A Note on the Critical Group of a Line Graph
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Abstract

This note answers a question posed by Levine in [3]. The main result is Theo-
rem 1 which shows that under certain circumstances a critical group of a directed
graph is the quotient of a critical group of its directed line graph.

1 Introduction

Let G be a finite multidigraph with vertices V' and edges E. Loops are allowed in GG, and
we make no connectivity assumptions. Each edge e € E has a tail e~ and a target e™.
Let ZV and ZE be the free abelian groups on V and E, respectively. The Laplacian® of
G is the Z-linear mapping A : ZV — ZV determined by Ag(v) = 37, yep(u — v) for
v e V. Given w, € V, define

O = Oguw,: LV — LV
- { Ag(v) if v # w,,

Wy if v = w,.
The critical group for G with respect to w, is the cokernel of ¢:

K(G,w,) = cok ¢.

!The mapping A: ZV — ZV defined by A(f)(v) = > wauyer(f(v) = f(u)) for v € V is often called the
Laplacian of G. It is the negative Z-dual (i.e., the transpose) of Ag.
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The line graph, LG, for G is the multidigraph whose vertices are the edges of G and whose
edges are (e, f) with et = f~. As with G, we have the Laplacian A.g and the critical
group K (LG, e,) = cok ¢zc., for each e, € E.

If every vertex of G has a directed path to w, then K(G,w,) is called the sandpile
group for G with sink w,. A directed spanning tree of G rooted at w, is a directed subgraph
containing all of the vertices of G, having no directed cycles, and for which w, has out-
degree 0 and every other vertex has out-degree 1. Let x(G,w,) denote the number of
directed spanning trees rooted at w,. It is a well-known consequence of the matrix-tree
theorem that the number of elements of the sandpile group with sink w, is equal to
k(G,w,). For a basic exposition of the properties of the sandpile group, the reader is
referred to [2].

In his paper, [3], Levine shows that if e, = (w,,v,), then k(G,w,) divides kK(LG, e,)
under the hypotheses of our Theorem 1. This leads him to ask the natural question as to
whether K (G, w,) is a subgroup or quotient of K (LG, e,). In this note, we answer this
question affirmatively by demonstrating a surjection K (LG, e.) — K(G,w,). Further, in
the case in which the out-degree of each vertex of G is a fixed integer k, we show the
kernel of this surjection is the k-torsion subgroup of K (LG, e,). These results appear
as Theorem 1 and may be seen as analogous to Theorem 1.2 of [3]. In [3], partially for
convenience, some assumptions are made about the connectivity of G which are not made
in this note. For related work on the critical group of a line graph for an undirected graph,
see [1].

2 Results
Fix e, = (w4, v,) € E. Define the modified target mapping
T:LE — ZV
Lo
S
Also define
p: ZE — IV
_ _ + 3
o BT

Let k be a positive integer. The graph G is k-out-reqular if the out-degree of each of
its vertices is k.

Theorem 1 Ifindeg(v) > 1 for allv € V and indeg(v.) > 2, then
p: LE — ZV

descends to a surjective homomorphism p: K(LG,e,) — K(G,w,).
Moreover, if G is k-out-regular, the kernel of p is the k-torsion subgroup of K(LG,e,).
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Proof. Let py: ZV — ZV be the homomorphism defined on vertices v € V' by
po(v) == Ag(wy) — v —wy + v
so that p = pg o 7. The mapping p, is an isomorphism, its inverse being itself:

Po(v) = po(Ac(w.) — v, — wi +v)

= 3" (pole?) = polw.)) = polw.) — polw.) + po(v)

— Aalw.) — povs) — polw.) + pol)

Let ¢: ZV — ZV be the homomorphism defined on vertices v € V' by
Ag(v if v #£ w,,
w) = {20 7
Ag(w,) — v, if v = w,.

