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Abstract

We prove inequalities between the densities of various bipartite subgraphs in
signed graphs. One of the main inequalities is that the density of any bipartite
graph with girth 2r cannot exceed the density of the 2r-cycle.

This study is motivated by the Simonovits–Sidorenko conjecture, which states
that the density of a bipartite graph F with m edges in any graph G is at least the
m-th power of the edge density of G. Another way of stating this is that the graph
G with given edge density minimizing the number of copies of F is, asymptotically,
a random graph. We prove that this is true locally, i.e., for graphs G that are “close”
to a random graph.

Both kinds of results are treated in the framework of graphons (2-variable func-
tions serving as limit objects for graph sequences), which in this context was already
used by Sidorenko.
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1 Introduction

Let F be a bipartite graph with k nodes and l edges and let G be any graph with n nodes

and m = p
(

n
2

)

edges. Simonovits [3, 10] conjectured that the number of copies of F in G

is at least pl
(

n
k

)

+ o(plnk) (where we consider k and l fixed, and n→ ∞).

Sidorenko [7, 8, 9] conjectured a stronger exact inequality. To state this formulation,

we count homomorphisms instead of copies of F . Let hom(F,G) denote the number of

homomorphisms from F into G. Since we need this notion for the case when F and G

are multigraphs, we count here pairs of maps φ : V (F ) → V (G) and E(F ) → E(G) such

that incidence is preserved: if i ∈ V (F ) is incident with e ∈ E(F ), then φ(i) is incident

with ψ(e). We will also consider the normalized version t(F,G) = hom(F,G)/nk. If F

and G are simple, then t(F,G) is the probability that a random map φ : V (F ) → V (G)

preserves adjacency. We call this quantity the density of F in G.

In this language, the conjecture says that for any bigraph F and any graph G,

t(F,G) ≥ t(K2, G)|E(F )| (1)

(this is an exact inequality with no error terms). We can formulate this as an extremal

result in two ways: First, for every graph G, among all bipartite graphs with a given

number of edges, it is the graph consisting of disjoint edges (the matching) that has

the smallest density in G. Second, for every bipartite graph F , among all graphs on n

nodes and edge density p, the random graph G(n, p) has the smallest density of F in it

(asymptotically, with large probability).
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Sidorenko proved his conjecture in a number of special cases: for trees F , and also

for bigraphs F where one of the color classes has at most 4 nodes. Since then, the only

substantial progress was that Hatami [4] proved the conjecture for cubes, and Conlon,

Fox and Sudakov [2] proved it for bigraphs having a node connected to all nodes on the

other side.

Sidorenko gave an analytic formulation of this conjecture, which we will use. Let F

be a bipartite multigraph with a bipartition (A,B); if we say that ij ∈ E(F ), we assume

that the labeling is such that i ∈ A and j ∈ B. Assign a real variable xi to each i ∈ A

and a real variable yj to each j ∈ B. Let W : [0, 1]2 → R+ be a bounded measurable

function, and define

t(F,W ) =

∫

[0,1]V (F )

∏

ij∈E(F )

W (xi, yj)
∏

i∈A

dxi

∏

j∈B

dyj. (2)

Every graph G can be represented by a function WG: Let V (G) = {1, . . . , n}. Split

the interval [0, 1] into n equal intervals J1, . . . , Jn, and for x ∈ Ji, y ∈ Jj define WG(x, y) =1ij∈E(G). (The function obtained this way is symmetric.) Then we have

t(F,G) = t(F,WG).

Note, however, that definition (2) makes sense without assuming that W is symmetric.

In this analytic language, the conjecture says that for every bipartite graph F and

bounded measurable function W : [0, 1]2 → R+, we have

t(F,W ) ≥ t(K2,W )|E(F )|. (3)

Since both sides are homogeneous in W of the same degree, we can scale W and assume

that

t(K2,W ) =

∫

[0,1]2

W (x, y) dx dy = 1.

Then we want to conclude that t(F,W ) ≥ 1. In other words, the function W ≡ 1

minimizes t(F,W ) among all functions W ≥ 0 with
∫

W = 1.

The goal of this paper is to prove that this holds locally, i.e., for functionsW sufficiently

close to 1. Most of the time we will work with the function U = W − 1, which can take

negative values. Most of our work will concern estimates for the values t(F ′, U) for

various (bipartite) graphs F ′. This type of question seems to have some interest on its

own, because it can be considered as an extension of extremal graph theory to signed

graphs.
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2 Preliminaries

2.1 Notation

A bigraph will mean a bipartite multigraph with a fixed bipartition, in which a first and

second bipartition class is specified. So the complete bigraphs Ka,b and Kb,a are different.

We have to consider graphs that are partially labeled. More precisely, a k-labeled

graph F has a subset S ⊆ V (F ) of k elements labeled 1, . . . , k (it can have any number of

unlabeled nodes). For some basic graphs, it is good to introduce notation for some of their

labeled versions. Let Pn denote the unlabeled path with n nodes (so, with n− 1 edges).

Let P •
n denote the path Pn with one of its endpoints labeled. Let P ••

n denote the Pn with

both of its endpoints labeled. Let Cn denote the unlabeled cycle with n nodes, and let

C•
n be this cycle with one of its nodes labeled. Let Ka,b denote the unlabeled complete

bigraph; let K•
a,b denote the complete bigraph with its first bipartition class labeled. Note

that K2,2
∼= C4, but K•

2,2 and C•
4 are different as partially labeled graphs.

We extend the definition of subgraph densities to k-labeled graphs. Let F be a graph

on node set [n], of which nodes 1, . . . , k are considered as labeled. For given x1, . . . , xk ∈ I,

we define

tx1...xk
(F,W ) =

∫

[0,1]n−k

∏

ij∈E(F )

W (xi, xj) dxk+1 . . . dxn

(this is a function of x1, . . . , xk).

