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Abstract

Given graphs G and H and a positive number b, a weighted (H,b)-decomposition
of G is a partition of the edge set of G such that each part is either a single edge or
forms an H-subgraph. We assign a weight of b to each H-subgraph in the decompo-
sition and a weight of 1 to single edges. The total weight of the decomposition is the
sum of the weights of all elements in the decomposition. Let ¢(n, H,b) be the the
smallest number such that any graph G of order n admits an (H,b)-decomposition
with weight at most ¢(n, H,b). The value of the function ¢(n, H,b) when b = 1
was determined, for large n, by Pikhurko and Sousa [Minimum H -Decompositions
of Graphs, Journal of Combinatorial Theory, B, 97 (2007), 1041-1055.] Here we
determine the asymptotic value of ¢(n, H,b) for any fixed bipartite graph H and
any value of b as n tends to infinity.

1 Introduction

Let G and H be two graphs and b a positive number. A weighted (H,b)-decomposition of
G is a partition of the edge set of GG such that each part is either a single edge or forms an
H-subgraph, i.e., a graph isomorphic to H. We allow partitions only, that is, every edge
of G appears in precisely one part. We assign a weight of b to each H-subgraph in the
decomposition and a weight of 1 to single edges. The total weight of the decomposition
is the sum of the weights of all elements in the decomposition. Let ¢(G, H,b) be the
smallest possible weight in an (H, b)-decomposition of G.
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Let e(H) denote the number of edges in the graph H. If b > e(H) we have ¢(G, H,b) =
e(G). In the case when 0 < b < e(H) and H is a fixed graph we can easily see that
o(G,H,b) =e(G) —pu(G)(e(H) — b), where py(G) is the maximum number of pairwise
edge-disjoint H-subgraphs that can be packed into GG. Building upon a body of previous
research, Dor and Tarsi [5] showed that if H has a component with at least 3 edges then
the problem of checking whether an input graph GG admits a partition into H-subgraphs
is NP-complete. Thus, it is NP-hard to compute the function ¢(G, H,b) for such H.

Our goal is to study the function

o(n, H,b) = max{p(G, H,b) | v(G) = n},

which is the smallest number such that any graph G with n vertices admits an (H,b)-
decomposition with weight at most ¢(n, H, b).

Pikhurko and Sousa [11] considered the case b = 1 and proved the following results
for large n.

Theorem 1.1. Let H be any fized graph of chromatic number r > 3. Then,
(n, H,1) = t,_1(n) + o(n?),

where t.(n), called the Taran number, is the mazimum number of edges of an r-partite
graph on n vertices.

For a non-empty graph H, let gecd(H) denote the greatest common divisor of the
degrees of H. For example, ged(Kg4) = 2 while for any tree 7" with at least 2 vertices we
have ged(T') = 1.

Theorem 1.2. Let H be a bipartite graph with m edges and let d = gcd(H). Then there
is ng = no(H) such that for all n > ny the following statements hold.
Ifd=1, then if () =m —1 (mod m),

n(n—1)
2m

b0, H,1) = g(n, Ko, 1) = { J fmo1,

otherwise,

é(n, H,1) = d(n, K, 1) = {%J +m =2

where K denotes any graph obtained from K,, after deleting at most m —1 edges in order
to have e(K}) =m — 1 (mod m). Furthermore, if G is extremal then G is either K,, or
K.
If d > 2, then
nd /|n

on, H,1) = 2 (bJ - 1) + %n(d — 1)+ 0(1).

Moreover, there is a procedure with running time polynomial in logn which determines
o(n, H,1) and describes a family D of n-sequences such that a graph G of order n satisfies
o(G,H,1) = ¢(n, H,1) if and only if the degree sequence of G belongs to D. (It will be
the case that |D| = O(1) and each sequence in D has n — O(1) equal entries, so D can be
described using O(logn) bits.)
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Our goal in this paper is to find the value of the function ¢(n, H,b) for any fixed
bipartite graph H and b # 1.

2 The bipartite case

Let H be any fixed bipartite graph. We start this section with an easy Lemma.

Lemma 2.1. Let H be a bipartite graph with m edges and let b > m be a constant. Then,

d(n, H,b) = (72’)

Proof. Since b > m = e(H), we clearly have ¢(n,G,b) = ¢(G) < (}) for all graphs G of
order n. Therefore ¢(n, H,b) < (g) To prove the lower bound observe that ¢(n, K,,,b) >
=) = ().

m\2/ — \2

O

Recall that for a non-empty graph H, gcd(H) denotes the greatest common divisor of
the degrees of H. We will prove the following result.

