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Abstract

Given graphs G and H and a positive number b, a weighted (H, b)-decomposition

of G is a partition of the edge set of G such that each part is either a single edge or
forms an H-subgraph. We assign a weight of b to each H-subgraph in the decompo-
sition and a weight of 1 to single edges. The total weight of the decomposition is the
sum of the weights of all elements in the decomposition. Let φ(n,H, b) be the the
smallest number such that any graph G of order n admits an (H, b)-decomposition
with weight at most φ(n,H, b). The value of the function φ(n,H, b) when b = 1
was determined, for large n, by Pikhurko and Sousa [Minimum H-Decompositions

of Graphs, Journal of Combinatorial Theory, B, 97 (2007), 1041–1055.] Here we
determine the asymptotic value of φ(n,H, b) for any fixed bipartite graph H and
any value of b as n tends to infinity.

1 Introduction

Let G and H be two graphs and b a positive number. A weighted (H, b)-decomposition of
G is a partition of the edge set of G such that each part is either a single edge or forms an
H-subgraph, i.e., a graph isomorphic to H . We allow partitions only, that is, every edge
of G appears in precisely one part. We assign a weight of b to each H-subgraph in the
decomposition and a weight of 1 to single edges. The total weight of the decomposition
is the sum of the weights of all elements in the decomposition. Let φ(G, H, b) be the
smallest possible weight in an (H, b)-decomposition of G.
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Let e(H) denote the number of edges in the graph H . If b ≥ e(H) we have φ(G, H, b) =
e(G). In the case when 0 < b < e(H) and H is a fixed graph we can easily see that
φ(G, H, b) = e(G) − pH(G)(e(H) − b), where pH(G) is the maximum number of pairwise
edge-disjoint H-subgraphs that can be packed into G. Building upon a body of previous
research, Dor and Tarsi [5] showed that if H has a component with at least 3 edges then
the problem of checking whether an input graph G admits a partition into H-subgraphs
is NP-complete. Thus, it is NP-hard to compute the function φ(G, H, b) for such H .

Our goal is to study the function

φ(n, H, b) = max{φ(G, H, b) | v(G) = n},

which is the smallest number such that any graph G with n vertices admits an (H, b)-
decomposition with weight at most φ(n, H, b).

Pikhurko and Sousa [11] considered the case b = 1 and proved the following results
for large n.

Theorem 1.1. Let H be any fixed graph of chromatic number r ≥ 3. Then,

φ(n, H, 1) = tr−1(n) + o(n2),

where tr(n), called the Túran number, is the maximum number of edges of an r-partite
graph on n vertices.

For a non-empty graph H , let gcd(H) denote the greatest common divisor of the
degrees of H . For example, gcd(K6,4) = 2 while for any tree T with at least 2 vertices we
have gcd(T ) = 1.

Theorem 1.2. Let H be a bipartite graph with m edges and let d = gcd(H). Then there
is n0 = n0(H) such that for all n ≥ n0 the following statements hold.

If d = 1, then if
(

n

2

)

≡ m − 1 (mod m),

φ(n, H, 1) = φ(n, Kn, 1) =

⌊

n(n − 1)

2m

⌋

+ m − 1,

otherwise,

φ(n, H, 1) = φ(n, K∗

n, 1) =

⌊

n(n − 1)

2m

⌋

+ m − 2

where K∗

n denotes any graph obtained from Kn after deleting at most m−1 edges in order
to have e(K∗

n) ≡ m − 1 (mod m). Furthermore, if G is extremal then G is either Kn or
K∗

n.
If d ≥ 2, then

φ(n, H, 1) =
nd

2m

(⌊n

d

⌋

− 1
)

+
1

2
n(d − 1) + O(1).

Moreover, there is a procedure with running time polynomial in log n which determines
φ(n, H, 1) and describes a family D of n-sequences such that a graph G of order n satisfies
φ(G, H, 1) = φ(n, H, 1) if and only if the degree sequence of G belongs to D. (It will be
the case that |D| = O(1) and each sequence in D has n−O(1) equal entries, so D can be
described using O(log n) bits.)
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Our goal in this paper is to find the value of the function φ(n, H, b) for any fixed
bipartite graph H and b 6= 1.

2 The bipartite case

Let H be any fixed bipartite graph. We start this section with an easy Lemma.

Lemma 2.1. Let H be a bipartite graph with m edges and let b ≥ m be a constant. Then,

φ(n, H, b) =

(

n

2

)

.

