is unique. Assume, to the contrary, that there is another
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shortest path between A1 and B. Observe that there exist two distinct vertices x and y
that are at the same distance from B, and at the same distance from A1. They also are
at the same distance from A2. Therefore, the endvertices of an extension of a shortest
path between x and y must be distinct from A1, A2 and B. But these endvertices are
boundary vertices, which is a contradiction since there are four boundary vertices in total.
Similarly, the path BA2 is unique as well.

Note that the A1B-path and the BA2-path can only have the vertex B in common,
since their lengths sum up to the distance between A1 and A2.

Case 2: The vertex B is not contained in any shortest path between two boundary vertices
distinct from B. In this case, we assert that the neighbourhood of B induces a clique.
Indeed, if u and v are two non-adjacent neighbours of B then extending the shortest path
uBv shows that B belongs to a shortest path between two other boundary vertices, a
contradiction. Let u and v be two neighbours of B. Let P be the extension of the path
uv with endvertices A1 and A2, where A1 is closer to u.

Let U := {s ∈ N(B) : d(A1, s) + 1 = d(A1, B)}. Note that u ∈ U . We assert that
U = {u}. To show this, it suffices to prove that every vertex in U has the same distance
to A1, B and A2 as well (this is because if w is such that d(w, A1) = d(u, A1), d(w, A2) =
d(u, A2) and d(w, B) = d(u, B) then extending a shortest uw-path show that there are at
least 5 boundary vertices, a contradiction). Indeed, for A2, suppose that w ∈ U . It holds
that d(w, A2) 6 d(u, A2), since N(B) induces a clique, and thus uv ∈ E. If the inequality
is strict, then there is a path between A1 and A2 of length d(A1, w) + d(w, A2), which
contradicts that P is a shortest A1A2-path.

Now, the shortest path between u and A1 is unique, for otherwise there exist two
vertices that are at the same distance from B, A1 and A2, a contradiction. Consequently,
the path BA1 is unique as well. By symmetry, the path BA2 is unique. Again, the paths
cannot have any vertex other than B in common. �

Lemma 15. Let G be a graph with minimum degree at least 2 and exactly 4 boundary
vertices B1, B2, B3, B4. Without loss of generality, we can assume that the shortest B1B2-,
B2B3-, B3B4- and B1B4-paths are unique, and that among these paths, those that share
an endvertex do not share any other vertex.

Proof. The sought conclusion holds if diam(G) = 1, in which case G is K4. So we assume
throughout the rest of the proof that diam(G) > 2. Note that if two vertices are at
distance diam(G) of each other, then they are boundary vertices. We split the analysis
into two cases.

Suppose first that whenever two vertices are at distance diam(G) of each other, then
there is a unique shortest path between them. Up to relabelling the boundary vertices,
we may assume that d(B1, B2) = diam(G). Let P be the unique shortest path between
B1 and B2. Any neighbour of B1 that is not on P is at distance at least diam(G) from
B2. Thus, any such neighbour is a boundary vertex of G (with witness B2). Since B1

has degree at least 2, we deduce that there is an edge between B1 and, say, B4. Note
that necessarily d(B2, B4) = diam(G). Similarly, there is an edge between B2 and B3

(note that B2 is not adjacent to B4 since diam(G) > 2) and d(B4, B3) = diam(G). This
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concludes the proof in the case where any two vertices at distance diam(G) have a unique
shortest path between them.

Assume now that there are two vertices of G at distance diam(G) of each other with at
least two distinct shortest paths between them. Up to relabelling the boundary vertices,
we may assume that those two vertices are B1 and B3. By applying Lemma 14 to B1 and
B3, we infer that the shortest paths between B1, B2, between B2, B3, between B3, B4 and
between B4, B1 are all unique. If there are at least two distinct shortest paths between B2

and B4, then applying Lemma 14 to each boundary vertex yields the desired conclusion.
So we may assume that there is a unique shortest path P between B2 and B4. Now, the
aforementioned unique shortest paths satisfy the statement of the theorem unless they
intersect. Assume that the unique shortest paths P12 between B1 and B2, and P23 between
B2 and B3 intersect. Since those paths are unique, the neighbour of B2 on P12 also belongs
to P23. There is another neighbour X of B2, since G has minimum degree at least 2. Let
x := d(B1, B2), y := d(B3, B2) and z := d(B4, B2). By Theorem 13 and the fact that
diam(G) = d(B1, B3) ≤ x + y − 2, the position vector of X is (x, 1, y, z − 1). Further, we
conclude that d(B1, B4) = x + z − 1 and d(B3, B4) = y + z − 1. The path P intersects
a shortest path between B1 and B3 at some vertex T . Indeed, since the shortest B1B3-
path is not unique, there are two vertices T and T ′ such that d(T, B1) = d(T ′, B1) and
d(T, B3) = d(T ′, B3). Thus, a shortest TT ′-path extends to a shortest path between B2

