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Abstract

We consider the following generalization of the seminal Erdős–Ko–Rado theorem,
due to Frankl [5]. For some k ≥ 2, let F be a k-wise intersecting family of r-subsets

of an n element set X, i.e. for any F1, . . . , Fk ∈ F , ∩k
i=1Fi 6= ∅. If r ≤

(k − 1)n

k
,

then |F| ≤
(

n−1
r−1

)

. We prove a stability version of this theorem, analogous to similar
results of Dinur-Friedgut, Keevash-Mubayi and others for the EKR theorem. The
technique we use is a generalization of Katona’s circle method, initially employed
by Keevash, which uses expansion properties of a particular Cayley graph of the
symmetric group.
Key words. intersection theorems, stability.

1 Introduction

For a positive integer n, let [n] = {1, 2, . . . , n}. For positive integers i and j with i ≤ j,
let [i, j] = {i, i + 1, . . . , j} ([i, j] = ∅ if i > j). Similarly let (i, j] = {i + 1, . . . , j}, which
is empty if i + 1 > j. The notations (i, j) and [i, j) are similarly defined. Let

(

[n]
r

)

be the

family of all r-subsets of [n]. For F ⊆
(

[n]
r

)

and v ∈ [n], let F(v) = {F ∈ F : v ∈ F}, called

a star in F , centered at v. A family F ⊆
(

[n]
r

)

is called intersecting if for any A, B ∈ F ,

A ∩ B 6= ∅. Similarly, call F ⊆
(

[n]
r

)

k-wise intersecting if for any F1, . . . , Fk ∈ F ,
⋂k

i=1 Fi 6= ∅. Frankl [5] proved the following theorem for k-wise intersecting families.

Theorem 1.1 (Frankl). Let F ⊆
(

[n]
r

)

be k-wise intersecting. If r ≤
(k − 1)n

k
, then

|F| ≤
(

n−1
r−1

)

.

It is trivial to note that the k = 2 case of Theorem 1.1 is the seminal Erdős–Ko–Rado
theorem [4].
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Theorem 1.2 (Erdős–Ko–Rado). Let F ⊆
(

[n]
r

)

be intersecting. If r ≤ n/2, then |F| ≤
(

n−1
r−1

)

.

1.1 Stability

The classical extremal problem is to determine the maximum size and structure of a
family on a given ground set of size n which avoids a given forbidden configuration F .
For example, the EKR theorem finds the maximum size of a set system on the set [n],
which does not have a pair of disjoint subsets. Often only a few trivial structures attain
this extremal number. In case of the EKR theorem, the only extremal structure when
r < n

2
is that of a star in

(

[n]
r

)

. A natural further step is to ask whether non-extremal
families which have size close to the extremal number also have structure similar to any of
the extremal structures. This approach was first pioneered by Simonovits [13] to answer
a question in extremal graph theory and a similar notion for set systems was recently
formulated by Mubayi [11]. Apart from being an interesting question in it’s own right,
this approach has found many applications, especially in extremal hypergraph theory,
where exact results are typically much harder to prove.

One of the first stability results in extremal set theory was the theorem of Hilton and
Milner [7] which proved a stability result for the EKR theorem by giving an upper bound
on the maximum size of non-star intersecting families. Other stability results for the EKR
theorem have been recently proved by Dinur-Friedgut [3], Keevash [9], Keevash-Mubayi
[10] and others. We prove the following stability result for Theorem 1.1.

Theorem 1.3. For some k ≥ 2, let 1 ≤ r < (k−1)n
k

, and let F ⊆
(

[n]
r

)

be a k-wise
intersecting family. Then for any 0 ≤ ǫ < 1, there exists a 0 ≤ δ < 1 such that if
|F| ≥ (1 − δ)

(

n−1
r−1

)

, then there is an element v ∈ [n] such that |F(v)| ≥ (1 − ǫ)
(

n−1
r−1

)

.

We note that for k ≥ 2, F is k-wise intersecting implies that it is intersecting. Hence
if r < n/2, the results obtained in the papers mentioned above suffice as stability results
for Theorem 1.1. Consequently, the main interest of our theorem is in the structural
information that it provides when n/2 ≤ r < (k − 1)n/k. The technique we use to prove
the theorem is a generalization of Katona’s elegant proof of the EKR theorem [8], initially
employed by Keevash [9], which uses expansion properties of a particular Cayley graph
of the symmetric group.

