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Abstract

We obtain asymptotic formulas for the number of rooted 2-connected and 3-

connected surface maps on an orientable surface of genus g with respect to vertices

and edges simultaneously. We also derive the bivariate version of the large face-

width result for random 3-connected maps. These results are then used to derive

asymptotic formulas for the number of labelled k-connected graphs of orientable

genus g for k ≤ 3.

1 Introduction

The exact enumeration of various types of maps on the sphere (or, equivalently, the plane)
was carried out by Tutte [26, 27, 28] in the 1960s via his device of rooting. (Terms in
this paragraph are defined below.) Building on this, explicit results were obtained for
some maps on low genus surfaces, e.g., as done by Arqués on the torus [1]. Beginning
in the 1980s, Tutte’s approach was used for the asymptotic enumeration of maps on
general surfaces [3, 12, 4]. A matrix integral approach was initiated by ′t Hooft (see [21]).
The enumerative study of graphs embeddable in surfaces began much more recently.
Asymptotic results on the sphere were obtained in [8, 22, 20] and cruder asymptotics for
general surfaces in [22]. In this paper, we will derive asymptotic formulas for the number of
labelled graphs on an orientable surface of genus g for the following families: 3-connected
and 2-connected with respect to vertices and edges, and 1-connected and all with respect
to vertices. Along the way we also derive results for 2-connected and 3-connected maps
with respect to vertices and edges. The result for all graphs as well as various parameters
for these graphs was announced earlier by Noy [24] and appears in [15].
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Definition 1 (Maps and Embeddable Graphs) A map M is a connected graph G
embedded in a surface Σ (a closed 2-manifold) such that all components of Σ − G are
simply connected regions, which are called faces. G is called the underlying graph of M,
and is denoted by G(M). Loops and multiple edges are allowed in G.

• A map is rooted if an edge is distinguished together with a direction on the edge and
a side of the edge.

In this paper, all maps are rooted and unlabeled.

• A graph without loops or multiple edges is simple.

• A graph G is embeddable in a surface if it can be drawn on the surface without edges
crossing.

• A graph has (orientable) genus g if it is embeddable in an orientable surface of genus
g and none of smaller genus.

Definition 2 (Generating Functions for Maps and Graphs) Let M̂g(n, m; k) be
the number of (rooted, unlabeled) k-connected maps with n vertices and m edges, on an
orientable surface of genus g. Let Gg(n, m; k) be the number of (vertex) labelled, simple,
k-connected graphs with n vertices and m edges, which are embeddable in an orientable
surface of genus g. Let Gg(n; k) =

∑

m Gg(n, m; k), the number of labelled, simple, k-
connected graphs with n vertices. Let

M̂g,k(x, y) =
∑

n,m

M̂g(n, m; k)xnym and Gg,k(x, y) =
∑

n,m

Gg(n, m; k)(xn/n!)ym.

In the following theorem, ρ(r) and Ag(r) have the same definition in terms of r, but
the definition of r varies.

Theorem 1 (Maps on Surfaces) Define

ρ(r) =
r3(2 + r)

1 + 2r
,

Ag(r) =
1

2
√

π

r6(2 + r)3/2

(1 + 2r)2

(

12(1 + r)3(1 + 2r)4

r12(2 + r)5

)g/2

tg,

where tg is the map asymptotics constant defined in [3]. For k = 1, 2, 3, there are algebraic
functions r = rk(m/n), Ck(r), and ηk(r) such that for any fixed ǫ > 0 and fixed genus g

M̂g(n, m; k) ∼ Ck(r)Ag(r)(2 + r)(k−1)(5g−3)/2 n5g/2−3ρ(r)−nηk(r)
−m,

uniformly as n, m → ∞ such that rk(m/n) ∈ [ǫ, 1/ǫ]. The relevant functions are as
follows:
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(i) r = r1(m/n) satisfies
(1 + r)(1 + r + r2)

r2(2 + r)
=

m

n
, η1(r) =

1 + 2r

4(1 + r + r2)2
and

C1(r) = (2 + r)

√

1 + r + r2

(1 + 2r)(4 + 7r + 4r2)
;

(ii) r2(m/n) =
1

m/n − 1
, η2(r) =

4

(1 + 2r)(2 + r)2
and C2(r) =

1
√

(1 + 2r)(2 + r)
;

(iii) r3(m/n) =
3 − m/n

2(m/n) − 3
, η3(r) =

3

4r(2 + r)
, and C3(r) =

1
√

r(2 + r)3
.

Theorem 2 (Embeddable Graphs) For the ranges of m and n considered here, the
number of graphs embeddable in an orientable surface of genus g is asymptotic to the
number of such graphs of orientable genus g.

(i) (3-connected) For any fixed ǫ > 0 and genus g,

Gg(n, m; 3)

n!
∼ M̂g(n, m; 3)

4m

uniformly as n, m → ∞ such that m
n
∈ [(3/2) + ǫ, 3 − ǫ].

