On the size of dissociated bases
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Abstract

We prove that the sizes of the maximal dissociated subsets of a given finite subset
of an abelian group differ by a logarithmic factor at most. On the other hand, we
show that the set {0,1}" C Z™ possesses a dissociated subset of size Q(nlogn);
since the standard basis of Z" is a maximal dissociated subset of {0,1}" of size n,
the result just mentioned is essentially sharp.

1 Introduction

Recall, that subset sums of a subset A of an abelian group are group elements of the form
Y pep b, where B C A; thus, a finite set A has at most 21l distinet subset sums.

A famous open conjecture of Erdds, first stated about 80 years ago (see [B96] for a
relatively recent related result and brief survey), is that if all subset sums of an integer
set A C [1,n] are pairwise distinct, then |A| < log,n 4+ O(1); here log, denotes the base-
2 logarithm. Similarly, one can investigate the largest possible size of subsets of other
“natural” sets in abelian groups, possessing the property in question; say,

What is the largest possible size of a set A C {0, 1} C Z"™ with all subset sums
pairwise distinct?

In modern terms, a subset of an abelian group, all of whose subset sums are pairwise
distinct, is called dissociated. Such sets proved to be extremely useful due to the fact that if
A is a maximal dissociated subset of a given set A, then every element of A is representable
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(generally speaking, in a non-unique way) as a linear combination of the elements of A
with the coefficients in {—1,0,1}. Hence, maximal dissociated subsets of a given set can
be considered as its “linear bases over the set {—1,0,1}”. This interpretation naturally
makes one wonder whether, and to what extent, the size of a maximal dissociated subset
of a given set is determined by this set. That is,

Is it true that all maximal dissociated subsets of a given finite set in an abelian
group are of about the same size?

In this note we answer the two above-stated questions as follows.

Theorem 1 For a positive integer n, the set {0,1}" (consisting of those vectors in Z"
with all coordinates being equal to 0 or 1) possesses a dissociated subset of size (1 +
o(1))nlogyn/logy,9 (asn — o0).

Theorem 2 If A and M are mazimal dissociated subsets of a finite subset A ¢ {0} of
an abelian group, then
| M]

logy(2|M] + 1)

< |A| < | M| (logz(QM) + log, log, (2| M|) +2).

We remark that if a subset A of an abelian group satisfies A C {0}, then A has just
one dissociated subset; namely, the empty set.

Since the set of all n-dimensional vectors with exactly one coordinate equal to 1 and
the other n — 1 coordinates equal to 0 is a maximal dissociated subset of the set {0, 1}",
comparing Theorems 1 and 2 we conclude that the latter is sharp in the sense that the
logarithmic factors cannot be dropped or replaced with a slower growing function, and the
former is sharp in the sense that nlogn is the true order of magnitude of the size of the
largest dissociated subset of the set {0,1}". At the same time, the bound of Theorem 2
is easy to improve in the special case where the underlying group has bounded exponent.

Theorem 3 Let A be finite subset of an abelian group G of exponent e := exp(G). If r
denotes the rank of the subgroup (A), generated by A, then for any maximal dissociated
subset A C A we have

r < |A] <rlog,e.

2 Proofs

Proof of Theorem 1: We will show that if n > (2log, 3+0(1))m/ log, m, with a suitable
choice of the implicit function, then the set {0, 1}" possesses an m-element dissociated
subset. For this we prove that there exists a set D C {0, 1} with |D| = n such that for
every non-zero vector s € S :={—1,0,1}™ there is an element of D, not orthogonal to s.
Once this is done, we consider the n x m matrix whose rows are the elements of D; the
columns of this matrix form then an m-element dissociated subset of {0,1}", as required.
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We construct D by choosing at random and independently of each other n vectors from
the set {0, 1}, with equal probability for each vector to be chosen. We will show that for
every fixed non-zero vector s € S, the probability that all vectors from D are orthogonal
to s is very small, and indeed, the sum of these probabilities over all s € S\ {0} is less
than 1. By the union bound, this implies that with positive probability, every vector
s € S\ {0} is not orthogonal to some vector from D.

