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Abstract

For all α ≥ RT (3) (where RT (3) = 7/4 is the repetition threshold for the 3-letter
alphabet), there exists an infinite word over 3 letters whose critical exponent is α.

1 Introduction

Let A be a finite alphabet. Any finite word v over A, v 6= ǫ, can be factorized as v = pke,
where:

- k ≥ 1

- e is a prefix of p

- |p| is minimal

We then say that v has period p, excess e, and exponent E(v) = |v|/|p|. For example,
the English word church has period chur, excess ch, and exponent 3/2, while the French
word entente has period ent, excess e, and exponent 7/3. A (finite or infinite) word is
said to be α-free (resp. α+-free) if none of its subwords has exponent β, with β ≥ α (resp.
β > α).

The critical exponent of an infinite word w over A is defined as

Ec(w) = sup{E(v) ∈ Q, v subword of w}.

For example, the binary word abab2 · · ·abn · · · has critical exponent +∞. The Thue-Morse
word, fixed point of the morphism 0 7→ 01, 1 7→ 10, has critical exponent 2 ([10] and [1]).
The Fibonacci word, fixed point of the morphism 0 7→ 01, 1 7→ 0, has critical exponent
2 + φ, where φ is the golden number [8].

The problem to determine if, for a given real number α > 1, there is an infinite word
wα with critical exponent α, has been solved by Krieger and Shallit [7]. The number of
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letters they use to construct the word wα grows very fast as α tends to 1, and they left
open the construction of wα over an alphabet with a fixed size.

Let k be a natural number, and let Ak be the k-letter alphabet. The repetition
threshold on k letters is the real number (see [6] and [3] for more details)

RT (k) = inf{Ec(w), w ∈ Aω
k}.

Dejean [6] conjectured that

RT (k) =



















2 if k = 2

7/4 if k = 3

7/5 if k = 4

k/(k − 1) if k > 4

and this conjecture is now proved (see [9] and [5]).
It is clear that if α < RT (k), no word over Ak has critical exponent α. Currie and

Rampersad [4] proved the following result for a binary alphabet:

For each α ≥ 2 = RT (2), there is an infinite binary word with critical exponent α.

And they conjectured:

Let k ≥ 2. For each α ≥ RT (k), there is an infinite word over k letters with critical
exponent α.

We will prove that this is true for k = 3. Let A3 = {a, b, c} be the 3-letter alphabet.
Dejean [6] proved that RT (3) = 7/4. We immediately remark that if α ≥ 2, the result of
Currie and Rampersad gives us a binary word, and then also a word over A3, with critical
exponent α. That’s why we only have to consider the case 7/4 ≤ α < 2. To demonstrate
her result, Dejean considered the morphism µ (which we will call Dejean’s morphism)
defined as follows:

µ :











a 7→ abc acb cab c bac bca cba

b 7→ π(µ(a)) = bca bac abc a cba cab acb

c 7→ π2(µ(a)) = cab cba bca b acb abc bac

where π is the permutation (a b c), and proved that its fixed point µ∞(a) has critical
exponent 7/4.

2 Exponents and Dejean’s morphism

Dejean [6] noticed the existence of specific subwords in µ(a), µ(b), and µ(c), which can
be used to desubstitute µ. She called them characteristic factors:
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Proposition 1. The words f1 = abcacbc, f2 = cabcbac and f3 = cbcacba only appear in
µ(A∗

3) respectively as prefix, central factor, and suffix, of µ(a).
Similarly, π(f1), π(f2), π(f3) only appear as prefix, central factor, and suffix of µ(b), and
π2(f1), π2(f2), π2(f3) as prefix, central factor, and suffix of µ(c).

Definition 1. The words f1, f2, and f3 (resp. π(f1), π(f2), π(f3) ; resp. π2(f1), π2(f2),
π2(f3)) are called characteristic factors of µ(a) (resp. µ(b); resp. µ(c)).

