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Abstract

We prove that the sizes of the maximal dissociated subsets of a given finite subset
of an abelian group differ by a logarithmic factor at most. On the other hand, we
show that the set {0, 1}n ⊆ Zn possesses a dissociated subset of size Ω(n log n);
since the standard basis of Zn is a maximal dissociated subset of {0, 1}n of size n,
the result just mentioned is essentially sharp.

1 Introduction

Recall, that subset sums of a subset Λ of an abelian group are group elements of the form
∑

b∈B b, where B ⊆ Λ; thus, a finite set Λ has at most 2|Λ| distinct subset sums.
A famous open conjecture of Erdős, first stated about 80 years ago (see [B96] for a

relatively recent related result and brief survey), is that if all subset sums of an integer
set Λ ⊆ [1, n] are pairwise distinct, then |Λ| ≤ log2 n + O(1); here log2 denotes the base-
2 logarithm. Similarly, one can investigate the largest possible size of subsets of other
“natural” sets in abelian groups, possessing the property in question; say,

What is the largest possible size of a set Λ ⊆ {0, 1}n ⊆ Zn with all subset sums
pairwise distinct?

In modern terms, a subset of an abelian group, all of whose subset sums are pairwise
distinct, is called dissociated. Such sets proved to be extremely useful due to the fact that if
Λ is a maximal dissociated subset of a given set A, then every element of A is representable
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(generally speaking, in a non-unique way) as a linear combination of the elements of Λ
with the coefficients in {−1, 0, 1}. Hence, maximal dissociated subsets of a given set can
be considered as its “linear bases over the set {−1, 0, 1}”. This interpretation naturally
makes one wonder whether, and to what extent, the size of a maximal dissociated subset
of a given set is determined by this set. That is,

Is it true that all maximal dissociated subsets of a given finite set in an abelian
group are of about the same size?

In this note we answer the two above-stated questions as follows.

Theorem 1 For a positive integer n, the set {0, 1}n (consisting of those vectors in Zn

with all coordinates being equal to 0 or 1) possesses a dissociated subset of size (1 +
o(1)) n log2 n/ log2 9 (as n → ∞).

Theorem 2 If Λ and M are maximal dissociated subsets of a finite subset A * {0} of
an abelian group, then

|M |

log2(2|M | + 1)
≤ |Λ| < |M |

(

log2(2M) + log2 log2(2|M |) + 2
)

.

We remark that if a subset A of an abelian group satisfies A ⊆ {0}, then A has just
one dissociated subset; namely, the empty set.

Since the set of all n-dimensional vectors with exactly one coordinate equal to 1 and
the other n − 1 coordinates equal to 0 is a maximal dissociated subset of the set {0, 1}n,
comparing Theorems 1 and 2 we conclude that the latter is sharp in the sense that the
logarithmic factors cannot be dropped or replaced with a slower growing function, and the
former is sharp in the sense that n log n is the true order of magnitude of the size of the
largest dissociated subset of the set {0, 1}n. At the same time, the bound of Theorem 2
is easy to improve in the special case where the underlying group has bounded exponent.

Theorem 3 Let A be finite subset of an abelian group G of exponent e := exp(G). If r
denotes the rank of the subgroup 〈A〉, generated by A, then for any maximal dissociated
subset Λ ⊆ A we have

r ≤ |Λ| ≤ r log2 e.

2 Proofs

Proof of Theorem 1: We will show that if n > (2 log2 3+o(1))m/ log2 m, with a suitable
choice of the implicit function, then the set {0, 1}n possesses an m-element dissociated
subset. For this we prove that there exists a set D ⊆ {0, 1}m with |D| = n such that for
every non-zero vector s ∈ S := {−1, 0, 1}m there is an element of D, not orthogonal to s.
Once this is done, we consider the n × m matrix whose rows are the elements of D; the
columns of this matrix form then an m-element dissociated subset of {0, 1}n, as required.
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We construct D by choosing at random and independently of each other n vectors from
the set {0, 1}m, with equal probability for each vector to be chosen. We will show that for
every fixed non-zero vector s ∈ S, the probability that all vectors from D are orthogonal
to s is very small, and indeed, the sum of these probabilities over all s ∈ S \ {0} is less
than 1. By the union bound, this implies that with positive probability, every vector
s ∈ S \ {0} is not orthogonal to some vector from D.

We say that a vector from S is of type (m+, m−) if it has m+ coordinates equal to
+1, and m− coordinates equal to −1 (so that m − m+ − m− of its coordinates are equal
to 0). Suppose that s is a non-zero vector from S of type (m+, m−). Clearly, a vector
d ∈ {0, 1}m is orthogonal to s if and only if there exists j ≥ 0 such that d has exactly
j non-zero coordinates in the (+1)-locations of s, and exactly j non-zero coordinates in
the (−1)-locations of s. Hence, the probability for a randomly chosen d ∈ {0, 1}m to be
orthogonal to s is

1

2m++m−

min{m+,m−}
∑

j=0

(

m+

j

)(

m−

j

)

=
1

2m++m−

(

m+ + m−

m+

)

<
1

√

1.5(m+ + m−)
.

