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Abstract

Given a connected graph G = (V,E), Let r ≥ 1 be an integer and Br(v) denote
the ball of radius r centered at v ∈ V , i.e., the set of all vertices within distance r

from v. A subset of vertices C ⊆ V is an r-identifying code of G (for a given nonzero
constant r ∈ N) if and only if all the sets Br(v) ∩ C are nonempty and pairwise
distinct. These codes were introduced in [7] to model a fault-detection problem in
multiprocessor systems. They are also used to devise location-detection schemes
in the framework of wireless sensor networks. These codes enable one to locate a
malfunctioning device in these networks, provided one scans all the vertices of the
code. We study here an adaptive version of identifying codes, which enables to
perform tests dynamically. The main feature of such codes is that they may require
significantly fewer tests, compared to usual static identifying codes. In this paper
we study adaptive identifying codes in torii in the king lattice. In this framework,
adaptive identification can be closely related to a Rényi-type search problem studied
by M. Ruszinkó [11].
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1 Notations

Given a connected undirected graph G = (V, E) and an integer r ≥ 1, the r-ball centered

at v ∈ V , denoted Br(v), is defined by

Br(v) = {x ∈ V | d(x, v) ≤ r},

where d(x, v) denotes the number of edges in any shortest path between x and v. Whenever

x ∈ Br(v), we say that x and v r-cover each other (or simply cover if there is no ambiguity).

A set X ⊆ V is said to cover a set Y ⊆ V if every vertex in Y is covered by at least one

vertex in X.

A code C is a nonempty set of vertices, and its elements are called codewords. For each

vertex v ∈ V , we denote by

KC,r(v) = C ∩ Br(v)

the set of codewords which r-cover v. Two vertices v1 and v2 with

KC,r(v1) 6= KC,r(v2)

are said to be r-separated, or separated, by the code C.

A code C such that |KC,r(v)| ≥ 1 for all v ∈ V is called an r-covering code of G (it

is often also called an r-dominating set of G). In other words, the set of vertices V is

r-covered by the set of r-balls centered at vertices of C.

A code C such that |KC,r(v)| ≤ 1 for all v ∈ V is called an r-packing (of r-balls) in G. In

other words, the r-balls centered at vertices of C are all pairwise disjoint.

A code being both an r-covering code and an r-packing of G is called an r-perfect code.

These notations are more or less standard [6].

A code C is called r-identifying (or simply identifying if there is no ambiguity), if the sets

KC,r(v), v ∈ V , are all nonempty and distinct [7]. In other words, all vertices must be

r-covered and pairwise r-separated by C.

Notice that, for a given graph G = (V, E) and an integer r, there exists an r-identifying

code C ⊆ V if and only if

Br(v1) 6= Br(v2)

holds for all v1, v2 ∈ V, v1 6= v2. In this case, we say that G is r-identifiable (or simply

identifiable if there is no ambiguity). Obviously, not all graphs are identifiable. Structural

properties of identifiable graphs are studied in [2]. In the following, the graphs we consider

are all identifiable graphs.

Let ir(G) denote the minimum cardinality of an r-identifying code of an r-identifiable

graph G. Let us also denote cr(G) (resp. γr(G)) the maximum cardinality (resp. the

minimum cardinality) of an r-packing of G (resp. of an r-covering code in G). Clearly,

we always have cr(G) ≤ γr(G), with equality if and only if there exists an r-perfect code

in G.
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2 Motivations

The motivations come, for instance, from sensor networks, where identifying codes are

used to devise location and detection schemes [10, 12]. These codes were originally defined

for the purpose of fault diagnosis in multiprocessor systems [7]. Let G be a graph modelling

a network, and assume that there is at most one “malfunctioning” vertex in G. Let C

be an r-identifying code of G, and let us ask to every vertex c ∈ C the query “is there

a malfunctioning vertex in your r-ball Br(c) ?”. If they all answer “no”, then one may

claim that there is no malfunctioning vertex in G (because C is in particular an r-covering

code of G). If at least one vertex of C answers “yes”, then one may claim that there is

a malfunctioning vertex in G, and may even find out which vertex is malfunctioning

(because the set {c ∈ C | c answered “yes”} corresponds to a unique KC,r(v)).