The most important use of partial labeling is to define a product: if F and G are

k-labeled graphs, then FG denotes the k-labeled graph obtained by taking their disjoint

union and identifying nodes with the same label. For a k-labeled graph F , [[F ]] denotes

the graph obtained by unlabeling all nodes. The graph Ok with k labeled nodes, no

unlabeled nodes and no edges is a unit element: OkF = F for every k-labeled graph F .

2.2 Kernel operators and their norms

We set I = [0, 1]. Let W denote the set of bounded measurable functions U : I2 → R;

W+ is the set of bounded measurable functions U : I2 → R+, and W1 is the set of

measurable functions U : I2 → [−1, 1]. Every function U ∈ W defines a kernel operator

L1(f) → L1(f) by

f 7→

∫

I

U(., y)f(y) dy.

For U,W ∈ W, we denote by U ◦W the function

(U ◦W )(x, y) =

∫

I

U(x, z)W (z, y) dz
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(this corresponds to the product of U and W as kernel operators). For every W ∈ W, we

denote by W⊤ the function obtained by interchanging the variables in W .

We will also need the tensor product U⊗W of two functions U,W ∈ W; this is defined

as a function I2 × I2 → R by

(U ⊗W )(x1, x2, y1, y2) = U(x1, y1)W (x2, y2).

This function is not in W; however, we can consider any measure preserving map ϕ : I →

I2, and define the function

(U ⊗W )ϕ(x, y) = (U ⊗W )(ϕ(x), ϕ(y)).

It does not really matter which particular measure preserving map we use here: these

functions obtained from different maps φ have the same subgraph densities. In fact, we

have

t(F, (U ⊗W )φ) = t(F, U ⊗W ) = t(F, U)t(F,W ) (4)

for every graph F . We will call any of the functions (U ⊗W )φ the tensor product of U

and W .

We consider various norms on the space W. We need the standard L2 and L∞ norms

‖U‖2 =
(

∫

I2

U(x, y)2 dx dy
)1/2

, ‖U‖∞ = sup ess |U(x, y)|.

For graph theory, the cut norm is very useful:

‖U‖� = sup
S,T⊆I

∣

∣

∣

∫

S×T

U(x, y) dx dy
∣

∣

∣
.

This norm is only a factor of at most 4 away from the operator norm of U as a kernel

operator L∞(I) → L1(I).

The functional t(F, U) gives rise to further useful norms. It is trivial that t(C2, U)1/2 =

‖U‖2. The value t(C2r, U)1/(2r) is the r-th Schatten norm of the kernel operator defined

by U . It was proved in [1] that it is closely related to the cut norm: for U ∈ W1,

‖U‖4
� ≤ t(C4, U) ≤ 4‖U‖�. (5)

The other Schatten norms also define the same topology on W1 as the cut norm (cf.

Corollary 3.12).

It is a natural question for which graphs does t(F,W )1/|E(F )| or t(F, |W |)1/|E(F )| define

a norm on W. Besides even cycles and complete bigraphs, a remarkable class was found

by Hatami [4]: he proved that t(F, |W |)1/|E(F )| is a norm if F is a cube. He also proved

the fact (attributed to B. Szegedy) that Sidorenko’s conjecture is true whenever F is such

a “norming” graph. However, a characterization of such graphs is open.
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3 Density inequalities for signed graphons

3.1 Ordering signed graphons

For two bigraphs F and G, we say that F ≤ G if t(F, U) ≤ t(G,U) for all U ∈ W1.

We say that G ≥ 0 if t(G,U) ≥ 0 for all U ∈ W1. Note that if U is nonnegative, then

trivially G ⊆ F implies that t(F, U) ≤ t(G,U); but since we allow negative values, such

an implication does not hold in general. For example, F ≥ 0 cannot hold for any bigraph

F with an odd number of edges, since then t(F,−U) = −t(F, U).

The ordering is a bit counterintuitive since larger graphs tend to be smaller in the

ordering. For example, t(F, U) ≤ 1 = t(K0, U) = t(K1, U) for every U , so F ≤ K1 and

F ≤ K0 for any bigraph F (here K1 may have its single node either in its first or second

color class, and K0 is the empty graph). Lemmas 3.9 and 3.15 provide other examples.

We start with some simple facts about this partial order on graphs.

Proposition 3.1 If F and G are nonisomorphic bigraphs without isolated nodes such

that F ≤ G, then |E(F )| ≥ |E(G)|, |E(G)| is even, and G ≥ 0. Furthermore, |t(F, U)| ≤

t(G,U) for all U ∈ W1.

The proof of this is based on a technical lemma, which is close to facts that are well

known, but not in the exact form needed here.

Lemma 3.2 Let F and G be nonisomorphic bigraphs without isolated nodes. Then for

every U ∈ W1 and ε > 0 there exists a function U ′ ∈ W1 such that ‖U − U ′‖∞ < ε and

t(F, U ′) 6= t(G,U ′).

A similar assertion (with a similar proof) holds in the context of non-bipartite graphs

as well.

Proof. First we show that if F and G are two bigraphs without isolated nodes such that

t(F,W ) = t(G,W ) for every W ∈ W1, then F ∼= G. Consider the function U = 1x,y≤1/2.

Then t(F, U) = 2−|V (F )|, so t(F, U) = t(G,U) implies that |V (F )| = |V (G)|. Using the

function U ≡ 1/2, we get similarly that |E(F )| = |E(G)|. Using this, we get (by scaling

W ) that t(F,W ) = t(G,W ) for every W ∈ W.

For every multigraph H we have

t(F,H) = t(F,WH) = t(G,WH) = t(G,H),

and hence it follows that

hom(F,H) = t(F,H)|V (H)||V (F )| = t(G,H)|V (G)||V (F )| = hom(G,H).