and B4, which must be P (since the shortest B2B4-path is unique). Let t := d(B4, T ) < z.
Now, x + z − 1 = d(B1, B4) ≤ d(B1, T ) + t and y + z − 1 = d(B3, B4) ≤ d(B3, T ) + t. So

x + y − 2 + 2z ≤ d(B1, T ) + d(B3, T ) + 2t = d(B1, B3) + 2t ≤ x + y − 2 + 2t .

This is a contradiction since t < z. �

In the remainder of this section we let Pij be the unique shortest BiBj-path. Let us
set

d12 := d(B1, B2), d13 := d(B1, B3), d14 := d(B1, B4) ,
d34 := d(B3, B4), d24 := d(B2, B4), d23 := d(B2, B3) .

B1 B2

B3B4

d14 d23

d12

d34

d13 d24

Figure 4: Notations of the distances between the boundary vertices.
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Lemma 16. Without loss of generality, we may assume that one of the following holds:

(i) d12 = d34, d14 = d23, and d13 = d24 = d12 + d14;

(ii) d12 = d34, d14 = d23, and d13 = d24 = d12 + d14 − 1;

(iii) d12 = d34, d14 = d23, d13 = d12 + d14, and d24 = d12 + d14 − 1;

(iv) d12 = d34, d23 = d14 + 1, and d13 = d24 = d12 + d14.

Proof. Note that the lemma is true if diam(G) = 1. So we assume that diam(G) > 2.
First, we show that d24 ∈ {d12 + d14 − 1, d12 + d14}. If B1 and B2 are adjacent, i.e. if

d12 = 1, then the triangle inequality ensures that d24 ∈ {d14 − 1, d14, d14 + 1}. Moreover,
d24 6= d14 − 1 for otherwise P14 and P12 would share the vertex B2, thereby contradicting
Lemma 15. The situation is analogous if B1 and B4 are adjacent, i.e. if d14 = 1. So,
assume that both d12 and d14 are greater than 1. Let vij be the neighbour of Bi on Pij .
Extending the shortest path between v14 and v12 (note that they are distinct by the proof
of Lemma 14), we obtain a shortest path between B2 and B4. Indeed, B1 cannot be
involved since it is adjacent to both v14 and v12. Further, if B3 were involved then for
v = B2 or v = B4 it would follow that the unique shortest vB1-path and the unique
shortest vB3-path share a vertex different from v. This would contradict Lemma 15. This
shows that d24 ∈ {d12 + d14, d12 + d14 − 1}.

Similarly, by considering d34, d23, and v34, v32, we deduce that d24 ∈ {d34 + d23, d34 +
d23 − 1}. Thus one of the following holds.

(b’.1) d12 + d14 = d34 + d23;

(b’.2) d12 + d14 = d34 + d23 − 1 = d24;

(b’.3) d12 + d14 − 1 = d34 + d23 = d24.

Proceeding analogously with B1 and B4 yields that d13 ∈ {d34 + d14, d34 + d14 − 1} and
d13 ∈ {d12 + d23, d12 + d23 − 1}. Consequently, one of the following holds.

(b.1) d12 + d23 = d34 + d14;

(b.2) d12 + d23 = d34 + d14 − 1 = d13;

(b.3) d12 + d23 − 1 = d34 + d14 = d13.

Both one of (b’.1), (b’.2), (b’.3) and one of (b.1), (b.2), (b.3) hold.
Suppose first that (b’.1) holds. Then, d12 − d34 = d23 − d14. If (b.1) holds then

d12 − d34 = d14 − d23. So d14 − d23 = −(d14 − d23), giving that d14 = d23 and d12 = d34.
Thus, up to swapping B1 and B4, and swapping B2 and B3, we are in situation (i), (ii)
or (iii). (Note that such a swapping does not spoil Lemma 15.) If (b.2) holds then
d12 − d34 = d14 − d23 − 1. So, 2(d14 − d23) = 1, i.e. d14 = d23 + 1/2. But this cannot be
since both d14 and d23 are integers. The situation when (b.3) holds is similar.
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Assume now that (b’.2) holds. Thus, d12 − d34 = d23 − d14 − 1. If (b.1) holds
then d12 − d34 = d14 − d23. So 2(d14 − d23) = 1, a contradiction. If (b.2) holds then
d12 − d34 = d14 − d23 − 1. So d23 = d14 and d34 = d12 + 1, and hence up to relabelling we
are in situation (iv). Last, if (b.3) holds then d12 − d34 = d14 − d23 + 1. So d23 = d14 + 1
and d12 = d34, and hence we are in situation (iv).