(ii) (2-connected) Let α(t), β(t), ρ2(t), λ2(t), µ(t) and σ(t) be functions of t defined
in Section 6 (see also [8]). Let

Bg(t) =

(

8

9(1 + t)(1 − t)6

(

β(t)

α(t)

)5/2
)g−1

.

Fix ǫ > 0 and genus g. Let 0 < t < 1 satisfy µ(t) = m/n. Then

Gg(n, m; 2)

n!
∼ Bg(t)tg

4σ(t)
√

2π
n5g/2−4ρ2(t)

−nλ2(t)
−m

uniformly as n, m → ∞ such that m/n ∈ [1 + ǫ, 3 − ǫ].

(iii) (vertices only) For 0 ≤ k ≤ 3 and fixed g, there are positive constants xk, αk and
βk such that

Gg(n; k)

n!
∼ αkβ

g
k tg n5g/2−7/2x−n

k ,

where

x3
.
= 0.04751, x2

.
= 0.03819, x1

.
= 0.03673, x0 = x1,

β3
.
= 1.48590 · 105, β2

.
= 7.61501 · 104. β1

.
= 6.87242 · 104, β0 = β1,

α3 = 1
4β3

, α2 = 1
4β2

, α1 = 1
4β1

, α0
.
= 3.77651 · 10−6.

More accurate values of these constants can be computed by using the formulas in
those sections where the theorem is proved.
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Remark (tg). It is known [18] that

tg =
−ag

2g−2Γ
(

5g−1
2

)

where a0 = 1 and, for g > 0,

ag =
(5g − 4)(5g − 6)

48
ag−1 −

1

2

g−1
∑

h=1

ahag−h. (1)

Hence all the numbers in Theorems 1 and 2 can be computed efficiently to any desired
accuracy for any given g and r.

Remark (Sharp Concentration). As noted in Comment 4 of Section 3, our methods
for obtaining bivariate results show that the number of edges is sharply concentrated. To
find the mean number of edges asymptotically, set ηk(r) = 1 in Theorem 1, η3(r) = 1 in
Theorem 2(i), and λ2(t) = 1 in Theorem 2(ii). For r the asymptotic value of the mean is
then the value of m for which r(m/n) has that value of r; for t it is simply µ(t)n.

The paper proceeds as follows.

Section 2 Maps on a fixed surface were enumerated in [4] with respect to vertices and
faces. We convert this result to quadrangulations and then obtain results for other
types of quadrangulations.

Section 3: We recall a local limit theorem and discuss some analytic methods used in
subsequent sections.

Section 4: We then apply the techniques in [12] and [7] to obtain asymptotics for gen-
erating functions for k-connected maps, proving Theorem 1. The calculations for
Ag(r) are postponed to Section 9.

Section 5: Applying the techniques in [5], we show that almost all 3-connected maps have
large face-width when counted by vertices and edges. Hence almost all 3-connected
graphs of genus g have a unique embedding [25]. This leads to Theorem 2 for
3-connected graphs.

Section 6: Using the construction of 2-connected graphs from 3-connected graphs and
polygons as in [8] we obtain Theorem 2 for 2-connected graphs.

Sections 7 and 8: We obtain Theorem 2 for 1-connected graphs from the 2-connected
result and for all graphs from 1-connected by methods like those in [20].

Section 9: We derive the expression for Ag(r) in terms of tg.

Section 10: We make some comments on the number of labeled graphs of a given nonori-
entable genus.
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2 Enumerating Quadrangulations

We begin with some definitions:

Definition 3 (Cycles) A cycle in a map is a simple closed curve consisting of edges of
the map.

• A cycle is called a k-cycle if it contains k edges.

• A cycle is called separating if deleting it separates the underlying graph.

• A cycle is called facial if it bounds a face of the map.

• A cycle is called contractible if it is homotopic to a point, otherwise it is called
non-contractible.

• A contractible cycle in a nonplanar map separates the map into a planar piece and
a nonplanar piece. The planar piece is called the interior of the cycle and we also
say that the cycle contains anything that is in its interior. Since we usually draw a
planar map such that the root face is the unbounded face, we define the interior of
a cycle in a planar map to be the piece which does not contain the root face.

• A 2-cycle or 4-cycle is called maximal (minimal) if it is contractible and its interior
is maximal (minimal).

Definition 4 (Widths) The edge-width of a map M, written ew(M), is the length of
a shortest non-contractible cycle of M. The face-width (also called representativity of
M, written fw(M), is the minimum of |G(M)∩C| taken over all non-contractible closed
curves C on the surface.

Definition 5 (Quadrangulations) A quadrangulation is a map all of whose faces have
degree 4.