We use these characteristic factors to prove the following desubstitution results for µ.

Proposition 2. Let w be a word over A3, and u a subword of µ(w). If |u| ≥ 18, then,
there exists a unique x ∈ A3, a unique y ∈ A3, and there exist some unique s, v, p ∈ A∗

3,
such that u = sµ(v)p, where s 6= ǫ is a suffix of µ(x), and p 6= ǫ is a prefix of µ(y).

Proof. As |u| ≥ 18, u has a characteristic factor as a subword. The result is then clear
since µ is a 19-uniform morphism, and since ∀x ∈ A3, µ(x) begins and ends with x.

Theorem 1. Let w ∈ A∗
3, and let u be a subword of µ(w). Assume u has period p, excess

e and exponent 7/4 < |u|/|p| < 2. Then, w has a subword v of length |v| ≥ ⌈|u|/19⌉, with
period q such that |q| = ⌈|p|/19⌉, and with exponent E(v) ≥ |u|/|p|.

Proof. There are two cases: either |e| ≥ 18, or |e| < 18.

Suppose first that |e| ≥ 18. Then, we also have |u| ≥ 18. Then, by Proposition 2,

- There exist some unique xu, yu ∈ A3, and some unique mu, su, pu ∈ A∗
3, su 6= ǫ suffix

of µ(xu), pu prefix of µ(yu), such that u = suµ(mu)pu,

- There exist some unique xe, ye ∈ A3, and some unique me, se, pe ∈ A∗
3, se 6= ǫ suffix

of µ(xe), pe prefix of µ(ye), such that e = seµ(me)pe.

Let:
f = xemeye

v = xumuyu

As e is a suffix of u, we have: pu = pe, yu = ye, and µ(xe)µ(me) is a suffix of
µ(xu)µ(mu), thus xeme is a suffix of xumu. Moreover, e is a prefix of u, so su = se,
xe = xu, µ(me)µ(ye) is a prefix of µ(mu)µ(yu), and meye is a prefix of muyu (see the
following figure).

Therefore, f is a prefix and a suffix of v, and v has excess f (|f | is maximal, otherwise
|e| would not be maximal in u). Let us denote its period by q, i.e. v = qf .
It is clear that

|v| ≥ ⌈
|u|

19
⌉.
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u =

µ(xu)

µ(mu)

µ(mu) µ(yu)

su pu

µ(me)

µ(me)

µ(me)

µ(me)

pe pese se

µ(xe) µ(xe) µ(ye)µ(ye)

ee

Moreover, q has length

|q| = |v| − |f | = |mu| − |me|

=
|µ(mu)| − |µ(me)|

19

=
(|u| − |su| − |pu|) − (|e| − |se| − |pe|)

19

=
|u| − |e|

19
(because su = se and pu = pe)

=
|p|

19

Finally, v has exponent

E(v) =
|v|

|q|
≥ ⌈

|u|

19
⌉/

|p|

19
≥

|u|

19
.
19

|p|
= E(u)

Thus, v is the word we were looking for.

Suppose now that |e| < 18. Then, as E(u) > 7/4, |u| ≤ 24 + 18 = 42. As µ is 19-
uniform, u is a subword of a word µ(x), where x ∈ A∗

3, |x| ≤ 4. Moreover, E(u) > 7/4, so
x is not a subword of µ∞(a). Then, by looking at the µ(x) obtained if x is not a subword
of µ∞(a), we can again reduce the set of possible x:

x ∈ {aa, bb, cc, aaa, bbb, ccc, aaaa, bbbb, cccc, abab, acac, baba, bcbc, caca, cbcb}

since in the other cases, µ(x) has no subword u such that |u| ≤ 42 and E(u) > 7/4. Then,
we have:

- if u is a subword of µ(x), with x ∈ {aa, bb, cc}, consider v = x. v has exponent 2,
and period q of length |q| = 1. We can also remark that u necessarily has a period
of length 19 = 19.|q|, and has exponent E(u) ≤ 2 = E(v). Therefore, v is the word
we were looking for.
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- if u is a subword of µ(x), with x ∈ {aaa, bbb, ccc}, consider v = x. v has exponent 3,
and period q of length |q| = 1. As u necessarily has a period of length 19 = 19.|q|,
and has exponent E(u) ≤ 3 = E(v), v is the word we were looking for.