From this it follows by standard arguments that F ∼= G (e.g., we can apply Theorem 1(iii)

of [5] to the 2-partite structures (V,E, J), where G = (V,E) is a multigraph and J is the

incidence relation between nodes and edges).
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Since F and G are non-isomorphic, this argument shows that there exists a function

W ∈ W1 such that t(F,W ) 6= t(G,W ). The values t(F, (1−s)U+sW ) and t(F, (1−s)U+

sW ) are polynomials in s that differ for s = 1. Therefore, there is a value 0 ≤ s ≤ ε for

which they differ. Since (1−s)U+sW ∈ W1 and ‖U−((1−s)U+sW )‖∞ = s‖U−W‖∞ ≤

ε, this proves the lemma. �

Proof of Proposition 3.1. Applying the definition of F ≤ G with U = 1/2, we get

that 2−|E(F )| ≤ 2−|E(G)|, and hence |E(F )| ≥ |E(G)|. The relation F ≤ G implies that

t(F, U)2 = t(F, U ⊗ U) ≤ t(G,U ⊗ U) = t(G,U)2 also holds, so |t(F, U)| ≤ |t(G,U)| for

all U ∈ W1. By Lemma 3.2, U can be perturbed by arbitrarily little to get a U ′ ∈ W1

with t(F, U ′) 6= t(G,U ′), then t(F, U ′) < t(G,U ′) and |t(F, U ′)| ≤ |t(G,U ′)| imply that

t(G,U ′) > 0. Since U ′ is arbitrarily close to U , this implies that t(G,U) ≥ 0, and so

G ≥ 0. Since this holds for U replaced by −U , it follows that G must have an even

number of edges. �

3.2 A generalized Cauchy-Schwarz inequality

We need the following generalization of the Cauchy–Schwarz inequality:

Lemma 3.3 Let f1, . . . , fn : Ik → R be bounded measurable functions, and suppose that

for each variable there are at most two functions fi that depend on that variable. Then

∫

Ik

f1 . . . fn ≤ ‖f1‖2 . . . ‖fn‖2.

This will follow from an inequality concerning a statistical physics type model. Let

G = (V,E) be a multigraph (without loops), and for each i ∈ V , let fi ∈ L2(I
E) be

such that fi depends only on the variables xj where edge j is incident with node i. Let

f = (fi : i ∈ V ), and define

tr(G, f) =

∫

IE

∏

i∈V

fi(x) dx

(where the variables corresponding to the edges not incident with i are dummies in fi).

Lemma 3.4 For every multigraph G and assignment of functions f ,

tr(G, f) ≤
∏

i∈V

‖fi‖2.

Proof. By induction on the chromatic number of G. Let V1, . . . , Vr be the color classes

of an optimal coloring of G. Let S1 = V1 ∪ · · · ∪ V⌊r/2⌋ and S2 = V \ S1. Let E0 be the set
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of edges between S1 and S2, and let Ei be the set of edges induced by Si. Let xi be the

vector formed by the variables in Ei. Then

tr(G, f) =

∫

IE0





∫

IE1

∏

i∈S1

fi(x) dx1









∫

IE2

∏

i∈S2

fi(x) dx2



 dx0.

The outer integral can be estimated using the Cauchy-Schwarz inequality:

tr(G, f)2 ≤

∫

IE0





∫

IE1

∏

i∈S1

fi(x) dx1





2

dx0

∫

IE0





∫

IE2

∏

i∈S2

fi(x) dx2





2

dx0. (6)

Let G1 be defined as the graph obtained by taking a disjoint copy (S ′
1, E

′
1) of the graph

(S1, E1), and connecting each node i ∈ S1 to the corresponding node i′ ∈ S ′
1 by as many

edges as those joining i to S2 is G. Note that these newly added edges correspond to the

edges of E0 in a natural way. We assign to each node the same function as before, and

also the same function (with differently named variables for the edges in E ′
1) to i′. Then

the first factor in (6) can be written as
∫

IE0

∫

IE1

∫

IE′

1

∏

i∈S1∪S′

1

fi(x) dx1 dx0 = tr(G1, f).

We define G2 analogously, and get that the second factor in (6) is just tr(G2, f). So we

have

tr(G, f)2 ≤ tr(G1, f)tr(G2, f) (7)

Next we remark that for r > 2, the graphs G1 and G2 have chromatic number at most

⌈r/2⌉ < r, and so we can apply induction and use that

tr(Gj , f) ≤
∏

i∈V (Gj)

‖fi‖2 =
∏

i∈Sj

‖fi‖
2
2.

If r = 2, then Gj has edges connecting pairs i, i′ only, and so

tr(Gj, f) =
∏

i∈Sj

‖fi‖
2
2.

In both cases, the inequality in the lemma follows by (7). �

3.3 Inequalities between densities

Let F1 and F2 be two k-labeled graphs. Then the Cauchy–Schwarz inequality implies that

for all U ∈ W,

t([[F1F2]], U)2 ≤ t([[F 2
1 ]], U)t([[F 2

2 ]], U). (8)
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With the notation introduced above, this can be written as

[[F1F2]]
2 ≤ [[F 2

1 ]][[F 2
2 ]]. (9)

Choosing F2 = Ok, we get that for every k-labeled graph F ,

[[F 2]] ≥ [[F ]]2 ≥ 0. (10)

Let F sub denote the subdivision of graph F obtained by adding one new node on each

edge.

Lemma 3.5 If F ≤ G, then F sub ≤ Gsub.

Proof. For every U ∈ W, t(F sub, U) = t(F, U ◦ U⊤) ≤ t(G,U ◦ U⊤) = t(Gsub, U). �

The next lemma will be the workhorse throughout this paper.

Lemma 3.6 Let F be an (unlabeled) bigraph, let S ⊆ V (F ), and let H1, . . . , Hm be the

connected components of F \ S. Assume that each node in S has neighbors in at most

two of the Hi. Let Fi denote the graph consisting of Hi, its neighbors in S, and the edges

between Hi and S. Let us label the nodes of S in every Fi. Then

F 2 ≤

m
∏

i=1

[[F 2
i ]].

Proof. Let F0 denote the subgraph induced by S, and consider the nodes of F0 labeled

1, . . . , k; we may assume that these nodes are labeled the same way in every Fi. Then

using that |tx1...xk
(F0, U)| ≤ 1, we get

|t(F, U)| =
∣

∣

∣

∫

Ik

m
∏

i=0

tx1...xk
(Fi, U) dx1 . . . dxk

∣

∣

∣

≤

∫

Ik

m
∏

i=1

|tx1...xk
(Fi, U)| dx1 . . . dxk.