• A bipartite quadrangulation is a quadrangulation whose underlying graph is bipar-
tite. (All quadrangulations on the sphere are bipartite, but those on other surfaces
need not be.)

• A quadrangulation is near-simple if it has no contractible 2-cycles and no contractible
nonfacial 4-cycles.

• A quadrangulation is simple if it has no 2-cycles and all 4-cycles are facial.

The following lemma, contained in [12] and [7], connects maps with bipartite quadrangu-
lations.

Lemma 1 By convention, we bicolor a bipartite quadrangulation so that the head of the
root edge is black. There is a bijection φ between rooted maps and rooted bipartite quad-
rangulations, such that the following hold.
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(a) fw(M) = ew(φ(M))/2.

(b) M has n vertices and m edges if and only if φ(M) has n black vertices and m faces.

(c) φ(M) has no 2-cycle implies M is 2-connected which implies φ(M) has no con-
tractible 2-cycle.

(d) φ(M) is simple implies M is 3-connected which implies φ(M) is near-simple.

In this section we enumerate quadrangulations with no contractible 2-cycles and near-
simple quadrangulations. Except that black vertices were not counted, this is done in [7].
In what follows, we reproduce that argument nearly verbatim, adding a second variable
to count black vertices.

We define the generating functions Qg(x, y), Q̂g(x, y) and Q⋆
g(x, y) as follows.

Qg(x, y) =
∑

i,j≥1

Q(i, j; g)xi−1yj

where Q(i, j; g) is the number of (rooted, bicolored) quadrangulations with i black vertices
and j faces on an orientable surface of genus g. Similarly define Q̂g(x, y) for quadrangu-
lations without contractible 2-cycles and Q⋆

g(x, y) for near-simple quadrangulations.
By Lemma 1, we have

Qg(x, y) = x−1M̂g,1(x, y) − δ0,g, (2)

where the Kronecker delta occurs because of the convention that counts a single vertex
as a map on the sphere.

In [4] the generating function M̂g(u, v) counts maps by vertices and faces. Thus

M̂g,1(x, y) = y2g−2M̂g(xy, y). (3)

It is known [1, 4] that M̂0(xy, y) = rs
(1+r+s)3

where r(x, y) and s(x, y) are power series
uniquely determined by

x =
r(2 + r)

s(2 + s)
and y =

s(2 + s)

4(1 + r + s)2
. (4)

Thus

Q0(x, y) =
4(1 + r + s)

(2 + r)(2 + s)
− 1 =

2r + 2s − rs

(2 + r)(2 + s)
, (5)

and
∂r

∂x
=

s(2 + s)(1 + r + rs)

2(1 − rs)
,

∂r

∂y
=

2r(2 + r)(1 + s)(1 + r + s)3

s(2 + s)(1 − rs)
,

∂s

∂x
=

s2(2 + s)2

2(1 − rs)
,

∂s

∂y
=

2(1 + r)(1 + r + s)3

1 − rs
.

(6)

Throughout the rest of the paper, we use N(ǫ) to denote the set

N(ǫ) = {reiθ : ǫ≤r≤1/ǫ, |θ| ≤ ǫ}.
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Theorem 3 (Quadrangulations) Fix g > 0 and let q(x, y) be any of Qg(x, y), Q̂g(x, y)
and Q⋆

g(x, y). The values of x and y are parameterized by r and s in the following manner.

(i) For all (bipartite) quadrangulations (q = Qg), x and y are given by (4).

(ii) For no contractible 2-cycles (q = Q̂g), x is given by (4) and y =
4s

(2 + s)(2 + r)2
.

(iii) For near simple (q = Q⋆
g), x is given by (4) and y =

s(4 − rs)

4(2 + r)
.

The following are true.

(a) The function q(x, y) is a rational function of r and s and hence an algebraic function
of x and y.

(b) If r and s are positive reals such that rs = 1, then (x, y) is in the singular set of
q(x, y).

(c) If (x′, y′) is another singularity of q, then either |x′| > x or |y′| > y.

(d) Let ρ(r) = r3(2+r)
1+2r

, the value of x on the singular curve rs = 1, and let y be its value
on the singular curve at r. Fix ǫ > 0 and g > 0. Uniformly for r ∈ N(ǫ)

xq(x, y) ∼ C(r)

(

1 − x

ρ(r)

)(3−5g)/2

(7)

as x → ρ(r),

C(r) =















































√

π

3(1 + r)

(1 + r + r2)Ag(r) Γ
(

5g−3
2

)

r2
for q = Qg,

√

π

3(1 + r)

Ag(r) Γ
(

5g−3
2

)

r
(2 + r)(5g−3)/2 for q = Q̂g,

√

3π

1 + r

Ag(r) Γ
(

5g−3
2

)

(2 + r)(1 + 2r)
(2 + r)5g−3 for q = Q⋆

g,

and some function Ag(r) whose value is determined in Section 9.