- if u is a subword of µ(x), with x ∈ {aaaa, bbbb, cccc}, consider v = x. v has exponent
4, and period q of length |q| = 1. As u necessarily has a period of length 19 = 19.|q|,
and has exponent E(u) ≤ 4 = E(v), v is the word we were looking for.

- finally, if u is a subword of µ(x), with x ∈ {abab, acac, baba, bcbc, caca, cbcb}, consider
v = x. v has exponent 2, and period q of length q = 2. As u necessarily has a period
of length 2.19 = 19.|q|, and has exponent E(u) ≤ 2 = E(v), v is the word we were
looking for.

3 Construction of an infinite α-free word over A3

In the following, we will use the operator, denoted by δ, that removes the first letter of a
word: for example, δ(0110) = 110.

Lemma 1. Let L be the set Fact(µ(A∗
3)) of all subwords of the words in µ(A∗

3). Let
α ∈]7/4, 2[ and v ∈ A∗

3, such that:

- abcbabcv ∈ L

- abcbabcv is α-free.

Suppose that babcbabcv = xuy, where u has exponent E(u) ≥ α. Then, x = ǫ, and
u = babcbabc.

Proof. By hypothesis, abcbabcv is α-free. Since E(u) ≥ α, u is necessarily a prefix of
babcbabcv. Moreover, babcbab has exponent 7/4 < α ≤ E(u). Therefore, u = babcbabcv′,
where v′ is a prefix of v. Suppose that v′ 6= ǫ.
By hypothesis, abcbabcv′ ∈ L. Moreover, the subword abcbabc only appears in L as a
subword of µ(c). So v′ = abacbabcbac....
The excess of u is at most babcbab. Indeed, otherwise, the word babcbabc, whose exponent is
2, is a subword of abcbabcv, which is impossible since abcbabcv is α-free. Then, u has excess
e, with |e| ≤ 7, and so has period p with |p| ≤ 9. So u is a subword of babcbabcabacbabc. By
looking at the factors of this word, we deduce that the only possibility is u = babcbabc.

Lemma 2. Let α ∈]7/4, 2[ be given. Let s, t be natural numbers such that µs(b) =
xabcbabcy, with |x| = t. Let β = 2 − t

4.19s . Suppose that 7/4 < β < α, and that
abcbabcv ∈ L is α-free. Consider the word w = δtµs(babcbabcv). Then, we have:

1. w has a prefix with exponent β.
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2. If abcbabcv has a subword with exponent γ and period p, then, w has a subword with
exponent γ and a period of length 19s|p|.

3. w is α-free.

Proof. 1. µs(babcbabc) has exponent 2 and period µs(babc). We have |µs(babc)| = 4.19s,
and |µs(babcbabc)| = 8.19s, so the prefix δtµs(babcbabc) of w has exponent

|w|

|µs(babc)|
=

|µs(babcbabc)| − t

|µs(babc)|
= β

2. Let u be a subword of abcbabcv, with exponent γ and period p. Then µs(u) is a
subword of µs(abcbabcv), with exponent γ and period 19s|p|. Moreover, µs(abcbabcv)
is a suffix of δtµs(babcbabcv), since t = |x| ≤ |µs(b)|. So µs(u) is a subword of w,
with the required properties.