Hence Lemma 3.3 implies the assertion. �

As a special case, we see that if F contains two nonadjacent nodes of degree at least

2, then F ≤ C4. More generally,

Corollary 3.7 Let v1, . . . , vm be independent nodes in an (unlabeled) bigraph F with

degrees d1, . . . , dm such that no node of F is adjacent to more than 2 of them. Then

F 2 ≤ K2,d1 · · ·K2,dm
. If d1, . . . , dm ≥ 2, then F 2 ≤ Cm

4 .
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A hanging path system in a graph F is a set {P1, . . . , Pm} of openly disjoint paths such

that the internal nodes of each Pi have degree 2, and at most two of them start at any

node. Lemma 3.6 can be used to bound the graph in terms of any hanging path system:

Corollary 3.8 Let F be a bigraph that contains a hanging path system with lengths

r1, . . . , rm. Then F 2 ≤ C2r1 · · ·C2rm
.

3.4 Special graphs and examples

Lemma 3.9 Let U ∈ W1. Then the sequence (t(C2k, U) : k = 1, 2, . . . ) is nonnegative,

logconvex, and monotone decreasing.

With the notation introduced above, we have C2 ≥ C4 ≥ C6 ≥ · · · ≥ 0 and C2
2k ≤

C2k−2C2k+2.

Proof. We have Ca+b = [[P ••
a P ••

b ]]. Taking a = b = k, nonnegativity follows. Applying

inequality (9), we get that C2
a+b ≤ C2aC2b. This implies logconvexity. Since the sequence

remains bounded by 1, it follows that it is monotone decreasing. �

Monotonicity and logconvexity of the sequence of even cycles imply inequalities be-

tween collections of cycles.

Lemma 3.10 Let 1 ≤ r1 ≤ · · · ≤ rm and 1 ≤ q1 ≤ · · · ≤ qm be integers and assume that
∑j

i=1 ri ≥
∑j

i=1 qi for every 1 ≤ j ≤ m. Then

C2r1 · · ·C2rm
≤ C2q1 · · ·C2qm

.

Proof. We use induction on m and on r1. For m = 1 the assertion is just monotonicity.

Let m ≥ 2. If r1 = q1, we can delete the first member of each list, and apply induction.

If r1 > q1, then let us replace r1 by r1 − 1 and r2 by r2 + 1. It is easy to check that the

resulting sequence satisfies the conditions of the Corollary, and so the induction hypothesis

applies to it. Furthermore, logconcavity implies that

C2r1C2r2 ≤ C2r1−2C2r2+2,

and so

C2r1C2r2 · · ·C2rm
≤ C2r1−2C2r2+2 · · ·C2rm

≤ C2q1 · · ·C2qm
.

�

As a special case of the last corollary, we get that if r1, . . . , rm ≥ 1 and r = r1+· · ·+rm,

then

C2r1 · · ·C2rm
≤ Cm−1

2 C2r−2m+2 ≤ C2r−2m+2. (11)

The following lemma gives an estimate on the product of even cycles which goes in a sense

in the opposite direction.
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Lemma 3.11 Let r1, . . . , rm ≥ 1 and r = r1 + · · ·+ rm. Then C2r1 · · ·C2rm
≥ C2

r .

Proof. We split Cr into paths of lengths r1, r2, . . . , rm, and apply Lemma 3.6. �

Choosing r1 = r2 = k and r3 = 2 in Lemma 3.11, we get that C2
2k+2 ≤ C2

2kC4.

Choosing m = r− 1, r1 = . . . rm = 2, q1 = · · · = qm−1 = 1 and qm = r in Lemma 3.10, we

get that Cr−1
4 ≤ Cr−2

2 C2r. Together, these inequalities imply that for every U ∈ W1, the

density t(C2k, U) tends to 0 exponentially with k (unless W = 1 almost everywhere):

Corollary 3.12 For all r ≥ 2, Cr−1
4 ≤ C2r ≤ C

r/2
4 .

The value of a hanging path system is the total number of their internal nodes. We

get by Corollary 3.8 and Lemma 3.10,

Corollary 3.13 Let F be a simple bigraph that contains a hanging path system with path

lengths at most r and value at least 2r − 2. Then F ≤ C2r. If the value is larger than

2r − 2, then F 2 ≤ C2
2rC4.

We can get similar inequalities for paths, of which we only state two, which will be

needed. Recall that Pn denotes the path with n nodes and n− 1 edges.

Lemma 3.14 For all a, b ≥ 1, we have

(a) P 2
a+b+1 ≤ P2a+1P2b+1;

(b) P 4
2a+b+1 ≤ P 4

2a+1C4b.

Proof. Since Pa+b+1 = [[P •
a+1P

•
b+1]], the first inequality follows by (9). To get the second,

we use the first to get

P 2
2a+b+1 ≤ P2a+1P2a+2b+1.

Cut P2a+2b+1 into pieces P •
a+1, P

••
2b+1 and P •

a+1, and apply Lemma 3.6; we get

P 2
2a+2b+1 ≤ P 2

2a+1C4b,

and hence

P 4
2a+b+1 ≤ P 2

2a+1

(

P 2
2a+1C4b

)

= P 4
2a+1C4b.

�

The densities of complete bigraphs in graphons have similar, but also quite different

properties to cycle densities. We start with the similarity.

Lemma 3.15 Let U ∈ W1. Then for every h ≥ 1, the sequence (t(Kh,2k, U) : k =

1, 2, . . . ) is nonnegative, logconvex and monotone decreasing.

the electronic journal of combinatorics 18 (2011), #P127 11



Proof. The proof is similar to the proof of Lemma 3.9, based on the equation Kh,a+b =

[[K•
h,aK

•
h,b]]. �

For complete bigraphs, however, we don’t have a bound similar to Corollary 3.12 (see

Example 1). But we do have the following inequality.