Proof: Theorem 3 of [4] shows that M̂g(x, y) of that paper is a rational function of r
and s and hence algebraic when g > 0. (The theorem contains the misprint 9 > 0 which
should be g > 0.) Use (2)–(5) to establish (a) for Qg.

We now derive equations for Q̂ and Q⋆ based on Q. This will easily imply (a) for Q̂
and Q⋆.

It is important to note that, in any quadrangulation, all maximal 2-cycles have disjoint
interiors, and that, in any nonplanar quadrangulation without contractible 2-cycles, all
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maximal 4-cycles have disjoint interiors. (This is simpler than the planar case [23, p. 260].)
Therefore, we can close all maximal 2-cycles in quadrangulations to obtain quadrangula-
tions without contractible 2-cycles and remove the interior of each maximal contractible
4-cycle to obtain near-simple quadrangulations. The process can be reversed and used to
construct quadrangulations from near-simple quadrangulations.

Enumerating Q̂g(x, y): The following argument is essentially from [7], by paying extra
attention to the number of black vertices. All quadrangulations of genus g > 0 can be
divided into two classes according as the root face lies in the interior of some contractible
2-cycle or not.

For any quadrangulation in the first class, let C be the minimal contractible 2-cycle
containing the root face. Cutting along C, filling holes with disks and closing those two
2-cycles, we obtain a general quadrangulation of genus g and a planar quadrangulation
with a distinguished edge. Taking the latter quadrangulation and cutting along all its
maximal 2-cycles and closing as before gives a quadrangulation without contractible 2-
cycles, together with a set of planar quadrangulations extracted from within the maximal
2-cycles. Remembering that y counts faces and that the number of edges is twice the
number of faces, it follows that the generating function for the first class is

Qg(x, y)

1 + Q0(x, y)

2ŷ ∂ Q̂0(x, ŷ)

∂ŷ
,

where

ŷ = y(1 + Q0(x, y))2 =
4s

(2 + s)(2 + r)2
. (8)

For any quadrangulation in the second class, closing all maximal contractible 2-cycles
gives quadrangulations without contractible 2-cycles. Thus the generating function for
this class is Q̂g(x, ŷ). For the planar case, only the second class applies and so

Q̂0(x, ŷ) = Q0(x, y). (9)

Combining the two classes when g > 0, we have

Qg(x, y) = Q̂g(x, ŷ) +
Qg(x, y)

1 + Q0(x, y)

2ŷ ∂ Q̂0(x, ŷ)

∂ŷ
.

It follows that

Q̂g(x, ŷ) =

(

1 − 2ŷ

1 + Q0(x, y)

∂ Q̂0(x, ŷ)

∂ŷ

)

Qg(x, y) (10)

for g > 0. Note that

1 − 2ŷ

1 + Q0(x, y)

∂ Q̂0(x, ŷ)

∂ŷ
=

1

1 + r + s
(11)
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and so is bounded on the singular curve when r is near the positive real axis.
Enumerating Q⋆

g(x, y): We now use a similar argument to derive Q⋆
g(x, y⋆) from Q̂g(x, ŷ)

when g > 0. For any quadrangulation without contractible 2-cycles, let C be the maximal
contractible 4-cycle containing the root face. Cutting along C and filling holes with disks,
we obtain

1. a planar quadrangulation which has no 2-cycles and has a distinguished face other
than the root face, and

2. a quadrangulation of genus g which, after the removal of the interiors of all maximal
4-cycles, gives a near-simple quadrangulation.

Note that

y⋆ =
Q̂0(x, ŷ) − xŷ − ŷ

xŷ
=

s(4 − rs)

4(2 + r)
(12)

enumerates planar quadrangulations having at least one interior face and having no 2-
cycles such that x marks the number of black vertices minus 2 and ŷ marks the number
of non-root faces. It follows from the construction that

Q̂g(x, ŷ)

ŷ
=

Q⋆
g(x, y⋆)

y⋆

∂y⋆

∂ŷ
.

which gives

Q⋆
g(x, y⋆) =

y⋆

∂y⋆/∂ŷ

Q̂g(x, ŷ)

ŷ
=

4 − rs

(2 + s)(2 + r)(1 + r + s)
Qg(x, y). (13)

This completes the proof of Theorem 3(a).

Singularities: These must arise from poles due to the vanishing of the denominator of
q(x, y) or from branch points caused by problems with the Jacobian ∂(x,y)

∂(r,s)
. For the former,

it can be seen from (10) and (13) that either 1+r+s = 0 or 2+r = 0 or 2+s = 0. By (4),
each of these implies that either x or y vanishes or is infinite, which do not matter since
the radius of convergence is nonzero and finite. Using the formulas in Theorem 3, one
can compute Jacobians. One finds that the only singularity that matters is 1 − rs = 0.