Adaptive identification was defined in [9, Sec. 1.2.7] and studied in [1], it consists in asking

the queries one after the other, allowing one to choose the next query according to the

answers received so far. This can also be seen as a game, where the first player secretly

chooses a vertex to be faulty in a graph, or no vertex at all, and the second player tries to

locate it by asking queries of the type “is there a faulty vertex in your r-ball Br(v) ?” for

any vertex v ∈ V . If the graph is identifiable, then the second player will always succeed.

In the following, “query” and “ball” will be equivalent.

In adaptive identification, we want to minimize the maximum number of queries required

for identification, and we denote by ar(G) this minimum number. Obviously, for all r ≥ 1

and all r-identifiable graphs G, we always have ar(G) ≤ ir(G). As we shall see, this

inequality can be strict, and ar(G) can be rather far from ir(G).

It has been shown in [1, Example 2] that there exists infinite families of graphs for which

the cardinality of a minimum 1-identifying code is linear in the size of the graphs, whereas

the adaptive identification can be performed in a number of queries which is linear in the

size of the graphs.

In [1], adaptive identification was studied in torii in the square lattice. In this paper

we derive similar results for the case of torii in the king lattice. The king lattice is a

graph with points lying on Z
2, such that two distinct points A, B are neighbours if the

Euclidean distance from A to B is at most
√

2. This is equivalent to saying that one can

reach A from B using a legal move of the King in the game of chess (considering Z
2 as a

chessboard). Static identifying codes were already studied in this lattice [3, 4, 5]. There

is a large and fast-growing literature on identifying codes in general, we refer the reader

to [13] for a dynamic up-to-date bibliography.

The paper is structured as follows: the next section is dedicated to preliminary results on

adaptive identification in torii in the king lattice, and Section 4 is dedicated to deriving

bounds and, for many cases, exact values of ar(Tp,q). In the sequel we will use some results

of M. Ruszinkó on a similar problem [11].
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3 Preliminary results

We first recall the following result from [1, Theorem 1], which is valid for any r-identifiable

r-regular graph. Let G be an r-regular graph such that all r-balls of G have same cardi-

nality, denoted vr(G). Let us define dr(G) as the minimum number of queries to identify

an r-ball in G, i.e., the minimum number of queries for identifying any given r-ball Br in

G, assuming that there is no faulty vertex outside Br (hence there is one or zero faulty

vertex in Br).

Theorem 1 Let r ≥ 1 and let G be an r-regular r-identifiable graph. Then we have

cr(G) − 1 + ⌈log
2
(vr(G) + 1)⌉ ≤ ar(G) ≤ γr(G) − 1 + dr(G) 2

3.1 The king lattice

Given two integers p and q, the p × q torus in the king lattice, denoted Tp,q, is the graph

having vertex set

V = {(i, j) | 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1},
and edge set

E = {{(i, j), (i, j + 1)}, {(i, j), (i + 1, j)} | 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1}
∪ {{(i, j), (i + 1, j + 1)} | 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1}
∪ {{(i, j), (i + 1, j − 1)} | 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1}

with sums on the first coordinate carried modulo p, and sums on the second coordinate

carried modulo q. If p and q are both multiples of 2r + 1, then there exists a perfect

r-code in Tp,q. In this case, we have

cr(Tp,q) = γr(Tp,q),

and to get good lower and upper bounds on ar(Tp,q), one could derive bounds on dr(Tp,q)

and use Theorem 1.

Thus, we compute general bounds on dr(Tp,q), that are used in Section 4 to derive close

bounds on — and, for many values of r, exact values of — ar(Tp,q) in the perfect case.

Our bounds on dr(Tp,q) involve a result on a similar problem studied by M. Ruszinkó [11],

that we introduce in Section 3.2.

A ball of radius r in the king lattice can be seen as a square of side 2r + 1 (see Figure 1).

Hence, the problem of identifying an r-ball in Tp,q is equivalent to finding out if a given

square, containing at most one faulty vertex, indeed contains one, and if yes, then locate

it, using queries of the following kind. In each query, two numbers

1 ≤ n1, n2 ≤ 2r + 1
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and two symbols

s1, s2 ∈ {≤,≥}
are chosen. The query has the form:

“is there a faulty vertex in the rectangle {(x, y) | x s1 n1, y s2 n2}?”