We say that a vector from S is of type (m™,m™) if it has m™ coordinates equal to
+1, and m~ coordinates equal to —1 (so that m —m™ —m™ of its coordinates are equal
to 0). Suppose that s is a non-zero vector from S of type (m™,m™). Clearly, a vector
d € {0,1}™ is orthogonal to s if and only if there exists j > 0 such that d has exactly
J non-zero coordinates in the (+1)-locations of s, and exactly j non-zero coordinates in
the (—1)-locations of s. Hence, the probability for a randomly chosen d € {0,1}™ to be
orthogonal to s is

min{m*,m~
1 {2 : (m+) (m_) o <m+ +m_) ; 1
gmt4m= J J gmt+m” m* V1.5(m* +m-)

J=0

It follows that the probability for all elements of our randomly chosen set D to be simul-
taneously orthogonal to s is smaller than (1.5(m* +m™))™"/2.

Since the number of elements of S of a given type (m™*,m~) is ( +Tm,) (m+7;fn7), to
conclude the proof it suffices to estimate the sum

m m* +m” N C\\en2
> <m++m_>< . )(1.5(m +m7))
1<mt+m—<m

showing that its value does not exceed 1.
To this end we rewrite this sum as

g; (?) (15t mio (W;) = g; (?) 2 (1.5¢) /2

and split it into two parts, according to whether ¢ < T or t > T, where T := m/(log, m)?.
Let > denote the first part and ¥, the second part. Assuming that m is large enough
and

n > 2log, 3 (1+¢(m))

m
log, m
with a function ¢ sufficiently slowly decaying to 0 (where the exact meaning of “suffi-
ciently” will be clear from the analysis of the sum Y, below), we have

9 T
¥ < (7;) 271572 < (Tm) 1.572 = (3log, m)*'1.57"/2,

whence

m

log, X1 < 5 logy(3logy m) — log, 3log, 1.5 (1+¢(m)) < —1,

2m
(logym)
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and therefore ¥; < 1/2. Furthermore,

m

22 S T—n/QZ (T) 2t < T_n/23m,

t=1

implying

log, Yo < mlog, 3 — (log, m — 21log, log, m) log, 3 (14 p(m))

m
log, m
= mog, 3 (ZEE (1 4 m) — o(m))

log, m
<1

Thus, Yo < 1/2; along with the estimate ; < 1/2 obtained above, this completes the
proof. [ |

Proof of Theorem 2: Suppose that A, M C A are maximal dissociated subsets of
A. By maximality of A, every element of A, and consequently every element of M, is a
linear combination of the elements of A with the coefficients in {—1,0, 1}. Hence, every
subset sum of M is a linear combination of the elements of A with the coefficients in
{—|M|,—|M|+1,...,|M][}. Since there are 21| subset sums of M, all distinct from each
other, and (2| M| + 1)/ linear combinations of the elements of A with the coefficients in
{—=|M|,—=|M|+1,...,|M|}, we have

2 < (2|M] + 1),

and the lower bound follows.
Notice, that by symmetry we have

24 < (2]A] + )M,

whence
|A] < [M]logy(2|A| + 1). (*)

Observing that the upper bound is immediate if M is a singleton (in which case
A C {—g,0,g}, where g is the element of M, and therefore every maximal dissociated
subset of A is a singleton, too), we assume |M| > 2 below.

Since every element of A is a linear combination of the elements of M with the coeffi-
cients in {—1,0, 1}, and since A contains neither 0, nor two elements adding up to 0, we
have |A| < (31— 1)/2. Consequently, 2|A| + 1 < 3| and using (*) we get

Al < |M[?log, 3.

Hence,
2|A| +1 < [M[*log, 9+ 1 < 4|M|?,
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and substituting this back into (*) we obtain
|A] < 2[M[logy(2[M]).
As a next iteration, we conclude that
2|A| 4+ 1 < 5|M|log, (2| M),
and therefore, by (%),
A < |M](log,(2[M]) + log, log,(2|M]) + log,(5/2)).
|

Proof of Theorem 3: The lower bound follows from the fact that A generates (A), the
upper bound from the fact that all 214 pairwise distinct subset sums of A are contained
in (A), whereas [(A)| < €. u

We close our note with an open problem.

For a positive integer n, let L, denote the largest size of a dissociated subset
of the set {0,1}" C Z". What are the limits

n

lim inf and lim sup ?
n—oo mlog,n n—oo Mlogym

Notice, that by Theorems 1 and 2 we have

Ly
1/1og, 9 < liminf < lim sup <1.
n—oo nlog,n n—oo Mlogom
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