3. Suppose that w has a subword u, with exponent κ ≥ α and period p. Then, by
iteration of Theorem 2, babcbabcv has a subword u′ with exponent κ′ ≥ κ and q
such that |q| = |p|

19s . By Lemma 1, as κ′ ≥ α, we deduce that κ′ = 2 and that
u′ = babcbabc. Then q = babc, and |p| = |q|.19s = 4.19s.
Moreover, u is not a subword of µs(abcbabcv), otherwise abcbabcv has a subword with
exponent ≥ α. u is not a subword of δtµs(babcbabc) either, otherwise, we would have
|u| ≤ |δtµs(babcbabc)| = 8.19s − t, and so:

E(u) =
|u|

|p|
≤

8.19s − t

4.19s
= β < α,

which is absurd since E(u) ≥ α.
Therefore, u has a prefix z such that z = z1µ

s(abcbabc)z2, where z1 6= ǫ is a suffix
of µs(b), and z2 6= ǫ is a prefix of µs(a) (since we remarked that the first letter of
v is a a). z being a prefix of u, z has a period of length 4.19s. Then, z has period
z1µ

s(abc)z′1, with z′1 such that µs(b) = z′1z1. So we have:

z = z1µ
s(abc)z′1z1µ

s(abc)z2.

We deduce that either z2 is a prefix of z′1, or z′1 is a prefix of z2. Yet neither is
possible. Indeed, z2 begins with the letter a, and z′1 begins with the letter b.
Finally, w is α-free.

4 A word over A3 with critical exponent α ≥ RT (3)

Definition 2. A real number β < α is said to be obtainable if β can be written as
β = 2 − t

4.19s , where the natural numbers s and t verify:

- s ≥ 3
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- the word δt(µs(b)) begins with abcbabc.

We note that for any given s ≥ 3, it is possible to choose t such that

- 7/4 < β = 2 − t
4.19s < α

- |α − β| ≤ 192

4.19s

Indeed, µ2(a), µ2(b), and µ2(c) have length 192, and each have abcbabc as a subword.
Therefore, choosing a large enough s, we can always find some obtainable real numbers
β, arbitrarily close to α.

Theorem 2. Let α ≥ RT (3) = 7/4. Then, there is an infinite word over A3 with critical
exponent α.

Proof. If α = 7/4, we already know that µ∞(a) has critical exponent 7/4. If α ≥ 2, by
the theorem for k = 2, we can find a word over A∗

3 with critical exponent α. Now, let
α ∈]7/4, 2[.
Let (βi)i∈N be an increasing sequence of obtainable numbers, converging to α. For each
i, we write βi as:

βi = 2 −
ti

4.19si

where si and ti are such that:

- si ≥ 3

- δtiµsi(b) begins with abcbabc.

For all words v ∈ L, let Φi(v) denote the word δtiµsi(bv), and consider the following
sequence:

v1 = Φ1(abcbabc) = δt1µs1(babcbabc)

v2 = Φ1Φ2(abcbabc) = δt1µs1(bδt2µs2(babcbabc))

v3 = Φ1Φ2Φ3(abcbabc)
...

vn = Φ1Φ2Φ3...Φn(abcbabc)
...

By iteration of Lemma 2, as abcbabc ∈ L is α-free, we deduce that each vi is α-free.
Moreover, once again by Lemma 2, each vi has a subword with exponent βj, j = 1, 2, ..., i.
Finally, consider the word w = limn→∞ ∈ Aω

3 (it is possible to take this limit since each
vi is a prefix of vi+1). w then has critical exponent α: it is α-free, yet has subwords with
exponents βi converging to α.
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The conjecture proposed by Currie and Rampersad in [4] is then true for alphabets of size
2 and 3. It still have to be proved for alphabets of size ≥ 4. For that, another method
must be found, because of Brandenburg’s result in [2] : if k ≥ 4, there is no RT (k)-free
morphism, i.e., no morphism which maps, as Thue-Morse morphism for k = 2 or Dejean’s
morphism for k = 3, every RT (k)-free word to an RT (k)-free word.
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