It follows that the probability for all elements of our randomly chosen set D to be simul-
taneously orthogonal to s is smaller than (1.5(m+ + m−))−n/2.

Since the number of elements of S of a given type (m+, m−) is
(

m
m++m−

)(

m++m−

m+

)

, to
conclude the proof it suffices to estimate the sum

∑

1≤m++m−≤m

(

m

m+ + m−

)(

m+ + m−

m+

)

(1.5(m+ + m−))−n/2

showing that its value does not exceed 1.
To this end we rewrite this sum as

m
∑

t=1

(

m

t

)

(1.5t)−n/2

t
∑

m+=0

(

t

m+

)

=
m

∑

t=1

(

m

t

)

2t (1.5t)−n/2

and split it into two parts, according to whether t < T or t ≥ T , where T := m/(log2 m)2.
Let Σ1 denote the first part and Σ2 the second part. Assuming that m is large enough
and

n > 2 log2 3
m

log2 m
(1 + ϕ(m))

with a function ϕ sufficiently slowly decaying to 0 (where the exact meaning of “suffi-
ciently” will be clear from the analysis of the sum Σ2 below), we have

Σ1 ≤

(

m

T

)

2T 1.5−n/2 <

(

9m

T

)T

1.5−n/2 = (3 log2 m)2T 1.5−n/2,

whence

log2 Σ1 <
2m

(log2 m)2
log2(3 log2 m) − log2 3 log2 1.5

m

log2 m
(1 + ϕ(m)) < −1,
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and therefore Σ1 < 1/2. Furthermore,

Σ2 ≤ T−n/2

m
∑

t=1

(

m

t

)

2t < T−n/23m,

implying

log2 Σ2 < m log2 3 − (log2 m − 2 log2 log2 m) log2 3
m

log2 m
(1 + ϕ(m))

= m log2 3

(

2 log2 log2 m

log2 m
(1 + ϕ(m)) − ϕ(m)

)

< −1.

Thus, Σ2 < 1/2; along with the estimate Σ1 < 1/2 obtained above, this completes the
proof.

Proof of Theorem 2: Suppose that Λ, M ⊆ A are maximal dissociated subsets of
A. By maximality of Λ, every element of A, and consequently every element of M , is a
linear combination of the elements of Λ with the coefficients in {−1, 0, 1}. Hence, every
subset sum of M is a linear combination of the elements of Λ with the coefficients in
{−|M |,−|M |+1, . . . , |M |}. Since there are 2|M | subset sums of M , all distinct from each
other, and (2|M | + 1)|Λ| linear combinations of the elements of Λ with the coefficients in
{−|M |,−|M | + 1, . . . , |M |}, we have

2|M | ≤ (2|M | + 1)|Λ|,

and the lower bound follows.
Notice, that by symmetry we have

2|Λ| ≤ (2|Λ| + 1)|M |,

whence
|Λ| ≤ |M | log2(2|Λ| + 1). (∗)

Observing that the upper bound is immediate if M is a singleton (in which case
A ⊆ {−g, 0, g}, where g is the element of M , and therefore every maximal dissociated
subset of A is a singleton, too), we assume |M | ≥ 2 below.

Since every element of Λ is a linear combination of the elements of M with the coeffi-
cients in {−1, 0, 1}, and since Λ contains neither 0, nor two elements adding up to 0, we
have |Λ| ≤ (3|M | − 1)/2. Consequently, 2|Λ| + 1 ≤ 3|M |, and using (∗) we get

|Λ| ≤ |M |2 log2 3.

Hence,
2|Λ| + 1 < |M |2 log2 9 + 1 < 4|M |2,
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and substituting this back into (∗) we obtain

|Λ| < 2|M | log2(2|M |).

As a next iteration, we conclude that

2|Λ| + 1 < 5|M | log2(2|M |),

and therefore, by (∗),

|Λ| ≤ |M |
(

log2(2|M |) + log2 log2(2|M |) + log2(5/2)
)

.

Proof of Theorem 3: The lower bound follows from the fact that Λ generates 〈A〉, the
upper bound from the fact that all 2|Λ| pairwise distinct subset sums of Λ are contained
in 〈A〉, whereas |〈A〉| ≤ er.

We close our note with an open problem.

For a positive integer n, let Ln denote the largest size of a dissociated subset
of the set {0, 1}n ⊆ Zn. What are the limits

lim inf
n→∞

Ln

n log2 n
and lim sup

n→∞

Ln

n log2 n
?

Notice, that by Theorems 1 and 2 we have

1/ log2 9 ≤ lim inf
n→∞

Ln

n log2 n
≤ lim sup

n→∞

Ln

n log2 n
≤ 1.
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