Lemma 3.16 For all n ≥ 3, we have K2
n,n ≤ K2

2,nC2.

Proof. Let H be the 2-labeled graph obtained from Kn,n by deleting an edge and

labeling its endpoints. Then Kn,n = [[K••
2 H ]], and hence

K2
n,n ≤ [[(K••

2 )2]][[H2]] = C2[[H
2]].

Now taking two unlabeled nodes from one color class from one copy ofH and two unlabeled

nodes from the other color class from the other copy, we get a set of 4 independent nodes

of degree n such that no three have a neighbor in common. Hence Corollary 3.7 implies

that [[H2]] ≤ K2
2,n, which proves the lemma. �

Example 1 Let U : [0, 1]2 → [−1, 1] be defined by

U(x, y) =

{

−1, if x, y ≥ 1/2,

1 otherwise.

Then it is easy to calculate that for all n,m ≥ 1, t(Kn,m, U) = 1
2
.

We conclude with two inequalities that bound subgraph densities with prescribed

images for the labeled nodes.

Lemma 3.17 For all U ∈ W, x ∈ I and r ≥ 2,

0 ≤ tx(C
•
2r, U) ≤ t(C4r−4, U)1/2.

Proof. The first inequality follows from the formula

tx(C
•
2r, U) =

∫

I

tux(P
••
r+1, U)2 du.

For the second, write

tx(C
•
2r, U) =

∫

I2

U(x, u)tuv(P
••
2r−1, U)U(v, x) du dv,

and apply the Cauchy–Schwarz inequality:

tx(C
•
2r, U)2 ≤

∫

I2

U(x, u)2U(v, x)2 du dv

∫

I2

tuv(P
••
2r−1, U)2 du dv

= tx(C
•
2 , U)2t(C4r−4, U) ≤ t(C4r−4, U).

�
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Lemma 3.18 For all U ∈ W, k ≥ 4 and x, y ∈ I,

|txy(P
••
k , U)| ≤ t(C4k−12, U)1/4.

Proof. We can write

txy(P
••
k , U) =

∫

U(x, u)tuy(P
••
k−1, U) du.

Hence by the Cauchy–Schwarz inequality,

txy(P
••
k , U)2 ≤

∫

U(x, u)2 du

∫

tuy(P
••
k−1, U)2 du

≤

∫

tuy(P
••
k−1, U)2 du = ty(C

•
2k−2, U) du.

Applying Lemma 3.17 the proof follows. �

3.5 The main inequalities between graphs

Our main lemma is the following.

Lemma 3.19 Let F be a bigraph with all degrees at least 2, with girth 2r, which is not a

single cycle or a complete bigraph. Then F ≤ C2rC
1/4
4 .

Before proving this lemma, we need some preparation. Let T be a rooted tree. By its

min-depth we mean the minimum distance of any leaf from the root. (As usual, the depth

of T is the maximum distance of any leaf from the root.)

Lemma 3.20 Let T be a rooted tree with min-depth h and depth g, with its leaves labeled.

Then [[T 2]] contains a hanging path system with value at least g+ max(0, h− 3), in which

the paths are not longer than max(g, 2).

Proof. The proof is by induction on |V (T )|. We may assume that the root has degree

1, else we can delete all branches but the deepest from the root. Let a denote the length

of the path P in T from the root r to the first branching point or leaf v.

If P ends at a leaf, then the whole tree is a path of length a = g = h. If a = 1, we get

a hanging path in [[T 2]] of length 2, and so of value 1 = 1 + max(0,−1). If a ≥ 2, then

we can even cut this into two, and get two hanging paths in [[T 2]] of length a, which has

value 2a− 2 ≥ a + max(0, a− 3).

If P ends at a branching point, then we consider two subtrees F1, F2 rooted at v (there

may be more), where F1 has depth g− a. Clearly, F1 has min-depth at least h− a and F2

has min-depth and depth at least h − a. By induction, [[F 2
1 ]] and [[F 2

2 ]] contain hanging

path systems of value g−a+max(0, (h−a)−3) and h−a+max(0, (h−a)−3), respectively.
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The two systems together have value at least g + h − 2a, and they form a valid system

since v (and its mirror image) are contained in at most one path of each system. If a = 1,

we are done, since clearly h ≥ 2 and so g + h− 2 ≥ g + max(0, h− 3).

Assume that a ≥ 2. Let F3 be obtained from F2 by deleting its root. By induction,

[[F 2
1 ]] contains hanging path systems of value g−a+max(0, h−a−3), and [[F 2

3 ]] contains

a hanging path system of value h− a+ max(0, h− a− 4). We can add P and its mirror

image, to get a hanging path system of value

(g − a) + (h− a− 1) + max(0, h− a− 3) + max(0, h− a− 4) + 2(a− 1)

≥ (g − a) + (h− a− 1) + 2(a− 1) = g + h− 3 = g + max(0, h− 3),

since h ≥ a+1 ≥ 3. We know that every path constructed lies in the tree or in its mirror

image, except for the paths in the case g = 1. In the case g ≥ 2, the length of these paths

is at most g, in the case g = 1, their length is 2. �

Proof of Lemma 3.19. We distinguish several cases.

Case 1. r = 2. By hypothesis, F is not a complete bigraph, and hence we can choose

nonadjacent nodes u and v from different bipartition classes. Let N denote the set of

neighbors of u, |N | = d, and let F0 denote the graph F − u with the neighbors of u

labeled. Then F ∼= [[F0K
•
d,1]], and hence by (12),

F 2 ≤ [[F 2
0 ]] · [[(K•

d,1)
2]] = [[F 2

0 ]][[Kd,2]] ≤ [[F 2
0 ]]C4.

Now let v1 and v2 be the two copies of v in F 2
0 , and w, any third node in the same

bipartition class. These three nodes have no neighbor in common, so by Corollary 3.7,

we get that [[F 2
0 ]] ≤ C

3/2
4 , and so F ≤ C

5/4
4 .