Proof. Since b ≥ m = e(H), we clearly have φ(n, G, b) = e(G) ≤
(

n

2

)

for all graphs G of
order n. Therefore φ(n, H, b) ≤

(

n

2

)

. To prove the lower bound observe that φ(n, Kn, b) ≥
b
m

(

n

2

)

≥
(

n

2

)

.

Recall that for a non-empty graph H , gcd(H) denotes the greatest common divisor of
the degrees of H . We will prove the following result.

Theorem 2.2. Let H be a bipartite graph with m edges, let d = gcd(H) and 0 < b < m
with b 6= 1 a constant. Then there is n0 = n0(H) such that for all n ≥ n0 the following
statements hold.

If d = 1, then

φ(n, H, b) = b
n(n − 1)

2m
+ O(1). (2.1)

If d ≥ 2, let n − 1 = qd + r where 0 ≤ r ≤ d − 1 is an integer.

If r 6= 0 and d − 1 ≤ bd
m

+ r, then

φ(n, H, b) =
b

m

(

n

2

)

+
1

2
n

(

r −
br

m

)

+ O(1). (2.2)

If r 6= 0 and d − 1 ≥ bd
m

+ r, then

φ(n, H, b) =
b

m

(

n

2

)

+
1

2
n

(

d − 1 −
br

m
−

bd

m

)

+ O(1). (2.3)

If r = 0 and b
m

< 1 − 5d2

5d3−2
, then

φ(n, H, b) =
b

m

(

n

2

)

+
1

2
n

(

d − 1 −
bd

m

)

+ O(1). (2.4)

If r = 0 and 1 − 5d2

5d3−2
≤ b

m
≤ 1 − 1

d
, then

b

m

(

n

2

)

+
1

2
n

(

d − 1 −
bd

m

)

−
1

2
≤ φ(n, H, b) ≤

b

m

(

n

2

)

+
m − b

5md2
n. (2.5)
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If r = 0 and b
m

≥ 1 − 1
d
, then

b

m

(

n

2

)

≤ φ(n, H, b) ≤
b

m

(

n

2

)

+
m − b

5md2
n. (2.6)

Before we start the proof, we provide some auxiliary results. We start with the fol-
lowing result appearing in Pikhurko and Sousa [11, Theorem 3.1].

Lemma 2.3. For any bipartite graph H with bipartition (V1, V2) and any A ⊂ V1 with
a ≥ 1 elements, there are integers C and n0 such that the following holds. In any graph G
of order n ≥ n0 with minimum degree δ(G) ≥ 2

3
n there is a family of edge disjoint copies

of H such that the vertex subsets corresponding to A ⊂ V (H) are disjoint and cover all
but at most C vertices of G. One can additionally ensure that each vertex of G belongs to
at most 3(v(H))2 copies of H.

The following results appearing in Alon, Caro and Yuster [1, Theorem 1.1, Corol-
lary 3.4, Lemma 3.5] which follow with some extra work from the powerful decomposition
theorem of Gustavsson [8], are crucial to the proof of our result.

Lemma 2.4. For any non-empty graph H with m edges, there are γ > 0 and N0 such that
the following holds. Let d = gcd(H). Let G be a graph of order n ≥ N0 and of minimum
degree δ(G) ≥ (1 − γ)n.

If d = 1, then

pH(G) =

⌊

e(G)

m

⌋

. (2.7)

If d ≥ 2, let αu = d ⌊deg(u)
d

⌋ for u ∈ V (G) and let X consist of all vertices whose degree
is not divisible by d. If |X| ≥ n

10d3 , then

pH(G) =
⌊ 1

2m

∑

u∈V (G)

αu

⌋

. (2.8)

If |X| < n
10d3 , then

pH(G) ≥
1

m

(

e(G) −
n

5d2

)

. (2.9)

Proof of Theorem 2.2. Given H , let γ(H) and N0 be given by Lemma 2.4. Assume that
γ ≤ γ(H) is sufficiently small and that n0 ≥ N0 is sufficiently large to satisfy all the
inequalities we will encounter. Let n ≥ n0 and let G be any graph of order n with
φ(G, H, b) = φ(n, H, b). We will follow the proof of Pikhurko and Sousa [11, Theorem
1.4], thus only the main results will be stated.