Theorem 2.2. Let H be a bipartite graph with m edges, let d = ged(H) and 0 < b < m
with b # 1 a constant. Then there is ng = no(H) such that for all n > ng the following
statements hold.

If d =1, then
n(n —1)
H b)) =b——= 1). 2.1
o(n, 1,5) =" 1 oq) (2.1)

Ifd>2,letn—1=qd+r where 0 <r <d—1 is an integer.

]fr#Ocmdd—lg%—l—r, then

b (n 1 br
]fr#Ocmdd—lz%—l—r, then
b (n 1 br  bd
[fr:Oand%<1—%,then
b (n 1 bd
]franndl—%ﬁ%ﬁl—é,then
b (n 1 bd 1 b (n m—2>b
_ i 1 2) <« <
m<2>—|—2n<d 1 m) 2_¢(n,H,b)_m<2>+5md2n (2.5)
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]frannd%El—é, then

b b -y
-~ (Z) < o(n, H,) < — (72‘) + ?m . (2.6)

Before we start the proof, we provide some auxiliary results. We start with the fol-
lowing result appearing in Pikhurko and Sousa [11, Theorem 3.1].

Lemma 2.3. For any bipartite graph H with bipartition (V1,V3) and any A C Vi with
a > 1 elements, there are integers C' and ng such that the following holds. In any graph G
of order n > ngy with minimum degree §(G) > %n there is a family of edge disjoint copies
of H such that the vertex subsets corresponding to A C V(H) are disjoint and cover all
but at most C' vertices of G. One can additionally ensure that each vertex of G belongs to
at most 3(v(H))? copies of H.

The following results appearing in Alon, Caro and Yuster [1, Theorem 1.1, Corol-
lary 3.4, Lemma 3.5] which follow with some extra work from the powerful decomposition
theorem of Gustavsson (8], are crucial to the proof of our result.

Lemma 2.4. For any non-empty graph H with m edges, there are v > 0 and Ny such that
the following holds. Let d = gcd(H). Let G be a graph of order n > Ny and of minimum
degree §(G) > (1 — y)n.

If d =1, then

m

pu(G) = {‘B(G)J | (2.7

Ifd>2, leta, =d LdegT(“)J foru € V(G) and let X consist of all vertices whose degree
is not divisible by d. If | X| > I3, then

10d3 7
1
pu(G) = L% Z auJ- (2.8)
ueV(Q)
If | X| < 15, then
@)=~ (@)~ ) (29)
™ 5d%) '

O

Proof of Theorem 2.2. Given H, let v(H) and Ny be given by Lemma 2.4. Assume that
v < v(H) is sufficiently small and that ng > Ny is sufficiently large to satisfy all the
inequalities we will encounter. Let n > ng and let G be any graph of order n with
o(G,H,b) = ¢(n,H,b). We will follow the proof of Pikhurko and Sousa [11, Theorem
1.4], thus only the main results will be stated.

Let G,, = G. Repeat the following at most |n/logn| times: If the current graph G;
has a vertex z; of degree at most (1 — 7v/2)i, let G;_1 = G; — x; and decrease i by 1.
Suppose we stopped after s repetitions. Pikhurko and Sousa proved that s < [n/logn|
and the graph G, has §(G,—s) > (1 —v/2)(n — s).
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Let a = 2v. We will have another pass over the vertices x,,...,z,_s11, each time
decomposing the edges incident to x; by H-subgraphs and single edges. It will be the
case that each time we remove the edges incident to the current vertex x;, the degree of
any other vertex drops by at most 3h*, where h = v(H). Here is a formal description.
Initially, let G/, = G and ¢ = n. If in the current graph G we have degq (z;) < an, then
we remove all G-edges incident to z; as single edges and let G}_, = G} — ;.

Suppose that degq (z;) > an. Then, the set X; = {y € V(G,—s) : z;y € E(G})}, has
at least an — s + 1 vertices. The minimum degree of G[X;] is

S(GIXD) > X — 5= 2 — s it > §|XZ-\.