2 Proof of Theorem 1.3

Suppose F ⊆
(

[n]
r

)

is a k-wise intersecting family, with r < (k−1)n
k

. For any 0 ≤ ǫ < 1, let

δ = ǫ
2rn(n3+1)

and suppose |F| ≥ (1− δ)
(

n−1
r−1

)

. We will show that F contains a large star.

2.1 Some Lemmas

In this section, we will prove some Katona-type lemmas which we will employ later in the
proof of the main theorem. We introduce some notation first. Consider a permutation
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σ ∈ Sn as a sequence (σ(1), . . . , σ(n)). We say that two permutations µ and π are
equivalent if there is some i ∈ [n] such that π(x) = µ(x + i) for all x ∈ [n].1 Let Pn be
the set of equivalence classes, called cyclic orders on [n]. For a cyclic order σ and some
x ∈ [n], call the set {σ(x), . . . , σ(x + r − 1)} a σ-interval of length r starting at x, ending
in x + r − 1, and containing the indices {x, x + 1, . . . , x + r − 1} (addition again mod n).
The following lemma is due to Frankl [5]. We include the short proof below as we will
build on these ideas in the proofs of the other lemmas.

Lemma 2.1 (Frankl). Let σ ∈ Pn be a cyclic order on [n], and F be a k-wise intersecting
family of σ-intervals of length r ≤ (k − 1)n/k. Then, |F| ≤ r.

Proof. Let F c = {[n]\F : F ∈ F}. Let |F| = |F c| = m. We will prove that m ≤ r. Since
r ≤ (k − 1)n/k, we have n ≤ k(n − r). Suppose G1, . . . , Gk ∈ F c. Clearly ∪k

i=1Gi 6= [n];
otherwise ∩k

i=1([n] \ Gi) = ∅, which is a contradiction. Let G ∈ F c. Without loss of
generality, suppose G ends in n. We now assign indices from [1, k(n − r)] to sets in F c.
For every set G′ ∈ F c \ {G}, assign the index x to G′ if G′ ends in x. Assign all indices in
[n, k(n−r)] for G. Consider the set of indices [k(n−r)] and partition them into equivalence
classes mod n − r. Suppose there is an equivalence class such that all k indices in that
class are assigned. Let {Hi}i∈[k] be the k sets in F c which end at the k indices in the
equivalence class. It is easy to note that ∪k

i=1Hi = [n], which is a contradiction. So for
every equivalence class, there exists an index which has not been assigned to any set in
F c. This implies that there are at least n − r indices in [k(n − r)] which are unassigned.
Each set in F c \ {G} has one index assigned to it, and G has k(n − r) − n + 1 indices
assigned to it. This gives us m− 1 + k(n− r)− n + 1 + n− r ≤ k(n− r), which simplifies
to m ≤ r, completing the proof.

⋄

We will now characterize the case when |F| = r, in the following lemma.

Lemma 2.2. Let σ ∈ Pn be a cyclic order on [n], and let F be a k-wise intersecting
family of σ-intervals of length r < (k − 1)n/k. If |F| = r, then F consists of all intervals
which contain an index x.

Proof. Without loss of generality, let σ be the cyclic order given by the identity permu-
tation and let F be a k-wise intersecting family of σ-intervals (henceforth, we drop the
σ). As in the proof of Lemma 2.1, we consider F c and assume (without loss of general-
ity) that F = {r + 1, r + 2, . . . , n} ∈ F c. It is clear from the proof of Lemma 2.1 that if
|F| = |F c| = r, then there are exactly n−r indices in [k(n−r)], one from each equivalence
class (modulo n− r), which are not assigned to any set in F c. In other words, no interval
in F c ends in any of these n − r indices. Since F ends in n, all indices in [n, k(n − r)]
(and there will be at least 2, since r < (k−1)n/k) will be assigned. It will be sufficient to
show that the set of unassigned indices is [x, x + n − r − 1] for some x ∈ [r]. This would
mean that no interval in F c ends in any of the indices from [x, x + n − r − 1] and also
that for every index i ∈ [1, x − 1] ∪ [x + n − r, n], the interval ending in i is a member of

1Addition is carried out mod n, so x + i is either x + i or x + i − n, depending on which lies in [n].
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F c. This would imply that for every i ∈ [n], there is an interval in F that begins in index
i if and only if i ∈ [1, x] ∪ [x + n − r + 1, n]. This would mean that every interval in F
contains x, as required.