Let Gn = G. Repeat the following at most ⌊n/ log n⌋ times: If the current graph Gi

has a vertex xi of degree at most (1 − γ/2)i, let Gi−1 = Gi − xi and decrease i by 1.
Suppose we stopped after s repetitions. Pikhurko and Sousa proved that s < ⌊n/ log n⌋
and the graph Gn−s has δ(Gn−s) ≥ (1 − γ/2)(n − s).
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Let α = 2γ. We will have another pass over the vertices xn, . . . , xn−s+1, each time
decomposing the edges incident to xi by H-subgraphs and single edges. It will be the
case that each time we remove the edges incident to the current vertex xi, the degree of
any other vertex drops by at most 3h4, where h = v(H). Here is a formal description.
Initially, let G′

n = G and i = n. If in the current graph G′

i we have degG′

i

(xi) ≤ αn, then
we remove all G′

i-edges incident to xi as single edges and let G′

i−1 = G′

i − xi.
Suppose that degG′

i

(xi) > αn. Then, the set Xi = {y ∈ V (Gn−s) : xiy ∈ E(G′

i)}, has
at least αn − s + 1 vertices. The minimum degree of G[Xi] is

δ(G[Xi]) ≥ |Xi| − s −
γn

2
− s × 3h4 ≥

2

3
|Xi|.

Let y ∈ V (H), A = NH(y) and a = |A|. By Lemma 2.3 there is a constant C such
that all but at most C vertices of G[Xi] can be covered by edge disjoint copies of H − y
each of them having vertex disjoint sets A. Therefore, all but at most C edges between xi

and Xi can be decomposed into copies of H . All other edges incident to xi are removed
as single edges. Let G′

i−1 consist of the remaining edges of G′

i − xi (that is, those edges
that do not belong to an H-subgraph of the above xi-decomposition). This finishes the
description of the case degG′

i

(xi) > αn.
Consider the sets S = {xn, . . . , xn−s+1}, S1 = {xi ∈ S : degG′

i

(xi) ≤ αn}, and
S2 = S\S1. Let their sizes be s, s1 and s2 respectively, so s = s1 + s2.

Let F be the graph with vertex set V (Gn−s)∪S2, consisting of the edges coming from
the removed H-subgraphs when we processed the vertices in S2. We have

φ(G, H, b) ≤ φ(G′

n−s, H, b) + b
e(F )

m
+ s1αn + s2C +

(

s

2

)

. (2.10)

We know that φ(G′

n−s, H, b) = e(G′

n−s) − pH(G′

n−s)(m − b). The last statement of
Lemma 2.3 guarantees that δ(G′

n−s) ≥ (1 − γ)(n − s). Thus, pH(G′

n−s) can be estimated
using Lemma 2.4.

Consider first the case d = 1. Using the inequalities e(F ) ≤ (1 − γ/2)s2n and α ≤
b(2 − γ)/2m, we obtain

φ(G, H, b) ≤ φ(G′

n−s, H, b) + b
e(F )

m
+ s1αn + s2C +

(

s

2

)

≤ e(G′

n−s) − pH(G′

n−s)(m − b) + b
e(F )

m
+ s1αn + s2C +

(

s

2

)

≤ e(G′

n−s) −

⌊

e(G′

n−s)

m

⌋

(m − b) + b
e(F )

m
+ s1αn + s2C +

(

s

2

)

≤

(

b

m

(

n − s

2

)

+ m − b

)

+ b
2 − γ

2m
s2n + b

2 − γ

2m
s1n + s2C +

(

s

2

)

≤
b

m

(

n − s

2

)

+ b
2 − γ

2m
sn + s2C +

(

s

2

)

+ m − b

≤
b

m

(

n

2

)

− b
(n − 1)s

m
+ b

s(s − 1)

2m
+ b

2 − γ

2m
sn + s2C +

(

s

2

)

+ m − b.
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If S 6= ∅ then in order to prove that φ(G, H, b) < b
m

(

n

2

)

≤ φ(H, Kn, b) and hence a
contradiction to our assumption on G, it suffices to show that

b
s

m
+ b

s(s − 1)

2m
+

(

s

2

)

+ s2C + m − b <

(

b

m
−

b(2 − γ)

2m

)

ns.