Figure 1: A 2-ball in Tp,q, seen as a square of side 5.

3.2 The search problem of Ruszinkó

A similar problem has been proposed by G. O. H. Katona [8], and studied by M. Ruszin-

kó [11]. Let us name our problem the “identification problem” and the problem discussed

in [11], the “search problem”. The search problem is different from the identification

problem in three ways:

(1) The search problem considers the dichotomization problem in a rectangle {(x, y) |
1 ≤ x ≤ a, 1 ≤ y ≤ b}, which is not necessarily a square.

(2) The search problem assumes that there is exactly one faulty vertex in the rectangle

(rather than at most one faulty vertex in the identification problem).

(3) In the search problem, all the queries are of the form: “is the faulty vertex in the

rectangle {(x, y) | x ≤ m, y ≤ n}?”, where 1 ≤ m ≤ a, 1 ≤ n ≤ b. In the following,

we shall refer to these queries as “type 2 queries”, while queries corresponding to

the identification problem will be called “type 1 queries”.

Denote by Q(a, b) the minimum number of type 2 queries required to locate the faulty

vertex in an a × b rectangle for the search problem. We shall use the following results.
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Theorem 2 (Ruszinkó [11]) For a natural number x, denote ℓ(x) as the fractional part

of log
2
x, that is to say

ℓ(x) = log
2
(x) − ⌊log

2
(x)⌋ .

If the natural numbers a and b satisfy at least one of the following conditions:

ℓ(a) + ℓ(b) > 1 (1)

ℓ(a) + ℓ(b) ≤ 0.8 (2)

ℓ(a) ≤ 0.49 and ℓ(b) ≤ 0.49 (3)

a = b and a ≤ 180, (4)

then there exists an algorithm using at most ⌈log2(ab)⌉ type 2 queries which locates the

faulty vertex for the search problem in an a × b rectangle, i.e.,

Q(a, b) = ⌈log2(ab)⌉ . 2

We note that the range of values of a and b for which ⌈log
2
(ab)⌉ queries are sufficient is

extended in [11] beyond Theorem 2. This extension is however small and we shall not use

it here.

Theorem 2 could be easily used for the identification problem if we were only guaranteed

that a faulty vertex exists. One way to overcome this is to add a query that questions

the entire ball. However, in many cases this extra query is unnecessary.

3.3 Bounds on dr(Tp,q)

Lemma 1 Let r ≥ 1, p ≥ 2 and q ≥ 2, and let Tp,q be the p × q torus in the king lattice.

Then we have

⌈

log
2
((2r + 1)2 + 1)

⌉

≤ dr(Tp,q) ≤ Q(2r + 1, 2r + 2)

≤ ⌈log
2
(2r + 1)⌉ + ⌈log

2
(2r + 2)⌉ .

In order to prove this lemma, we first need the following result.

Lemma 2 Let A be an optimal algorithm for the search problem, i.e., an algorithm that

locates the faulty vertex in an a× b rectangle using at most Q(a, b) type 2 queries. Denote

by x = (a, b) the rightmost and uppermost vertex of the rectangle. Then no query covers

x. Furthermore, x is the faulty vertex if and only if all the queries answer NO.

Proof: We first show that since A is optimal, then no query covers x. Indeed, the only

query that contains x is the query that questions the entire rectangle, and it is known a

priori that the answer to this query is YES. This query is thus unnecessary and, if posed,

can be removed from any optimal algorithm.

Since no query contains x, all the queries answer NO if x is the faulty vertex. For the

other direction, assume that all the queries answer NO. In each step of the algorithm, the
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candidate set of faulty vertices is the set of vertices that have not been covered by any

of the preceding queries. Since x is not covered by any of the queries, x belongs to this

set all along the execution of A. By the end of the algorithm, the candidate set of faulty

vertices contains exactly one vertex, which is the faulty vertex. Therefore x is the faulty

vertex. 2

Proof of Lemma 1: The first inequality

⌈

log
2
((2r + 1)2 + 1)