Let x be the smallest unassigned index in [n− 1]. We will show that [x, x + n− r − 1]
is the set containing all the n−r unassigned indices. Clearly x ≤ r. Let x ≡ j mod n−r.
We will show that x + i is unassigned for each 0 ≤ i ≤ n − r − 1. We argue by induction
on i, with the base case being i = 0. Let y = x + i for some 1 ≤ i ≤ n− r− 1. Suppose y
is assigned, i.e. suppose there is a set Y in F c that ends in the index y. By the induction
hypothesis, y − 1 is unassigned. Let Ey−1 be the equivalence class containing y − 1; since
n < k(n − r), we have |Ey−1| ≤ k. As mentioned earlier, since |F c| = r, there are n − r
unassigned indices, exactly one from each equivalence class modulo n− r. In conjunction
with the induction hypothesis, this means that every index in Ey−1 \ {y − 1} is assigned
to some interval in F c.

Let I1 = Ey−1 ∩ (y − 1, n]. By the previous observation, each index in I1 is assigned.
Similarly, let I2 = Ey−1 ∩ [1, y − 1). Let I ′

2 = {j + 1 : j ∈ I2}. I ′
2 contains indices in the

same equivalence class as y, and are assigned. This is true because all indices in I ′
2 are

smaller than x and x is the smallest unassigned index.2 Clearly, Ey−1 = I1 ∪ I2 ∪ {y − 1}
and consequently, |Ey−1| = |I1|+ |I2|+1, giving |I1|+ |I ′

2| = |I1|+ |I2| = |Ey−1|−1 ≤ k−1.
Let J = I1∪I ′

2, so |J | ≤ k−1 and all indices in J are assigned. So let H be the subfamily
of intervals in F c which end in indices from J ; we have |H| ≤ k − 1 and hence the family
G = H ∪ {Y } has at most k sets. We will show that

⋃

G∈G G = [n].
Let p be the largest index in I1 and let q be the smallest index in I ′

2. Now q lies
in the same equivalence class as y and p lies in the same equivalence class as y − 1. If
n = k(n−r), it is easy to see that the set which ends in q begins in the largest index from
the same equivalence class as y +1, in other words, p+2. However, we have n < k(n− r),
so the set which ends in q must contain p + 1. This proves that the union of all sets in G
is [n], which is a contradiction. Thus y is unassigned.

⋄

Now let F ⊆
(

[n]
r

)

be a k-wise intersecting family for some r <
(k − 1)n

k
. For each

cyclic order σ ∈ Pn, let Fσ be the subfamily of sets in F that are intervals in σ. We
say that σ is saturated if |Fσ| = r; otherwise call it unsaturated. By Lemma 2.2, if σ is
saturated, all sets in Fσ contain a common index, say v, so call σ v-saturated to identify
this common index.

For i ≤ n, define an adjacent transposition Ai on a cyclic order σ as an operation that
swaps the elements in positions i and i + 1 (i + 1 = 1 if i = n) of σ. We are now ready
to prove our next lemma.

Lemma 2.3. For k ≥ 2, let F ⊆
(

[n]
r

)

be a k-wise intersecting family with r <
(k − 1)n

k
and let σ ∈ Pn be a v-saturated cyclic order. Let µ be the cyclic order obtained from σ by
an adjacent transposition Ai, i ∈ [n] \ {v, v − 1} (v − 1 = n if v = 1). If µ is saturated,
then it is v-saturated.

2This is not true when i > n − r − 1 and thus makes the induction “stop” at i = n − r − 1.
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Proof. As in the proof of Lemma 2.2, we let σ be the identity cyclic order (1, 2, . . . , n)
and suppose it is n-saturated, so 1 ≤ i ≤ n − 2. Let µ = (1, . . . , i − 1, i + 1, i, . . . , n) be
obtained from σ by the adjacent transposition Ai and let µ be saturated. As before, we
consider the family of complements F c and consider sets in this family which are intervals
in the two cyclic orders. By Lemma 2.2, we know that for a v-saturated cyclic order,
the set of the n − r unassigned indices is {v, . . . , v + n − r − 1}. For σ, this interval is
{n, 1, . . . , n − r − 1} as it is n-saturated. We will show that the interval of unassigned
indices remains the same for µ, thus proving that µ is also n-saturated.