Let ¢¢ and ¢r-¢ denote ¢g ., and ¢rq.e,, respectively. We claim the following diagram

commutes:
dra

7E 7E
v —Y gy

| B
v —2 7y

To prove commutativity of the top square of the diagram, first suppose e # e,. Then

T(¢ccle)) = T(Acale) =7 ( d (- 6)) :

fo=et

If e # e, and e # w,, then

. ( > (f—e)> = ST (- e) = Agle) = 6(r(e),
f

—=et f=et

On the other hand, if e # e, and et = w,, then

( > (f—e)) = > (e +Tlea—e)

fr=et fm=et, fFex
= > (=) -w
f7=6+,f756*

= Ag(w.) = ve = P(7(e)).
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Therefore, 7(¢ra(e)) = 1(7(e)) holds if e # e,. Moreover, the equality still holds if e = e,
since 7(e,) = 0. Hence, the top square of the diagram commutes.

To prove that the bottom square of the diagram commutes, there are two cases. First,
if v # w,, then

po((©) = Y (polu) = po(v)) = Y (u—v)=Ag(v) = ds(v).

(vyu)eE (vyu)eE

Second, if v = w,, then

po(P(v)) = po(Ac(w.) = v.) = Ag(w.) = po(v.) = we = ¢a(v).

From the commutativity of the diagram, the cokernel of v is isomorphic to K (G, w,),
and p = pg o 7 descends to a homomorphism p: K(LG,e,) — K(G,w,) as claimed. The
hypothesis on the in-degrees of the vertices assures that 7, hence p, is surjective.

Now suppose that G, hence LG, is k-out-regular. This part of our proof is an adap-
tation of that given for Theorem 1.2 in [3]. Since py is an isomorphism, it suffices to
show that the kernel of the induced map, 7: K(LG,e,) — cok, has kernel equal to the
k-torsion of K (LG, e,). To this end, define the homomorphism o: ZV — ZE, given on

vertices v € V' by
o(v) = Z e.

We claim that the image of o o ¢ lies in the image of ¢,q, so that o induces a map, &,
between cok ) and K (LG, e,). To see this, first note that for v € V,

o(Ag(v)) =0 (Z et — kv)

Yy iy
e~=v fT=et e~ =v
= Z AEG(@)

Therefore, for v # w,, it follows that o(¢(v)) is in the image of ¢,c. On the other hand,
using the calculation just made,

o(Ag(w,) —v,) = Z Arale) — Z f
F=v

— Z Arale) — < Z f—ke*—l—k‘e*>
e~ =wx fm=v*
= > Acgle) = Acgles) — ke

= Z Arale) — ke,

e~ =W, eFex

which is also in the image of ¢,¢.
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We have established the mappings

cok K(LG,e.) .

Rl

For e # e,,
7(7(e) = Y f=Arale) +ke=kec K(LG,e.).
fr=et

Thus, the kernel of 7 is contained in the k-torsion of K (LG, e,), and to show equality it
suffices to show that & is injective.

The case where k = 1 is trivial since there are no G satisfying the hypotheses: if G is
1-out-regular and indeg(v) > 1 for all v € V| then indeg(v) = 1 for all v € V| including v,.
So suppose that £ > 1 and that n = ) _, a, v is in the kernel of @. We then have

a(n) :Z Z a, e = ZbeAgg(e)+ce* (1)
veEV e~ =v eFex

for some integers b, and ¢. Comparing coefficients in (1) gives

Ue- = Z by — kb for e # e,. (2)

ft=e= f#ex

Define
1
F(U):E ( +Z bf—av>
f :qu?ée*

From (2),

F(e7)=b.  fore#e,. (3)

Since k > 1, for each vertex v, we can choose an edge e, # e, with e, = v. By (2)
and (3), for all v € V,

a,= Y bp—kb,= > F(f7)-kF(u).
f+:’l),f7£6* f+:U,f756*
Therefore, as an element of cok ),

U:Z%UZ ZF(Q_)6+—Z/€F(U)U

eFex veV

= ¥ F(v)<ze+—kv)+F(w*)< > e*—k:w*)

vEV vFWy e~ =v e~ =Wx,eFex
= S F0)As(v) + Flw.)(Ag(w.) - v.)
vEV, vFWwy
= O’
which shows that @ is injective. O
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