But this last inequality holds since we have s < n
log n

and n is sufficiently large. Thus,

S = ∅ and

φ(G, H, b) = e(G) − (m − b)

⌊

e(G)

m

⌋

≤ b
e(G)

m
+ (m − b)

≤ b
n(n − 1)

2m
+ (m − b),

(2.11)

giving us the upper bound. To prove the lower bound we consider the complete graph on
n vertices and we obtain

φ(Kn, H, b) = e(Kn) − (m − b)

⌊

e(Kn)

m

⌋

≥ b
n(n − 1)

2m
. (2.12)

Consider the case d ≥ 2 and let n − 1 = qd + r with 0 ≤ r ≤ d − 1 an integer. To
prove the lower bounds we consider the complete graph of order n ≥ n0 and a graph L
of order n ≥ n0, which is (almost) (qd − 1)-regular (except at most one vertex of degree
qd − 2). (Such a graph L exists, which can be seen either directly or from Erdős and
Gallai’s result [6].) We have,

φ(Kn, H, b) = e(Kn) − pH(Kn)(m − b)

≥

(

n

2

)

−
1

2
−

ndq

2m
(m − b)

≥
b

m

(

n

2

)

+
1

2
n

(

r −
br

m

)

−
1

2
,

(2.13)

and,

φ(L, H, b) = e(L) − pH(L)(m − b)

≥
1

2
n(qd − 1) −

1

2
−

nd(q − 1)

2m
(m − b)

≥
b

m

(

n

2

)

+
1

2
n

(

d − 1 −
br

m
−

bd

m

)

−
1

2
,

(2.14)

giving the required lower bounds in view of q = n−1−r
d

.
We will now prove the upper bounds.
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Assume first that (2.9) holds. Then, by (2.10)

φ(G,H, b)

≤ φ(G′

n−s, H, b) + b
e(F )

m
+ s1αn + s2C +

(

s

2

)

≤ e(G′

n−s) − pH(G′

n−s)(m − b) + b
e(F )

m
+ s1αn + s2C +

(

s

2

)

≤ e(G′

n−s) −
m − b

m

(

e(G′

n−s) −
n − s

5d2

)

+ b
e(F )

m
+ s1αn + s2C +

(

s

2

)

≤
b

m

(

n − s

2

)

+
b(2 − γ)

2m
s2n +

(m − b)(n − s)

5md2
+

b(2 − γ)

2m
s1n + s2C +

(

s

2

)

≤
b

m

(

n

2

)

−
b(n − 1)s

m
+

bs(s − 1)

2m
+

(m − b)(n − s)

5md2
+

b(2 − γ)

2m
sn + s2C +

(

s

2

)

.

For s > 2(m−b)
5γd2b

we have b
m
− b(2−γ)

2m
− m−b

5md2s
> 0. Thus, for n sufficiently large

bs

m
+

bs(s − 1)

2m
−

(m − b)s

5md2
+ s2C +

(

s

2

)

<

(

b

m
−

b(2 − γ)

2m
−

m − b

5md2s

)

ns.

That is, φ(G, H, b) < b
m

(

n

2

)

≤ φ(Kn, H, b) which contradicts the optimality of G.
Otherwise, s is bounded by a constant independent of n and the coefficient of sn is
− b

m
+ b(2−γ)

2m
< 0. Thus, for the case r 6= 0, to obtain the contradiction φ(G, H, b) <

φ(Kn, H, b) it suffices to show that

b

m

(

n

2

)

+
m − b

5md2
n <

b

m

(

n

2

)

+
1

2
n

(

r −
br

m

)

,

that is,
1

5d2
<

1

2
r,

which holds since d ≥ 2 and r ≥ 1.
If r = 0 and b

m
< 1 − 5d2

5d3−2
, to obtain the contradiction φ(G, H, b) < φ(L, H, b) it

suffices to show that

b

m

(

n

2

)

+
m − b

5md2
n <

b

m

(

n

2

)

+
1

2
n

(

d − 1 −
bd

m

)

,

which holds since b
m

< 1 − 5d2

5d3−2
. Otherwise, we have

φ(G, H, b) <
b

m

(

n

2

)

+
m − b

5md2
n,

which is the upper bound stated in (2.5) and (2.6).
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Finally, assume that (2.8) holds. It follows that pH(G) and thus φ(G, H, b), depends
only on the degree sequence d1, . . . , dn of G. Namely, the packing number ℓ = pH(G)
equals ⌊ 1

2m

∑n

i=1 ri⌋, where ri = d ⌊di/d⌋ is the largest multiple of d not exceeding di.
Thus, it is enough for us to prove the upper bounds in (2.3) and (2.4) on φmax, the

maximum of

φ(d1, . . . , dn) =
1

2

n
∑

i=1

di − (m − b)

⌊

1

2m

n
∑

i=1

⌊

di

d

⌋

d

⌋

, (2.15)

over all (not necessarily graphical) sequences d1, . . . , dn of integers with 0 ≤ di ≤ n − 1.
Let d1, . . . , dn be an optimal sequence attaining the value φmax. For i = 1, . . . , n let

di = qid + ri with 0 ≤ ri ≤ d − 1. Then, ℓ =
⌊

(q1+···+qn)d
2m

⌋

.