Let y € V(H), A = Ny(y) and a = |A|. By Lemma 2.3 there is a constant C' such
that all but at most C' vertices of G[X;] can be covered by edge disjoint copies of H —y
each of them having vertex disjoint sets A. Therefore, all but at most C' edges between x;
and X; can be decomposed into copies of H. All other edges incident to x; are removed
as single edges. Let G’_; consist of the remaining edges of G} — z; (that is, those edges
that do not belong to an H-subgraph of the above x;-decomposition). This finishes the
description of the case degq (z;) > an.

Consider the sets S = l{l’n, ey Tpesi1), S1 = {x; € S @ dege(x;) < an}, and
Sy = S\S1. Let their sizes be s, s; and s, respectively, so s = s1 + ss. '

Let F' be the graph with vertex set V(G,,_s) U .Ss, consisting of the edges coming from
the removed H-subgraphs when we processed the vertices in S5. We have

&(G, H,b) < (G, H,b) + be(j) + span + s5C + G) . (2.10)

We know that ¢(G!,_., H,b) = e(G)_,) — pu(G,,_,)(m —b). The last statement of
Lemma 2.3 guarantees that §(G’,_,) > (1 —v)(n — s). Thus, py(G,,_,) can be estimated
using Lemma 2.4.

Consider first the case d = 1. Using the inequalities e(F) < (1 —v/2)son and a <
b(2 — v)/2m, we obtain

&(G,H,b) < ¢(G,_,, H,b) + b% + sjan + s.C + (;)

<elG ) —pu(G, _)(m—>b)+ be(F) + s1an + s59C + <S>

m 2
<e(G_) - {%J (m —b) + begf;) +s10m + 5:C + (S)

2

b - 2 — 2 —
<|—= e +m—>b)+0b 752n+b 751n+526’+ °
m 2 2m 2m 2

b — 2 —
g—(n 3)+b 7sn+s20+(S)+7n—la

m 2 2m 2
—1 -1 2 —
_ﬁ " —b(n )S+bs(s )+b 7sn+s20+ *) +m—b.
m\ 2 m 2m 2m 2
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If S # ( then in order to prove that ¢(G, H,b) < %(") < ¢(H, K,,b) and hence a

2
contradiction to our assumption on G, it suffices to show that

pS 1)+(;)+32C+m—b< (E—M)ns

m 2m m 2m

But this last inequality holds since we have s < and n is sufficiently large. Thus,

S = and

log n

&(G, H,b) = e(G) — (m — b) f

< be(g) + (m—b) (2.11)
S()M (m —b),

2m

giving us the upper bound. To prove the lower bound we consider the complete graph on
n vertices and we obtain

e(K,) n(n —1)
K, Hb =eK, —(m-—>b) | ——| >b——. 2.12
o6, H,0) = el6,) — (m - 0) | “0 | =920 212
Consider the case d > 2 and let n — 1 = gd + r with 0 < r < d — 1 an integer. To
prove the lower bounds we consider the complete graph of order n > ng and a graph L
of order n > ng, which is (almost) (gd — 1)-regular (except at most one vertex of degree

gd — 2). (Such a graph L exists, which can be seen either directly or from Erdés and
Gallai’s result [6].) We have,

n 1 ndq
> _ _
> <2) 5 b) (2.13)
b (n) < b?“) 1
> — - ] T 5>
m\ 2 m 2
and,
1 1 nd(g—1)
S 2 oy - e
> gnlgd = 1) =5 — ———=(m =) (2.14)
b (n 1 br  bd 1
s 9 L I T
giving the required lower bounds in view of ¢ = "_Cll_r

We will now prove the upper bounds.
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Assume first that (2.9) holds. Then, by (2.10)
¢(G,H,b)

¢(n8jﬁm+ﬁﬁﬁ+smn+@C+(j
m 2

(Gy-) — oG )(m — 1) + D) im0 (2)

—b n—s e(F) s

< / _m-=0 /
<e(G_,) — (e(Gn_ ) — 5d ) +b - + s1an + s9C + <2>

b (n—s\ b2—7) (m—b)(n—s) b2-1) S
<
= ( 9 ) + om Son + 5md2 om sin + SQC + 9

b (n bin—1)s bs(s—1) (m—>0b(n—-—s) b2-7) s
< = - .
- m (2) m * 2m * bmd? * om 80+ 2

For s > (mdzz) we have 3 — % — d2 > (. Thus, for n sufficiently large

bs bs(s—1) (m—10b)s s b b2—-v) m-—1>
m * 2m 5md? el 2) < \m 2m Bmd?s )

That is, ¢(G, H,b) < %(") < ¢(K,, H,b) which contradicts the optimality of G.