Observe that there are only 2 (out of n) intervals of length n − r where σ and µ
differ. The intervals which end in index i, i.e. {i − (n − r) + 1, . . . , i} for σ and {i −
(n − r) + 1, . . . , i − 1, i + 1} for µ and also the intervals which begin in index i + 1, i.e.
{i + 1, . . . , i + n − r} for σ and {i, i + 2, . . . , i + n − r} for µ. In other words, only two
indices, i and i + n− r can potentially change from assigned to unassigned, or vice-versa
after the transposition Ai. We now consider three cases, depending on the value of i.

• Suppose i ∈ (n − r − 1, n − 1). Since i > n − r − 1, we assume that the index
i + n − r is assigned in µ and lies in the set {n, 1, . . . , n − r − 2} (since i < n − 1,
i + n − r 6= n − r − 1). Suppose first that i + n − r 6= n. In this case, all indices in
the set A = {n} ∪ [1, i + n− r)∪ (i + n− r, n− r − 1] are unassigned in µ. This is a
contradiction, since µ is saturated and by Lemma 2.2, the set of unassigned indices
must be of the form {v, v + 1, . . . , v + n − r − 1} for some v ∈ [n].
So let i + n− r = n be assigned in µ, i.e. {i, i + 2, . . . , n} ∈ F c. Since n is assigned
and all indices in the interval [1, n− r−1] are unassigned in µ, the index n− r must
be unassigned in µ by Lemma 2.2; so {1, . . . , n− r− 1, µ(n− r)} /∈ F c. This is only
possible if i = n− r and consequently, µ = (1, . . . , n− r− 1, n− r + 1, n− r, . . . , n).
Since i + n− r = n, this gives n = 2(n− r). Now, as r < (k − 1)n/k, we must have
k ≥ 3. Now consider the following three intervals, each of length n−r: {1, . . . , n−r},
{n − r, n − r + 1, . . . , n − 1} and {n − r, n − r + 2, . . . , n}. Note that the first two
are intervals in σ and since they both end in assigned indices (n − r and n − 1
respectively) for σ, they are sets in F c. Similarly, the third set is an interval in µ,
ends in an assigned index n, and hence is a set in F c. The union of these three sets
is [n], a contradiction, completing the proof of this case.

• Suppose i ∈ [1, n − r − 1). It is clear that the index n − r − 1 stays unassigned in
µ, as the interval which ends in n − r − 1 is the same in both cyclic orders, except
the order of elements. Also, if the index i is assigned in µ, the set of unassigned
indices for µ would be some superset of [1, i)∪(i, n−r−1] not containing i; in other
words, not of the form {x, . . . , x + n − r − 1} for any x ∈ [n], thus contradicting
Lemma 2.2.3 So the only way in which the set of unassigned indices can change is if
i+n−r = n and n is assigned in µ. Now the union of the two intervals {1, . . . , n−r}
and {i, i + 2, . . . , n − r, . . . , n}, both of which are sets in F c (because n − r and n
are assigned indices in σ and µ respectively) is [n], a contradiction.

3The case in which this can still satisfy Lemma 2.2 is if r = 1 and index n− 1 is unassigned in µ. But
this would imply i = n, a contradiction.
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• Suppose i = n− r−1. In this case, the index n− r is still assigned in µ because the
interval ending in n − r is the same in both cyclic orders, except the order of the
elements. Using Lemma 2.2, this means that the set of n−r unassigned indices in µ
can be either {n, 1, . . . , n−r−1} or {n−1, n, . . . , n−r−2}. If the set is the same as
in σ, we are done, so suppose it is {n−1, n, . . . , n−r−2}. This means that n−r−1
is assigned in µ and n−1 is unassigned in µ. This is only possible if i+n−r = n−1.
This means n = 2(n − r) and k ≥ 3. Now consider the following three intervals:
{1, . . . , n−r}, {n−r, n−r+1, . . . , n−1} and {n, 1, . . . , n−r−2, n−r}. The first two
sets are intervals in σ and end in assigned indices (n− r and n− 1 respectively) for
σ, while the third set is an interval in µ which ends in an assigned index i = n−r−1
(note that µ(n − r − 1) = n − r). Thus, all three sets lie in F c. The union of these
three sets is clearly [n], a contradiction.