Recall that n − 1 = qd + r with 1 ≤ r ≤ d − 1. Define R = qd − 1 to be the
maximum integer which is at most n − 1 and is congruent to d − 1 modulo d. Let
C1 = {i ∈ [n] : ri = d − 1 and di < R} and C2 = {i ∈ [n] : di = n − 1} if n − 1 6= R and
C2 = ∅ otherwise.

Since d1, . . . , dn is an optimal sequence, we have that if ri 6= d− 1 then di = n− 1 for
all i ∈ [n]. Also, |C1| ≤

2m
d
− 1 and |C2| ≤ 2m − 1. We have

1

2

n
∑

i=1

di =
1

2
(n − |C1 ∪ C2|)R +

1

2

∑

i∈C1

di +
1

2
|C2|(n − 1)

≤
1

2
nd(q − 1) +

1

2
n(d − 1) −

d

2

∑

i∈C1

(q − 1 − qi) + O(1),

ℓ ≥

(

1

2m

n
∑

i=1

⌊

di

d

⌋

d

)

− 1

≥
1

2m
nd(q − 1) −

d

2m

∑

i∈C1

(q − 1 − qi) + O(1).

These estimates give us the required upper bound in (2.3) and (2.4).

φmax =
1

2

n
∑

i=1

di − (m − b)ℓ ≤
b

2m
nd(q − 1) +

1

2
n(d − 1) + O(1)

≤
b

m

(

n

2

)

+
1

2
n

(

d − 1 −
br

m
−

bd

m

)

+ O(1).

(2.16)

The upper bound in (2.2) follows from the fact that

b

m

(

n

2

)

+
1

2
n

(

d − 1 −
br

m
−

bd

m

)

≤
b

m

(

n

2

)

+
1

2
n

(

r −
br

m

)

,

in view of d − 1 ≤ bd
m

+ r.
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To finish the proof it remains to obtain a contradiction if S 6= ∅ holds. Let d̄1, . . . , d̄n

be the degree sequence of the graph with vertex set V (G) and edge set E(G′

n−s) ∪E(F ).
Consider the new sequence of integers

d′

i =











d̄i, if xi /∈ S,

d̄i +
⌈

(1−3γ)
m

n
⌉

m, if xi ∈ S1,

d̄i +
⌈

γ

4m
n
⌉

m, if xi ∈ S2.

Each d′

i lies between 0 and n − 1, so φ(d′

1, . . . , d
′

n) ≤ φmax. We obtain

φ(G, H, b) ≤ φ(d̄1, . . . , d̄n) + s1αn + s2C +

(

s

2

)

< φ(d′

1, . . . , d
′

n) −
b(1 − 3γ)

2m
s1n −

bγ

8m
s2n + s1αn + s2C +

(

s

2

)

< φ(d′

1, . . . , d
′

n) −

(

b(1 − 3γ)

2m
− 2γ

)

s1n −
bγ

8m
s2n + s2C +

(

s

2

)

< φ(d′

1, . . . , d
′

n) −
bγ

8m
s1n −

bγ

8m
s2n + s2C +

(

s

2

)

≤ φmax −
bγ

10m
sn,

which contradicts the already established facts that φ(n, H, b) is at most φ(G, H, b) by
the optimality of G and is at least φmax by (2.16).

Acknowledgement. The author thanks Oleg Pikhurko for helpful discussions and
comments.
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[15] M. Simonovits and V. T. Sós, Szemerédi’s partition and quasirandomness, Random
Struct. Algorithms 2 (1991), 1–10.

[16] T. Sousa, Decompositions of graphs into 5-cycles and other small graphs, Electronic
J. Combin. 12 (2005), 7pp.

[17] T. Sousa, Decompositions of graphs into a given clique-extension, Submitted, 2005.
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