⌉

≤ dr(Tp,q)

is trivial since vr(Tp,q), the volume of an r-ball in Tp,q, is equal to (2r + 1)2. To prove

the second inequality, we exhibit an algorithm A1 which solves the identification problem

with Q(2r + 1, 2r + 2) type 1 queries. Given a square with side 2r + 1 and vertices

(1, 1), . . . , (2r + 1, 2r + 1), we add a new line of non-faulty vertices

{(1, 2r + 2), (2, 2r + 2), . . . , (2r + 1, 2r + 2)}

above the uppermost line of the square. Let A2 be an optimal algorithm for the search

problem in this newly created rectangle. Note that A2 will output that (2r + 1, 2r + 2)

is the faulty vertex if and only if there is no faulty vertex in the rectangle. Using type 1

queries on the square, we simulate the execution of A2 on the rectangle in the following

way. For each type 2 query

“is there a faulty vertex in {(x, y) | x ≤ m, y ≤ n}?”,

where 1 ≤ m ≤ 2r + 1, 1 ≤ n ≤ 2r + 2, algorithm A1 produces the type 1 query

“is there a faulty vertex in {(x, y) | x ≤ m, y ≤ min{2r + 1, n}}?”

which is equivalent to the query

“is there a faulty vertex in Br((m − r, min{2r + 1, n} − r))?”

If the square contains a faulty vertex, then it will be located by A2 and hence also by A1,

since we know in advance that the line

{(1, 2r + 2), (2, 2r + 2), . . . , (2r + 1, 2r + 2)}

contains no faulty vertices. If the square does not contain a faulty vertex, then the vertex

x = (2r + 1, 2r + 2) will be declared as the faulty vertex by A2. Indeed, by Lemma 2, no

query of A2 covers x, therefore A2 will be properly executed without being bothered by

the fact that the rectangle does not contain a faulty vertex: the possibility that x is the

faulty vertex always remains valid. Furthermore, since the rectangle does not contain a

faulty vertex, all the queries answer NO, hence, by Lemma 2, x will be declared as the

faulty vertex.

the electronic journal of combinatorics 18 (2011), #P116 7



The third inequality is easy: in general, to locate the faulty vertex in an a × b rectangle,

one can still use a dichotomic search to find the row containing the faulty vertex (at most

⌈log
2
a⌉ queries), and then find the column containing the faulty vertex (at most ⌈log

2
b⌉

queries), hence

Q(a, b) ≤ ⌈log
2
a⌉ + ⌈log

2
b⌉

for all natural numbers a and b. 2

We remark that in the proof of Lemma 1, we did not use the fact that in the identification

problem we are free to choose the signs s1 and s2 in each query, i.e., we used only r-balls

with centers (x, y) such that x ≤ r + 1, y ≤ r + 1.

Observe that it is easy to check that for all r ≥ 1,

(⌈log
2
(2r + 1)⌉ + ⌈log

2
(2r + 2)⌉) −

⌈

log
2
((2r + 1)2 + 1)

⌉

∈ {0, 1}.

4 Bounds and exact values for ar(Tp,q)

4.1 Perfect case

Here we will focus on the case where p and q are both multiples of 2r + 1. In this case,

we have cr(Tp,q) = γr(Tp,q) = pq/vr(Tp,q) = pq/(2r + 1)2. Theorem 2 enables us to find

many values of r for which ⌈log
2
((2r + 1)2 + 1)⌉ coincides with Q(2r + 1, 2r + 2), which

directly gives the value of dr(Tp,q) by Lemma 1.

Theorem 3 We have

dr(Tp,q) =
⌈

log2((2r + 1)2 + 1)
⌉

for all 1 ≤ r ≤ 100, except maybe for r = 22 and r = 90, as well as for r = 2m − s,

1 ≤ s ≤ 2m−2, m ≥ 7. Consequently, we have

ar(Tp,q) =
pq

(2r + 1)2
− 1 +

⌈

log2((2r + 1)2 + 1)
⌉

for all r ≤ 100, r 6= 22, r 6= 90, and for all r = 2m − s, 1 ≤ s ≤ 2m−2, m ≥ 7, provided

that p, q are both multiples of 2r + 1.

Proof: For all the values of r ≤ 100, Theorem 2 guarantees that

Q(2r + 2, 2r + 2) = ⌈2 log2(2r + 2)⌉ .