Conclusion (c) follows for Q from [4]. We now consider Q̂ and Q⋆. Suppose

• x and y are positive reals on the singular curve,

• x′ and y′ are on the singular curve,

• |x′| ≤ x and |y′| ≤ y.

To prove (c) it suffice to show that x′ = x and y′ = y. Since we are dealing with generating
functions with nonnegative coefficients, no singularity can be nearer the origin the that
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at the positive reals. Hence |x′| = x and |y′| = y. As was done in [10], one easily verifies
that on the singular curve rs = 1 one has

16x′y′2
(

16(y′ + 1)(x′y′ + 1) + 2
)

= 27 (14)

for Q⋆. Taking absolute values in this equation one easily finds that |y′ + 1| = |y + 1| and
|x′y′ + 1| = |xy + 1|. Thus y′ = y and x′y′ = xy and we are done. For Q̂, a look at the
equations for x and y on the singular curve shows that we need only replace y′ in (14)
with (3/4)(y′/4x′)1/3 and argue as for Q⋆. This completes the proof of (c).

Asymptotics: We now turn to (d). The case q = Qg is contained implicitly in [4] for
some function Ag(r).

We now use (10) to derive the singular expansion for Q̂g(x̂, ŷ) at x̂ = ρ(r) where r
is determined by ŷ = η2(r). It is important to note that, with ŷ fixed, (8) defines y as
an analytic function in x = x̂. Thus in (7), with q(x, y) = Qg(x, y), we should treat r
as a function in y and consequently as a function in x. Using implicit differentiation, we
obtain from (8) and (6) that

dy

dx
= −∂ŷ/∂x

∂ŷ/∂y
= − (∂ŷ/∂r)(∂r/∂x) + (∂ŷ/∂s)(∂s/∂x)

(∂ŷ/∂r)(∂r/∂y) + (∂ŷ/∂s)(∂s/∂y)
=

−s2(2 + s)2

4(2 + r)(1 + r + s)3
. (15)

Hence
d

dx

(

1 − x

ρ(r)

)

=
−1

ρ(r)
+

x

ρ2(r)

dρ

dx
=

−1

ρ(r)
+

x

ρ2(r)

ρ′(r)

η′
1(r)

dy

dx
.

Using (15) and the expressions for ρ(r) and η1(r) given in Theorem 1, we obtain

d

dx

(

1 − x

ρ(r)

)
∣

∣

∣

∣

x=ρ(r),s=1/r

=
−1

ρ(r)(2 + r)
,

and hence

1 − x

ρ(r)
∼ −1

ρ(r)(2 + r)
(x̂ − ρ(r)) =

1

2 + r

(

1 − x̂

ρ(r)

)

.

Substituting this into (7), we obtain

(

1 − x

ρ(r)

)(3−5g)/2

∼ (2 + r)(5g−3)/2

(

1 − x̂

ρ(r)

)(3−5g)/2

,

as x̂ → ρ(r) for each fixed ŷ. The factor (11) can simply be evaluated at s = 1/r since it
converges to a constant. This establishes (7) for Q̂g(x̂, ŷ).

Expansion (7) for Q⋆
g(x

⋆, y⋆) can be obtained similarly using (13). We note that fixing
y⋆ defines y, and hence ρ(r), as a function of x = x⋆. Using (12) and (6), we obtain

1 − x

ρ(r)
∼ 1

(2 + r)2

(

1 − x⋆

ρ(r)

)

,

as x⋆ → ρ(r) for each fixed y⋆.
This completes the proof of the theorem, except for the formula for Ag(r) which will

be derived in Section 9.
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3 Some Technical Lemmas

The following lemma is the essential tool for our asymptotic estimates. It is based on the
case d = 1 of [9, Theorem 2], from which it follows immediately.

Lemma 2 Suppose that an,k ≥ 0. Define an(v) =
∑

k an,kv
k and a(u, v) =

∑

n an(v)un.
Let R(c) be the radius of convergence of a(u, c). Suppose that I is a closed subinterval of
(0,∞) on which 0 < R < ∞. For v ∈ I define

µ(v) =
−d log ρ(v)

d log v
, σ2(v) =

−d2 log ρ(v)

(d log v)2
, Kn = {nµ(v) | v ∈ I} ∩ Z

and N(I, δ) = {z | |z| ∈ I and | arg z| < δ}. Suppose there are f(n), g(v) and ρ(v) such
that in N(I, δ)

(a) an(v) ∼ f(n)g(v)ρ(v)−n uniformly as n → ∞;

(b) g(v) is uniformly continuous;

(c) ρ(v) 6= 0 has a uniformly continuous third derivative;

(d) σ2(v) > 0 for v > 0.

Suppose also that

(e) R(c) > R(|c|) whenever c 6= |c| ∈ I.

Then, as n → ∞, we have, uniformly for k ∈ Kn,

an,k ∼ an(v)v−k

√

2πnσ2(v)
,

where v ∈ I is given by k/n = µ(v).