Case 2. F is disconnected. If one of the components is not a single cycle, we can

replace F by this component. If F is the disjoint union of single cycles C2r1, . . . , C2rk

(k ≥ 2), then F = C2r1 · · ·C2rk
≤ Ck

2r ≤ C2rC4.

So we may assume that F is connected. Then it must have at least one node of degree

larger than 2.

Case 3. F has at most one node of degree larger than 2 in each color class. Let u1

and u2 be two nodes, one in each color class, such that all the other nodes have degree

2. Then F must consist of one or more odd paths connecting u1 and u2, and even cycles

attached at u1 and/or u2.

If there is an even cycle attached at (say) u1, then this cycle gives a hanging path

system consisting of 2 paths of length r, and we can add a third path of length 2 starting

at u2 but not reaching u1. So by Lemma 3.6, F ≤ C2r ≤ C2rC
1/2
4 .

So we may assume that F consists of openly disjoint paths connecting u1 and u2. Since

F is not a single cycle, there are at least three paths. Let a1 ≤ a2 ≤ a3 be their lengths.

Clearly a1 +a2 ≥ 2r. If a2 ≥ r+1, then we have two hanging paths of length r+1, which
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implies that F ≤ C2r+2 ≤ C2rC
1/2
4 . So we may assume that a1 = a2 = r. If a3 ≥ 4, then

we can select two paths of length r and path of length 2 disjoint from them, which gives

F ≤ C2rC
1/2
4 .

So we get to the special case when F consists of 3 or more paths of length 3 connecting

u1 and u2. In this case, we use Lemma 3.18:

t(F, U) =

∫

I2

txy(P
••
4 , U)3 dx dy ≤ t(C4, U)1/4

∫

I2

txy(P
••
4 , U)2 dx dy

= t(C6, U)t(C4, U)1/4.

Case 4. Suppose that there are two nodes u1, u2 in the same bipartition class of F of

degree at least 3.

Let S1 be the set of nodes x in F with d(x, u1) ≤ min(r − 2, d(x, u2) − 2), and let

S ′
1 = N(S1) \ S1. We define S2 and S ′

2 analogously. Let Fi be the subgraph induced by

Si ∪ S
′
i. Consider the nodes of Fi in S ′

i labeled. Lemma 3.6 implies that

F 2 ≤ F 2
1F

2
2 . (12)

Hence to complete the proof, it suffices to show that F 2
1 ≤ C2rC

1/4
4 and F 2

1 ≤ C2r, or the

other way around. This will follow by Corollary 3.13, if we construct in F 2
1 a hanging

path system of paths of length at most r with value 2r − 1 and in F 2
2 , a hanging path

system of paths of length at most r with value 2r − 2 (or the other way around).

Claim 1 The subgraph Fi is a tree with leaf set S ′
i. Every x ∈ S ′

i satisfies d(x, u1) =

min(r − 1, d(x, u2)).

From the fact that F has girth 2r it follows that Fi is a tree. The nodes in Si are

not endnodes of Fi, since their degree in F is at least 2 and all their neighbors are nodes

of Fi. It is also trivial that the nodes in S ′
i are endnodes. Let x ∈ S ′

i, then x /∈ Si and

hence d(x, u1) ≥ min(r − 1, d(x, u2) − 1). But d(x, u1) and d(x, u2) have the same parity,

and hence it follows that d(x, u1) ≥ min(r − 1, d(x, u2)). On the other hand, x has a

neighbor y ∈ Si, and hence d(x, u1) ≤ d(y, u1) + 1 ≤ r − 1, and d(x, u1) ≤ d(y, u1) + 1 ≤

d(y, u2)− 1 ≤ d(x, u2). This implies that d(x, u1) ≤ min(r− 1, d(x, u2)), which proves the

claim.

Claim 2 There is no edge between S1 and S2.

Indeed, suppose that x1x2 is such an edge, xi ∈ Si. Then d(x1, u1) < d(x2, u2), which

by parity means that d(x1, u1) ≤ d(x2, u2) − 2. But then d(x2, u1) ≤ d(x1, u1) + 1 ≤

d(x2, u2) − 1 ≤ d(x2, u1), showing that x2 /∈ S2.

Claim 3 Let y 6= x be two leaves of F1. Then d(r, x) + d(r, y) + d(x, y) ≥ 2r.
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If d(r, x) = r−1 or d(r, y) = r−1 then this is trivial, so suppose that d(r, x), d(r, y) ≤

r − 2. Then by Claim 1, we must have d(x, u2) = d(x, u1) and d(y, u2) = d(y, u1). Going

from x to u2 to y and back to x in F , we get a closed walk of length d(r, x)+d(r, y)+d(x, y),

which contains a cycle of length no more than that, which implies the inequality in the

Claim.

To construct the hanging path systems in F 2
1 and F 2

2 , we need to distinguish two cases.

Case 4a. All branches of F1 are single paths. Let a1 ≤ · · · ≤ ad be their lengths.

Claim 3 implies that a1 + a2 ≥ r, so a2 ≥ r/2. The graph F 2
1 consists of paths Q1, . . . , Qd

of length 2a1, . . . , 2ad connecting u1 and its mirror image u′1. Select subpaths of length r

from Q2 and Q3, this gives a hanging path system of value 2r− 2. If a1 ≥ 2, then we can

add to this a path of length 2 from Q1 not containing its endpoints, and we get a path

system of value 2r − 1. So we may assume that a1 = 1. Then a2 ≥ r − 1 > r/2, and

so 2a2, 2ar > r. Thus we can select the paths of length r from Q2 and Q3 so that one

of them misses u1 and the other one misses u′1. The we can add Q1 to the system, and

conclude as before.

Case 4b. At least one of the branches of F1, say A, is not a single path. Let a be

the length of the path Q from the root u1 to the first branch point v. Let T1, T2 be two

subtrees of A rooted at v, of depth d1 and d2. Let B and C be two further branches,

of depth b and c, respectively, where b ≥ c. By Claim 3, we have d1 + d2 + a ≥ r and

b+ c ≥ r.