⋄

2.2 Cayley Graphs

In this small section, we gather some facts about expansion properties of a specific Cayley
graph of the symmetric group. We will consider the Cayley graph G on Sn−1 generated by
the set of adjacent transpositions A = {(12), . . . , (n− 2 n− 1)}. In particular, the vertex
set of G is Sn−1 and two permutations σ and µ are adjacent if µ = σ ◦ a, for some a ∈ A.
We note that the transposition operates by exchanging adjacent positions (as opposed to
consecutive values). G is an n − 2-regular graph. It was shown by Keevash [9], using a
result of Bacher [1], that G is an α-expander for some α > 1

n3 , i.e. for any H ⊆ V (G)

with |H| ≤ |V (G)|
2

, we have N(H) ≥ α|H| > |H|
n3 , where N(H) is the set of all vertices in

V (G) \ H which are adjacent to some vertex in H .

2.3 Proof of Main Theorem

Proof of Theorem 1.3. We will finish the proof of Theorem 1.3 in this section. We can
identify every cyclic order in Pn with a permutation σ ∈ Sn having σ(n) = n. Restricting
σ to [n−1] gives a bijection between Pn and Sn−1. Let U be the set of unsaturated cyclic
orders in Pn. We have

r!(n − r)!|F| =
∑

σ∈Pn

|Fσ|

≤
∑

σ∈Pn

r − |U |

= r(n − 1)! − |U |.

This gives us |U | ≤ r(n − 1)! − r!(n − r)!(1 − δ)
(

n−1
r−1

)

= rδ(n − 1)!, implying that there
are at least (1 − rδ)(n − 1)! saturated orders in Pn.

We now consider the Cayley graph G defined above, with the vertex set being Pn and
the generating set being the set of adjacent transpositions A = {(12), . . . , (n− 2 n− 1)}.
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Suppose S is a subset of saturated cyclic orders. We can use the expansion property of
G to conclude that if n3rδ ≤ |S|

(n−1)!
≤ 1

2
, we get N(S) > |S|/n3 ≥ rδ(n − 1)!. This means

that there is a saturated cyclic order in N(S). We will use this observation to show that
the subgraph of G induced by the set of all saturated cyclic orders, say H , has a large
component. Consider the set of all components in H . Now a component in H can be
either small, i.e. have size at most n3rδ(n − 1)! or be large, i.e. have size bigger than
(n − 1)!/2. Clearly there can be at most one large component. We argue that the total
size of all small components is at most n3rδ(n− 1)!. Suppose not. Let S ′ be the union of
(at least 2) small components such that n3rδ(n− 1)! ≤ |S ′| ≤ 2n3rδ(n− 1)! ≤ (n− 1)!/2.
Now using the above observation, NH(S ′) is non-empty, a contradiction. Thus there is
a large component of size at least (1 − n3rδ)(n − 1)!. Call this component H ′. Suppose
σ is a v-saturated cyclic order in H ′. By Lemma 2.3, every cyclic order in H ′ is v-
saturated. Thus, r!(n − r)!|F(v)| ≥

∑

σ∈H′ |Fσ| ≥ r(1 − rδ − n3rδ)(n − 1)!, which gives

|F(v)| ≥ (1 − ǫ
2n

)
(

n−1
r−1

)

, since δ =
ǫ

2rn(n3 + 1)
.

Remark: The proof of Theorem 1.3 also contains a proof of the structural uniqueness
of the extremal configurations for Theorem 1.1 when r < (k − 1)n/k. This can be
easily observed by putting ǫ = 0 in the statement of the theorem, or by just using
Lemmas 2.1, 2.2 and 2.3. We note that the original proof by Frankl in [5] did not include
this structural information. However in [6], Frankl gives another proof of Theorem 1.1
using the Kruskal-Katona theorem, which includes the characterization of the extremal
structures for r ≤ (k − 1)n/k when k ≥ 3 and r < (k − 1)n/k when k = 2. An alternate
proof of this characterization is also given by Mubayi and Verstraete [12].
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