Of course |ρ(v)| is simply the radius of convergence R(v) and ρ(v) = R(v) when v ∈ I.
We now make some comments on applying this lemma. We will generally use these

ideas without explicit mention.

Comment 1. We can simply apply the lemma directly. For example, we can apply it to
(7) to obtain asymptotics. The only condition that is not immediate is the verification that
σ2(v) > 0 in condition (d). This is a straightforward but somewhat tedious calculation.
Unless needed later, we omit the values of σ2(v) that we compute.

Comment 2. Consider adding and multiplying various a(u, v), all with the same ρ(v)
(and hence µ(v)) that satisfy the lemma. The result will be a function that again satisfies
the lemma with the same ρ(v).

To see this, note that the lemma is essentially a local limit theorem for random vari-
ables where Pr(Xn = k) = an,kv

k/an(v) and use [11, Lemma 5]. We also need the obser-
vation that multiplying a(u, v) by functions with nonnegative coefficients and larger radii
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of convergence results in a function having the same ρ(v) and so the lemma applies. In
fact, it suffices to simply evaluate the new function at the singularity and multiply the
resulting constant by a(u, v).

Comment 3. Condition (a) will follow if a(u, v) is algebraic and a(u, s) has no other
singularities on its circle of convergence when s ∈ I. In general, condition (a) is established
using the “transfer theorem” [16, Sec.VI.3]. Thus, for example, Theorem 3(a,c) implies
Lemma 2(a,e).

Comment 4. The values nµ(v) and nσ2(v) are asymptotic to the mean and variance of a
random variable Xn(v) with Pr(Xn(v)=k) = an,kv

k/an(v). Chebyshev’s inequality then
gives a sharp concentration result for Xn(v) about its mean. When this is applied to maps
or graphs with v = 1, it gives a sharp concentration for the edges about the mean. (The
lemma is based on a local limit theorem, which could be used to give a sharper result.)

Since we will be bounding coefficients of generating functions, the following definition
and lemma will be useful.

Definition 6 (Õ) Let A(x, y) and B(x, y) be generating functions and let B(x, y) have
nonnegative coefficients. We write A(x, y) = Õ(B(x, y)) if there is a constant K such
that

∣

∣[xiyj] A(x, y)
∣

∣ ≤ K[xiyj] B(x, y) for all i, j.

Lemma 3 Let A(x, y), B(x, y), C(x, y), D(x, y) and H(x, y) be generating functions,
and C(x, y), D(x, y) and H(x, y) have nonnegative coefficients. Suppose further that
A(x, y) = Õ(C(x, y)) and B(x, y) = Õ(D(x, y)). Then

(i) differentiation: Ax(x, y) = Õ(Cx(x, y)) and Ay(x, y) = Õ(Cy(x, y));

(ii) integration:

∫ x

0

A(x, y)dx = Õ

(
∫ x

0

C(x, y)dx

)

and
∫ y

0

A(x, y)dy = Õ

(
∫ y

0

C(x, y)dy

)

;

(iii) product: A(x, y)B(x, y) = Õ(C(x, y)D(x, y));

(iv) substitution: A(H(x, y), y) = Õ(C(H(x, y), y) and
A(x, H(x, y)) = Õ(C(x, H(x, y))

provided that the compositions as formal power series are well defined.

The proof follows immediately from the definition of Õ.
Obviously the definition of Õ and Lemma 3 can be stated for any number of variables.
We want to apply Lemma 2 to a(u, v) = A(u, v)+E(u, v) or a(u, v) = A(u, v)−E(u, v)

when A is a function and we know E only approximately. Of course, this cannot be done
directly since derivatives are involved.

The lemma will apply to A(u, v) for v ∈ I. We could attempt to estimate coefficients of
E(u, v) by some crude method, but this fails because the order of growth of E(u, v) is not
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sufficiently smaller than that of A(u, v). What we will have is that E(u, v) = Õ(F (u, v))
where F is a function built from functions to which the lemma applies and which have
dominant singularities only where A has them. Thus both functions have the same ρ(v).
Furthermore, the function f(n) for A grows faster than the f(n) for F . This is enough to
show that the coefficients of F are negligible compared to those of A because of Comment 2
above. We will use these ideas without explicit mention when considering error bounds.

4 Proof of Theorem 1

The value of Ag(r) in this section is simply the value assumed in the proof of Theorem 3
in Section 2. The formula for Ag(r) will be derived in Section 9.