If a = 1, then we choose a hanging path system from T 2
1 of value d1, from T 2

2 of value

d2, from B2 of value b and from C2 of value c. This is a total of d1 + d2 + b+ c ≥ 2r− 1.

If a ≥ 2, then we choose a hanging path system from T 2
1 of value d1, from (T2 − v)2 of

value d2 − 1, from B2 of value b and from (C − u1)
2 of value c− 1. Leaving out v from T2

and u1 from C allows us to add Q and its mirror image of value 2(a− 1). This is a total

value of

d1 + d2 − 1 + 2(a− 1) + b+ c− 1 ≥ 2r + a− 4 ≥ 2r − 2. (13)

If equality holds in all estimates, then d1 + d2 + a = r, b + c = r, and a = 2. It also

follows that b ≤ 3, or else we get a larger system in B. Note that the depth of A is at

least a + 1 = 3, and c ≤ r/2 ≤ b ≤ 3.

If B is a single path, then we can select a hanging path of length r from B2, of value

r − 1 > b − 1, and we have gained 1 relative to the previous construction. So we may

assume that B is not a single path. Then applying the same argument as above with A

and B interchanged, we get that b = 3, and the depth of A is also 3. Hence d1 = d2 = 1

and r = d1 + d2 + a = 4. It follows that c = r − b = 1, so C consists of a single edge.

If u1 has degree larger than 3, then applying the argument to A,B and a fourth branch

D, we get that D must have depth 1, but this contradicts Claim 3. Hence the degree of

u1 is 3.

If A has at least 3 leaves, then these must be connected to u2 by disjoint paths of

length 3. Since u2 must be connected to the endpoint of C as well by Claim 1, we get
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that u2 has degree at least 4, and so F2 ≥ C2rC
1/2
4 .

So A and similarly B have two leaves, and F1 is a 10-node tree consisting of a path

with 5 nodes and 2 endnodes hanging from its endnodes and 1 from its middle node. F2

must be the same, or else we are done. There is only one way to glue two copies of this

tree together at their endnodes to get a graph of girth 8, and this yields the subdivision

of K3,3 (by one node on each edge). To settle this single graph, we use that

K3,3 ≤ C
1/2
2 K3,2 ≤ C

1/2
2 C4

by Lemmas 3.16 and 3.15, and so by Lemma 3.5, we have

F = K3,3
sub ≤ (Csub

2 )1/2Csub
4 = C

1/2
4 C8.

Thus we know that F 2
1F

2
2 ≤ C2r, and for at least one of them F 2

i ≤ C2rC
1/2
4 , which

implies that F 2 ≥ F 2
1F

2
2 ≥ C2rC

1/4
4 . �

Lemma 3.6 implies that if F is a bigraph with two nonadjacent nodes u, v of degree

1, then F ≤ P3. We need a stronger bound:

Lemma 3.21 Let F be a bigraph with two nonadjacent nodes u, v of degree 1, which is

not a star and has at least 3 edges. Then F ≤ P3C
1/4
4 .

Proof. Let u′ and v′ denote the neighbors of u and v. First, suppose that there is a

node w 6= u, v, u′, v′ such that no node is connected to u, v and w. If d(w) ≥ 2, then

we can apply Lemma 3.6 to the stars of u, v and w, to get F 2 ≤ P 2
3K2,d(w) ≤ P 2

3C4. If

d(w) = 1, then a similar application of Lemma 3.6 gives that F 2 ≤ P 3
3 ≤ P 2

3C
1/2
4 .

Suppose that no such w exists. Then either F is star (which has been excluded), or

F = P4, and the bound follows from Lemma 3.14(b). �

Lemma 3.22 Let F be a bigraph with exactly one node of degree 1 and with girth 2r.

Then

F ≤
1

2
C2rC

1/8
4 +

1

2
P3C

1/8
4 .

Proof. Let v be the unique node of degree 1. We can write F ∼= [[F0P
•
2 ]], where F0 is a

1-labeled graph in which all nodes except possibly the labeled node v have degree at least

2. By (12), we get that F 2 ≤ [[(P •
2 )2]][[F 2

0 ]] ∼= P3[[F
2
0 ]]. Here [[F 2

0 ]] is a graph with girth 2r

and all degrees at least 2, which is clearly neither a cycle nor a complete bipartite graph.

Hence by Lemma 3.19, we get F 2 ≤ P3C2rC
1/4
4 . Thus

|t(F, U)| ≤
√

t(P3, U)t(C2r, U)t(C4, U)1/8 ≤
1

2
(t(C2r, U) + t(P3, U))t(C4, U)1/8.

�
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4 Local Sidorenko Conjecture

The Sidorenko Conjecture asserts that t(F,W ) is minimized by the functionW ≡ 1 among

all functions W ≥ 0 with
∫

W = 1. The following theorem asserts that this is true at

least locally.

Theorem 4.1 Let F be a simple bigraph with m edges. Let W ∈ W with
∫

W = 1,

0 ≤ W ≤ 2 and ‖W − 1‖� ≤ 2−8m−2. Then t(F,W ) ≥ 1.

Proof. Using (5), it suffices to prove the result under a slightly weaker condition

t(C4,W − 1) ≤ 2−8m. We may assume that F = (V,E) is connected, since otherwise, the

argument can be applied to each component. Let U = W −1, then we have the expansion

t(F,W ) =
∑

F ′

t(F ′, U), (14)

where F ′ ranges over all spanning subgraphs of F . Since isolated nodes can be ignored, we

may instead sum over all subgraphs with no isolated nodes (including the term F ′ = K0,

the empty graph). One term is t(K0, U) = 1, and every term containing a component

isomorphic to K2 is 0 since t(K2, U) =
∫

U = 0.

Based on (10), we can identify two special kinds of nonnegative terms in (14), corre-

sponding to copies of P3 and to cycles in F . We show that the remaining terms do not

cancel these, by grouping them appropriately.