Finally, the situation when (b’.3) holds is completely analogous to the situation when
(b’.2) holds. �

Theorem 17. Let G be a graph with minimum degree at least 2 and exactly four boundary
vertices. Let F be the graph corresponding to its frame as constructed in Definition 9.
Then F is isomorphic to either Nd12×d14

, Xd12×d14
, Td12×d14

or Dd12×d14
.

For convenience we split the theorem into several lemmas.

Lemma 18.

(i) If d12 = d34, d14 = d23, and d13 = d24 = d12 + d14 then F is isomorphic to Nd12×d14
.

(ii) If d12 = d34, d23 = d14 + 1, and d13 = d24 = d12 + d14 then F is isomorphic to
Td12×d14

.

Proof. For non-negative integers x and y let us set

vx,y := (x + y, d12 − x + y, d12 + d14 − x − y, d14 + x − y) and

wx,y := (x + y + 1, d12 − x + y, d12 + d14 − 1 − x − y, d14 + x − y) .

(i). Observe that vx,y is the position vector for the vertex (x, y) in Nd12×d14
for every

x ∈ {0, 1, . . . , d12} and every y ∈ {0, 1, . . . , d14}. Further, wx,y is the position vector of
(x + 1

2
, y + 1

2
) in Nd12×d14

if x ∈ {0, 1, . . . , d12 − 1} and y ∈ {0, 1, . . . , d14 − 1}. Therefore
these vectors satisfy the requirements (F1) and (F2), so that they form the vertices of
an induced copy of Nd12×d14

inside F .
Now pick u = (u1, u2, u3, u4) ∈ V (F ). We wish to show that u ∈ V (Nd12×d14

), which
will give that F indeed coincides with Nd12×d14

. We know that u1 + u2 ≥ d12. First
suppose that u1 + u2 = d12. Then u lies on a B1B2-path of length d12. Since there
is only one such path (by Lemma 15), namely P12 = v0,0v1,0 . . . vd12,0, we deduce that
u ∈ V (Nd12×d14

). Let us thus assume that u1 + u2 > d12. Similarly, we can suppose that
u2 + u3 > d14, u3 + u4 > d12, and u1 + u4 > d14. Observe that, by (F2),

u1 + u3 = u2 + u4 = d12 + d14. (1)

Now assume that u1 + u2 − d12 is even, and set y := (u1 + u2 − d12)/2 and x := u1 − y.
Hence, u1 = x+y and u2 = d12−x+y, so that by (1) we deduce that u3 = d12+d14−x−y
and u4 = d14 +x−y. Because d14 +2x = u1 +u4 > d14 and 2d12 +d14−2x = u2 +u3 > d14,
it follows that 0 < x < d12. Similarly, we obtain 0 < y < d14 since d12 +2y = u1 +u2 > d12

and d12 +2d14 − 2y = u3 +u4 > d12. Consequently, u = vx,y ∈ V (Nd12×d14
) if u1 +u2 − d12

is even.
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Let us assume now that u1 + u2 − d12 is odd. We set y := (u1 + u2 − d12 − 1)/2 and
x := u1 − y − 1. Thus, u1 = x + y + 1 and u2 = d12 − x + y. In addition, (1) implies that
u3 = d12 + d14 − 1−x− y and u4 = d14 + x− y. Because d14 + 2x +1 = u1 +u4 > d14 and
2d12 + d14 − 1 − 2x = u2 + u3 > d14, we obtain 0 ≤ x < d12. And because d12 + 2y + 1 =
u1 + u2 > d12 and d12 + 2d14 − 1 − 2y = u3 + u4 > d12, we obtain 0 ≤ y < d14. Hence,
u = wx,y ∈ V (Nd12×d14

) when u1 + u2 − d12 is odd.
So F and Nd12×d14

indeed coincide.

(ii). The points in

W := {vx,y : 0 ≤ x < d12 and 0 ≤ y ≤ d14}

∪ {wx,y : 0 ≤ x < d12 and 0 ≤ y < d14}

∪ {(d12 − 1 + i, i, d14 + 1 − i, d12 + d14 − i) : 0 < i 6 d14}

∪ {(d12, 0, d14 + 1, d12 + d14), (d12 + d14, d14 + 1, 0, d12)}

satisfy the requirements (F1) and (F2). So W ⊆ V (F ). Also note that W is precisely
the set of position vectors of Td12×d14

, so that Td12×d14
is an induced subgraph of F .