For g = 0 we find it easier to verify that the formulas in Theorem 1 agree with known
results. The g = 0 case for general maps will follow when we use [4] to evaluate Ag(r) in
Section 9. For maps with i + 1 vertices and j + 1 faces the number of 2-connected planar
maps equals [14]

(2i + j − 2)! (2j + i − 2)!

i! j! (2i − 1)! (2j − 1)!

and the number 3-connected planar maps is asymptotic to

1

35ij

(

2i

j + 3

)(

2j

i + 3

)

uniformly as max(i, j) → ∞ [13]. The verification of Theorem 1 now requires only some
straightforward estimates of factorials and the fact that t0 = 2√

π
.

We now assume g > 0.
We derive the 1-connected case from Theorem 3. Lemma 1 tells us that xQg(x, y)

counts 1-connected maps by vertices and edges. Now apply Theorem 3 and Lemma 2.
With Ag(r) given by Theorem 3, it follows that

M̂g(n, m; 1) ∼ Ag(r)

σ1(r)
√

2π
n5g/2−3ρ(r)−nη1(r)

−m

where

m

n
=

−d log ρ(r)

d log η1(r)
=

(1 + r)(1 + r + r2)

r2(2 + r)
,

σ2
1(r) =

−d2 log ρ(r)

(d log η1(r))2
=

(4 + 7r + 4r2)(1 + 2r)(1 + r + r2)

6r4(2 + r)2(1 + r)
.

This gives Theorem 1(i). (Of course, we could also have cited [4], but we need the
derivation from Theorem 3 so that we can evaluate Ag(r) later.)

Our proof for 2- and 3-connected maps uses Lemma 1 in connection with Theorem 3
and Lemma 2. We obtain upper and lower bounds from Lemma 1(c,d). We show that
Lemma 2 can be applied to both bounds and that the asymptotics are the same.
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Upper bounds are provided by Q̂ and Q⋆. These can be treated in the same manner as
Theorem 1(i) was derived from Q. Let E(x, y) be the errors in these upper bounds. We
handle E(x, y) as discussed at the end of Section 3, namely E(x, y) = Õ(F (x, y)) where
F is well-behaved. We now turn to F (x, y).

2-Connected maps: We bound the quadrangulations that have non-contractible 2-cycles
and are counted by Q̂g(x, y). The argument is essentially the same as that used in [7].
The only difference is that we keep track of both the number of faces and the number of
black vertices.

We first study quadrangulations counted by Q̂g(x, y) which contain a separating non-
contractible cycle C of length 2.

Cutting through C gives two near-quadrangulations. After closing the resulting two
2-cycles, we obtain a rooted quadrangulation Q1 with a distinguished edge, which has
genus 0 < j < g, and another rooted quadrangulation Q2 with genus g− j. The quadran-
gulation Q1 may contain contractible 2-cycles which contain the distinguished edge d in its
interior. Hence Q1 is decomposed into a rooted quadrangulation counted by y ∂

∂y
Q̂j(x, y)

and a sequence of rooted quadrangulations counted by y ∂
∂y

Q̂0(x, y). Thus the generating
function for Q1 is

Õ

(

x−1∂Q̂j(x, y)

∂y

(

1 − y ∂Q̂0(x, y)/∂y
)−1
)

.

For convergence of
∑

(y ∂Q̂0(x, y)/∂y))k it suffices to show that y ∂Q̂0(x, y)/∂y < 1
for positive x and y since it is a power series with nonnegative coefficients. Since

y ∂Q̂0(x, y)

∂y
=

2(r + s)

(2 + r)(2 + s)
,

the result is immediate. Also note that this implies that 1 − y ∂Q̂0(x, y)/∂y does not
vanish for |x| ≤ ρ(r).

Similarly the quadrangulation Q2 may contain contractible 2-cycles containing its
root edge in its interior. So Q2 is decomposed into a rooted quadrangulation counted by
Q̂g−j(x, y) and a sequence of rooted quadrangulations counted by y ∂

∂y
Q̂0(x, y). Hence the

generating function of the quadrangulations with a separating non-contractible 2-cycle is
bounded above coefficient-wise by

g−1
∑

j=1

x−1
(

1 − y ∂Q̂0(x, y)/∂y
)−2 ∂Q̂j(x, y)

∂y
Q̂g−j(x, y), (16)

which is algebraic with nonnegative coefficients.
Since 1 − y ∂Q̂0(x, y)/∂y 6= 0, the function given in (16) has only one singularity on

the circle of convergence and near that singularity is O((1 − x/ρ(r))p) where

p =

(

3 − 5j

2
− 1

)

+
3 − 5(g − j)

2
=

3 − 5g

2
+

1

2
. (17)
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Thus we can apply Lemma 2 to see that the error is negligible.
Next we consider quadrangulations counted by Q̂g(x, y) which contain a non-separating

non-contractible cycle C of length 2. Cutting through C gives a near-quadrangulation
of genus g − 1 with two 2-cycles. After closing the resulting two 2-cycles, we obtain a
rooted quadrangulation Q with two distinguished edges. The quadrangulation Q may
contain contractible 2-cycles which contain a distinguished edge in its interior. Hence Q
is decomposed into a rooted quadrangulation counted by y2 ∂2Q̂g−1(x,y)

(∂y)2
and two sequences

of rooted quadrangulations counted by y ∂Q̂0(x,y)
∂y

. Hence the bound in this case is

(

1 − y∂Q̂0(x, y)/∂y
)−2

y2∂2Q̂g−1(x, y)

(∂y)2
.