(a) For each node i ∈ V , let
∑

∇(i) denote summation over all subgraphs F ′ with at

least two edges that consist of edges incident with i. Let di denote the degree of i in F ,

assume that di ≥ 2, and set t(x) = tx(K
•
2 , U). Then using that t(x) ≥ −1 and Bernoulli’s

Inequality,

∑

∇(i)

t(F ′, U) =

∫

I

di
∑

k=2

(

di

k

)

t(x)k dx =

∫

I

(1 + t(x))di − 1 − dit(x) dx

≥

∫

I

(1 + t(x))(1 + (di − 1)t(x)) − 1 − dit(x) dx

=

∫

I

(di − 1)t(x)2 dx = (di − 1)t(P3, U).

Hence the terms in (14) that correspond to stars sum to at least

∑

stars

t(F ′, U) ≥
∑

i

(di − 1)t(P3, U) = (2m− n)t(P3, U).

(b) Another special sum we consider consists of complete bigraphs that are not stars.

Fixing a subset A with |A| ≥ 2 in the first bipartition class of F with h ≥ 2 common
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neighbors, and fixing the variables in A, the sum over such complete bigraphs with A as

one of the bipartition classes is

h
∑

j=2

(

h

j

)





∫

I

∏

i∈A

U(xi, y) dy





j

≥ (h− 1)





∫

I

∏

i∈A

U(xi, y) dy





2

by the same computation as above. This gives that this sum is nonnegative.

(c) Next, consider those terms F ′ with at least two endnodes that are not stars. For

such a term we have

|t(F ′, U)| ≤ t(P3, U)t(C4, U)1/4 ≤ 2−2mt(P3, U)

(if there are two nonadjacent endpoints, then this follows from Lemma 3.21; else, the left

hand side is 0). The sum of these terms is, in absolute value, at most

2m2−2mt(P3, U) = 2−mt(P3, U).

(d) If F ′ has all degrees at least 2 and girth 2r, and it is not a single cycle or complete

bigraph, then F ′ ≤ C2rC
1/4
4 by Lemma 3.19, and so

|t(F ′, U)| ≤ t(C2r, U)t(C4, U)1/4 ≤ 2−2mt(C2r, U).

So if we fix r and sum over all such subgraphs, we get, in absolute value, at most

2m2−2mt(C2r, U) = 2−mt(C2r, U).

(e) Finally, if F ′ has exactly one node of degree 1 and girth 2r, then by Lemma 3.22

|t(F ′, U)| ≤
1

2
(t(P3, U) + t(C2r, U))t(C4, U)1/8 ≤ 2−m−1(t(P3, U) + t(C2r, U)).

If we sum over all such subgraphs F ′, then we get less than t(P3, U) + 1
2

∑

r≥2 t(C2r, U).

The sum in (a) is sufficient to compensate for the sum in (b) and the first term in (e),

while the sum over cycles compensates for the sum in (d) and the second sum in (e). This

proves that the total sum in (14) is nonnegative. �

5 Variations

One can combine the conditions and assume a bound on ‖W − 1‖∞. It follows from the

Theorem that ‖W − 1‖∞ ≤ 2−8m suffices. Going through the same arguments (in fact, in

a somewhat simpler form) we get:

Theorem 5.1 Let F be a simple bigraph with m edges. Let W ∈ W with
∫

W = 1 and

‖W − 1‖∞ ≤ 1/(4m). Then t(F,W ) ≥ 1.
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The condition that ‖W − 1‖∞ ≤ 1/(4m) implies trivially that 0 ≤ W ≤ 2. It would

be interesting to get rid of the condition that W ≤ 2 under an appropriate bound on

‖W −1‖�. In the proof of Theorem 4.1, parts (a) and (b) did not use the upper bound on

the values of W , but in the rest we could not avoid this. We can only offer the following

result.

Theorem 5.2 Let F be a simple bigraph with m edges, let 0 < ε < 2−1−8m, and let

W ∈ W such that W ≥ 0,
∫

W = 1, ‖W − 1‖� ≤ 2−1−8m, and
∫

S×T

W ≤ 2λ(S)λ(T )

whenever λ(S), λ(T ) ≥ 2−64/ε2
. Then t(F,W ) ≥ 1 − ε.

Proof. For every function W ∈ W and partition P = {V1, . . . , Vk} of I into a finite

number of measurable sets with positive measure, let WP denote the function obtained

by averaging W over the partition classes; more precisely, we define

WP(x, y) =
1

λ(Vi)λ(Vj)

∫

Vi×Vj

W (u, v) du dv

for x ∈ Vi and y ∈ Vj .

The Weak Regularity Lemma of Frieze and Kannan in the form used in [1] implies

that there is a partition P into K ≤ 264m2/ε2
equal measurable sets such that the function

WP satisfies

‖WP −W‖� ≤
ε

4m
,

and hence by the Counting Lemma (Lemma 3.8 in [1]),

|t(F,WP) − t(F,W )| ≤ ε.

Clearly
∫

WP = 1, WP ≥ 0, and for all x ∈ Vi and y ∈ Vj ,

WP(x, y) =
1

λ(Vi)λ(Vj)

∫

Vi×Vj

W (u, v) du dv ≤ 2.

Furthermore,

‖WP − 1‖� ≤ ‖WP −W‖� + ‖W − 1‖� ≤ 2−8m,

Thus Theorem 4.1 implies that t(F,WP) ≥ 1, and hence t(F,W ) ≥ t(F,WP)− ε ≥ 1− ε.

�

We end with a graph-theoretic consequence of Theorem 5.2.

Corollary 5.3 Let F be a bigraph with n nodes and m edges, and let G be a graph

with N nodes and M = p
(

N
2

)

edges. Let ε > 0. Assume that
∣

∣eG(S, T ) − p|S||T |
∣

∣ ≤

(2−8mp − ε)N2 for all S, T ⊆ V (G), and eG(S, T ) ≤ 2p|S||T | for all S, T ⊆ V (G) with

|S|, |T | ≥ 2−4m2/ε2
N . Then t(F,G) ≥ pm − ε.
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Proof. This follows by applying Theorem 5.2 to the function WG/p. �
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