Now pick u ∈ V (F ). Analogously as before, we may assume that u1 + u2 > d12,
u2+u3 > d14 +1, u3+u4 > d12, and u1+u4 > d14. Moreover, u1+u3 = u2 +u4 = d12 +d14.
Suppose that u1 + u2 − d12 is even. Set y := (u1 + u2 − d12)/2 and x := u1 − y. Then
u1 = x + y and u2 = d12 − x + y. It thus follows that u = vx,y. In addition, since
u1 + u2 > d12, u2 + u3 > d14 + 1, u3 + u4 > d12, and u1 + u4 > d14, it follows that
0 < x < d12 and 0 < y < d14. Hence, u ∈ V (Td12×d14

) if u1 + u2 − d12 is even.
Now suppose that u1 + u2 − d12 is odd. Set y := (u1 + u2 − d12 − 1)/2 and x := u1 − y.

Analogously to before, we infer that u = wx,y with 0 ≤ x < d12 and 0 ≤ y < d14 if
u1 + u2 − d12 is odd.

Thus F coincides with Td12×d14
as required. �

Lemma 19. If d12 = d34, d14 = d23, d13 = d12 + d14, and d24 = d12 + d14 − 1 then F is
isomorphic to Dd12×d14

.

Proof. Recall that B1 = (0, d12, d12 + d14, d14), B2 = (d12, 0, d14, d12 + d14 − 1), B3 =
(d12 + d14, d14, 0, d12), and B4 = (d14, d12 + d14 − 1, d12, 0). For x ∈ {1, 2, . . . , d12} and
y ∈ {0, 1, . . . , d14 − 1} let us set

vx,y := (x + y, d12 − x + y, d12 + d14 − (x + y), d14 − 1 + x − y) .

For x ∈ {0, 1, . . . , d12 − 1} and y ∈ {1, 2, . . . , d14} let us set

wx,y := (x + y, d12 − 1 − x + y, d12 + d14 − (x + y), d14 + x − y) .

First, note that B2 = vd12,0 and B4 = w0,d14
but neither B1 nor B3 corresponds to any of

the points vx,y or wx,y. Observe also that the points vx,y and wx,y satisfy the criteria (F1)
and (F2), and that they are the position vectors of the vertices of Dd12×d14

other than B1
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and B3. Hence, together with B1 and B3, they form an induced copy of Dd12×d14
inside

F .
Now let u = (u1, u2, u3, u4) ∈ V (F ) be arbitrary. First, suppose that u1 + u2 =

d12. Then, u is on the unique shortest path P12 between B1 and B2. Notice that
B1v1,0 . . . vd12−1,0B2 is a B1B2-path of length d12. Hence it equals P12. It follows that
u ∈ Dd12×d14

. Thus, we can suppose that u1 + u2 > d12. Similarly, we may assume
u1 + u4 > d14, u2 + u3 > d14, and u3 + u4 > d12. Notice that

u1 + u3 = d12 + d14, u2 + u4 = d12 + d14 − 1, (2)

by (F2).
Suppose that u1 + u2 − d12 is even. Let us write y = (u1 + u2 − d12)/2 and x = u1 − y.

Then, u1 = x + y and u2 = d12 − x + y. Further, using (2), we infer that u is in fact of
the same form as vx,y for some x and y. It remains to be checked that 0 < x < d12 and
0 ≤ y < d14. Since u2+u3 = 2d12+d14−2x > d14 and u1+u4 = d14−1+2x > d14, it follows
that 0 < x < d12. Since u1 + u2 = d12 + 2y > d12 and u3 + u4 = d12 + 2d14 − 1 + 2y > d12,
it follows that 0 < y < d14. Thus, u ∈ V (Dd12×d14

) if u1 + u2 − d12 is even.
Now suppose that u1 + u2 − d12 is odd. Set y := (u1 + u2 − d12 + 1)/2 and x := u1 − y.

Note that u1 = x + y, u2 = d12 − 1 − x + y, so that by (2) the vertex u is of the same
form as wx,y for this choice of x and y. Again it remains to be seen that 0 < x < d12 and
0 < y < d14. Since u2 + u3 = 2d12 + d14 − 1 − 2x > d14 and u1 + u4 = d14 + 2x > d14, it
follows that indeed 0 < x < d12. Further, 0 < y < d14 because u1 +u2 = d12−1+2y > d12

and u3+u4 = d12+2d14+2y > d12. Thus, we conclude that u ∈ V (Dd12×d14
) if u1+u2−d12

is odd.
Therefore, F coincides with Dd12×d14

. �

Lemma 20. If d12 = d34, d14 = d23, and d13 = d24 = d12 + d14 − 1 then F is isomorphic
to Xd12×d14

.