Indeed, for 1 ≤ r ≤ 89, we can directly apply (4) in Theorem 2, and for 91 ≤ r ≤ 100 we

use (1) in Theorem 2. Since we always trivially have

Q(2r + 1, 2r + 2) ≤ Q(2r + 2, 2r + 2)
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for all r ≥ 1, then by Lemma 1 we have

dr(Tp,q) ≤ ⌈2 log2(2r + 2)⌉ .

Computation reveals that

⌈

log2((2r + 1)2 + 1)
⌉

= ⌈2 log2(2r + 2)⌉

for all 1 ≤ r ≤ 100, except for r = 2, 5, 22, 90. The cases r = 2, 5 are given in Fig-

ures 2 and 3, which show that

d2(Tp,q) = 5

and

d5(Tp,q) = 7,

and we conclude by Theorem 1 and Lemma 1. The case r = 2m − s comes from the fact

that the bounds of Lemma 1 coincide for these values of r:

⌈

log
2
((2r + 1)2 + 1)

⌉

= dr(Tp,q) = ⌈log
2
(2r + 1)⌉ + ⌈log

2
(2r + 2)⌉ .

2

However, similarly to the case of the torus in the square lattice (see [1, Theorem 4]), the

general bounds from Lemma 1 differ by at most 1, hence:

Theorem 4 For all r ≥ 1 we have

ar(Tp,q) −
(

pq

(2r + 1)2
− 1 +

⌈

log
2
((2r + 1)2 + 1)

⌉

)

∈ {0, 1},

provided that p and q are both multiples of 2r + 1.

Proof: Straightforward from Theorem 1, Lemma 1 and the observation following its

proof. 2

4.2 General case

Theorem 5 Let r ≥ 1 be a integer. For all p ≥ 2 and q ≥ 2, let Tp,q be the p × q torus

in the king lattice. Then we have

ar(Tp,q) =
pq

(2r + 1)2
+ Θ(p + q).

Proof: By Theorem 1, we know that

ar(G) ≥ cr(G) − 1 + ⌈log2(vr(G) + 1)⌉
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Figure 2: Proof of d2(Tp,q) = 5.

for any r-regular r-identifiable graph G. Let us define p′ as the greatest multiple of 2r +1

which is smaller than or equal to p. Similarly, let us define q′ as the greatest multiple of

2r + 1 which is smaller than or equal to q. Clearly, we have

cr(Tp,q) ≥ cr(Tp′,q′) =
p′q′

(2r + 1)2
.

Now, since p′ ≥ p − 2r and q′ ≥ q − 2r, we have

p′q′

(2r + 1)2
=

pq

(2r + 1)2
+ Ω(p + q).
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Figure 3: Proof of d5(Tp,q) = 7.

Since ⌈log
2
(vr(G) + 1)⌉ = O(1), we have

ar(Tp,q) =
pq

(2r + 1)2
+ Ω(p + q).

Still by Theorem 1, we know that

ar(G) ≤ γr(G) − 1 + dr(G)

for any r-regular r-identifiable graph G. Let us define p′′ as the smallest multiple of 2r+1

which is greater than or equal to p. Similarly, let us define q′′ as the smallest multiple of

2r + 1 which is greater than or equal to q. Clearly, we have

γr(Tp,q) ≤ γr(Tp′′,q′′) =
p′′q′′

(2r + 1)2
.
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Now, since p′′ ≤ p + 2r and q′′ ≤ q + 2r, we have

p′′q′′

(2r + 1)2
=

pq

(2r + 1)2
+ O(p + q).

Since dr(Tp,q) is clearly independent of p and q, we have dr(Tp,q) = O(1), and

ar(Tp,q) =
pq

(2r + 1)2
+ O(p + q),

which concludes the proof. 2

Hence, the density of an optimal adaptive r-identifying code in Tp,q tends to

1

(2r + 1)2

as p and q tend to infinity, where the density is defined as the ratio between ar and the

number of vertices. One can compare this density to the non-adaptive case, where we

know that a minimum r-identifying code has density tending to 2

9
if r = 1 [5] and 1

4r
if

r > 1 [4], as p and q tend to infinity. Here again we can see that there is a significant gap

(in terms of density, hence efficiency) between adaptive and non-adaptive identification.
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