2
Otherwise, s is bounded by a constant independent of n and the coefficient of sn is

—b 4 Y22 (. Thus, for the case 7 # 0, to obtain the contradiction ¢(G, H,b) <

2m

¢(Kn, H,b) it suffices to show that
b(ny meb b (b
m\ 2 Bmd® | m\2 2" \" " m )

11
52 ~ 2

that is,

which holds since d > 2 and r > 1.
If =0 and b <1-—
suffices to show that

E n +m—_l) <2 n _‘_1 d_l_@
m\ 2 5md2n m\ 2 2" m)’

which holds since = > < 1-—

=%, to obtain the contradiction ¢(G, H,b) < ¢(L, H,b) it

. Otherwise, we have

Sd(3

b (n m—b
¢(G,H,b) < E(Q) +Wn,

which is the upper bound stated in (2.5) and (2.6).
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Finally, assume that (2.8) holds. It follows that py(G) and thus ¢(G, H,b), depends
only on the degree sequence di,...,d, of G. Namely, the packing number ¢ = py(G)
equals |5 Y% 7;|, where r; = d [d;/d] is the largest multiple of d not exceeding d;.

Thus, it is enough for us to prove the upper bounds in (2.3) and (2.4) on @ax, the

maximum of
n

o(dy,. ... dy) Zd — (m —b) {QLZ{%J dJ, (2.15)

i=1

over all (not necessarily graphical) sequences dy, ..., d, of integers with 0 < d; <n — 1.
Let dy,...,d, be an optimal sequence attaining the value ¢n.c. For i = 1,...,n let
di = id + 7y with 0 < 7 < d — 1. Then, ¢ = | @kt |

Recall that n — 1 = qgd +r with 1 < r < d— 1. Define R = gd — 1 to be the
maximum integer which is at most n — 1 and is congruent to d — 1 modulo d. Let
Ci={ien]:ry,=d—-1landd; < R} and Cy ={i€n]:di=n—-1}ifn—1%# R and
Cy = 0 otherwise.

Since dy, ..., d, is an optimal sequence, we have that if r; # d — 1 then d; = n — 1 for
all i € [n]. Also, |Cy] <22 —1 and |Cs| < 2m — 1. We have

1 ¢ 1 1 1
5;0& = 5(”—|01UC2|)R+§Zdi+§|02|(”—1)

i€Cy

IN

End(g 1)+ gnd— 1)~ § 3 (g~ 1-4) +0(),

2 :
1€Cy

= (mxlif)

1=

> %nd(q— 1) — % D (g—1—q)+0(1).

1€Cy

These estimates give us the required upper bound in (2.3) and (2.4).

b 1
Drmax = 5 Zd— — D)0 < 5 -nd(q = 1) + gn(d 1) + O(1)

b /n 1 br bd
< = — S [ 1).
_m(2)+2n<d - m)+0()

The upper bound in (2.2) follows from the fact that

ﬁn _|_1 d_l_b_r_% <£n _|_1 _b_?”
m\ 2 2n m m/) m\2 2n " m)’

inviewofd—lg%—i-r.

(2.16)
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To finish the proof it remains to obtain a contradiction if S # () holds. Let d,...,d,
be the degree sequence of the graph with vertex set V(G) and edge set E(G.,_,) U E(F).
Consider the new sequence of integers

gi, if ZT; ¢ S,
d; = Jz + %n-‘ m, if z; € Sq,
d; +

&n-‘ m, if z; € 5,.

Each d; lies between 0 and n — 1, so ¢(d}, ..., d],) < Gmax. We obtain

#(G H,b) < ¢(d1,...,dn)+slan+820+(S)

2
, , b(1 — 3y s
< ¢(d17“‘7dn)_% 5

b(1 —3v) by s
< o(dy,...,d)— (7—27) s1n — 8—m52n+52C+ 5

b
sin — ism + sjan + soC' + (
&m

by by s
!/ U _ o
< o(dy,...,d) Sy 511 T g oS2n + 5,C + (2)

by

< _
— ¢max ]_Om

sn,

which contradicts the already established facts that ¢(n, H,b) is at most ¢(G, H,b) by
the optimality of G and is at least ¢pmax by (2.16). O
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