Proof. By the symmetry of the roles played by d12 and d14, we may assume that d12 > d14

(recall that Xd12×d14
= Xd14×d12

). First, note that if d12 = d14 = 1 then F and G are
necessarily isomorphic to K4 = X1×1. Thus, suppose that d12 > 2. This time set

vx,y := (x + y, d12 − 1 − x + y, d12 + d14 − 1 − x − y, d14 + x − y)

for 0 6 x 6 d12 − 1 and 1 6 y 6 d14 − 1, and

wx,y := (x + y + 1, d12 − 1 − x + y, d12 + d14 − 2 − x − y, d14 + x − y)

for 0 6 x 6 d12−2 and 0 6 y 6 d14−1. Then vx,y satisfies (F1) and (F2) if 0 ≤ x ≤ d12−1
and 1 ≤ y ≤ d14 − 1. Furthermore, wx,y satisfies (F1) and (F2) if 0 ≤ x ≤ d12 − 2 and
0 ≤ y ≤ d14 − 1. In addition, together with B1, B2, B3, and B4, these vertices induce a
copy of Xd12×d14

in F .
Now pick u ∈ V (F ). We can again assume that u1 + u2 > d12, u1 + u4 > d14,

u2 + u3 > d14, and u3 + u4 > d12. Consequently, u1 + u3 = u2 + u4 = d12 + d14 − 1.
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If u1+u2−d12+1 is even, then set y := (u1+u2−d12+1)/2 and x := u1−y. So u = vx,y

for some x ∈ {1, 2, . . . , d12−2} and y ∈ {1, 2, . . . , d14−1}. If u1 +u2−d12 +1 is odd, then
we set y := (u1 +u2 − d12)/2 and x := u1 − y. So u = wx,y for some x ∈ {0, 1, . . . , d12 − 2}
and y ∈ {1, 2, . . . , d14 − 2}.

Thus F = Xd12×d14
as required. �

5 The proof of Theorem 4

Notice that if G = (V, E) is a graph, v ∈ V and N(v) = {u}, then v ∈ B(G) and

B(G) \ {v} ⊆ B(G \ {v}) ⊆ (B(G) ∪ {u}) \ {v} .

Thus, if we remove a vertex of degree 1 from a graph with four boundary vertices then we
either end up with a graph with exactly three boundary vertices, or with another graph
with four boundary vertices. Let G be an arbitrary graph with four boundary vertices. By
repeatedly removing vertices of degree 1, we infer that G is either obtained from a graph
with three boundary vertices by attaching a path to a non-boundary vertex, or from a
graph with four boundary vertices and minimum degree at least 2 by attaching paths to
the boundary vertices. By Theorem 1, the first case corresponds precisely to parts (i),
(ii) and (iii) of Theorem 4.

In the rest of the proof we therefore assume that G has four boundary vertices and
minimum degree at least 2. Let F be the frame-graph of G. By Theorem 17, we know
that F is isomorphic to either Na×c, Xa×c, Ta×c or Da×c for some integers a and c.

The following observation follows immediately from Theorem 13, which implies that
dF (u, v) = dG(u, v) for all u, v ∈ V (G).

Corollary 21. Let u, v ∈ V (G) and let F be the frame-graph of G. If there is a unique
shortest path P in F between u and v, then P ⊆ G.

Repeated applications of Corollary 21 yield the following.

• If F = Xa×c then G = F ;

• if F = Da×c then either G = Da×c or G = La×c;

• if F = Na×c then V 0
a×c ⊆ V (G) and V 1

a×c ∩ V (G) is axis slice convex; and

• if F = Ta×c then P23, V
1
a×(c+1) ⊆ V (G) and V (G) ∩ V 0

a×(c+1) is axis slice convex.

Suppose that F = Na×c and V (G) = V 0
a×c ∪ (W ∩ V 1

a×c) for some axis slice convex set W .
Then a vertex v ∈ V (G) \ {B1, B2, B3, B4} is not a boundary vertex of G, since there is
a shortest path to any vertex u ∈ V (G) (that is also a shortest path in F ), and the path
can be extended to a path between Bi and Bj for some i and j.

The case where F = Ta×c can be dealt with similarly. This concludes the proof of
Theorem 4. �
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