Reasoning as in the previous paragraph, this gives a negligible contribution to the asymp-
totics.

Now Theorem 1(ii) follows from Lemma 1 and Theorem 3 using

m

n
=

−d log ρ(r)

d log η2(r)
=

1 + r

r
and σ2

2(r) =
−d2 log ρ(r)

(d log η2(r))2
=

(2 + r)(1 + 2r)

6r2(1 + r)
.

Proof of Theorem 1(iii): We prove that almost all quadrangulations counted by
Q⋆(x, y) have no non-contractible cycles of length 2 or 4. The argument is similar to
the one used above, and is identical to the one used in [7]. We note here

m

n
=

−d log ρ(r)

d log η3(r)
=

3(1 + r)

1 + 2r
and σ2

3(r) =
−d2 log ρ(r)

(d log η3(r))2
=

3r(2 + r)

2(1 + r)(1 + 2r)2
.

5 Face Widths of 3-Connected Maps and Graphs

Robertson and Vitray [25] have shown that, if a 3-connected map M in a surface Σg of
genus g has fw(M) > 2g + 2, then its underlying graph has a unique embedding in Σg

and is not embeddable in a surface of lower genus.
Our goal is to prove Theorem 4 below. Then Theorem 2(i) follows from Theorem 1

by counting vertex-labeled, 3-connected, rooted maps. To obtain Theorem 2(iii) for 3-
connected graphs, it suffices to use (7) with r chosen so that y = 1; that is, η3(r) = 1. In
other words, r =

√
7/2 − 1. This gives

x3 = ρ(r) =
7
√

7 − 17

32
.
= 0.04751.

By Comment 4 after Lemma 2, the number of edges is concentrated around its mean
which is asymptotically 3(1+r)

1+2r
n.

Applying the “transfer theorem” [16, Sec.VI.3] to (7) and using Theorem 4, one ob-
tains

(

3(1 + r)

1 + 2r
n

)

Gg(n; 3)

n!
∼ C(r)n5(g−1)/2

4 Γ
(

5g−3
2

) .
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After some algebra we obtain Theorem 2(iii) for 3-connected graphs, with

β3 =
2
√

3 (1 + 2r)2(1 + r)3/2(2 + r)5/2

r6

.
= 1.48590 · 105,

α3 =
1

4β3

.
= 1.68248 · 10−6.

Theorem 4 (Large Face Width) Let Lg(n, m; c) be the number of maps counted by

M̂g(n, m; 3) that have face width at least c and let Lg(x, y) =
∑

n,m Lg(n, m; c)xnym. Then,
for fixed g > 0,

Lg(x, y) = xQ⋆
g(x, y) + Õ(B1(x, y)), (18)

∂Gg,3(x, y)

∂y
=

x

4y
Q⋆

g(x, y) + Õ(B2(x, y)), (19)

where every singularity of Bi is a singularity of Q⋆
g and

Bi(x, y) = O
(

(1 − x/ρ(r))5(g−1)/2+1/2
)

as x → ρ(r)

for y = η3(r), uniformly for r ∈ N(ǫ).

We show that almost all simple quadrangulations have no non-contractible cycles
of length less than any constant c. We need only consider cycles of length 2k where
c ≥ 2k > 4 since we may limit attention to simple quadrangulations. Let C be a non-
contractible cycle of length 2k in a simple quadrangulation counted by Q⋆

g(x, y). As in
previous arguments, we consider separating and non-separating separately

Case 1. Suppose C is separating. Cutting through C and filling the two holes with
disks, we obtain a rooted simple quadrangulation Q1 with a distinguished face of degree
2k, which has genus 0 < j < g, and another rooted simple near-quadrangulation Q2 with
genus g − j and root face degree 2k. We may quadrangulate the faces of degree 2k by
inserting a vertex in the interior of the face, but this may create separating quadrangles
near the cycle C. We can get around this technical problem by gluing a special near-
quadrangulation M0 to the face bounded by C. For example, the near-quadrangulation
M0 can be constructed using two copies of the 2k-cycle, one inside the other, adding
edges between the two corresponding vertices of the cycles, and inserting a new vertex
inside the interior 2k-cycle and joining this new vertex to every other vertex of the cycle.
As a result we obtain a simple quadrangulation of genus j with a distinguished M0,
and another simple quadrangulation of genus g − j rooted at M0. Thus the generating
function of simple quadrangulations in this case is bounded by

Õ

(

xiyl

(

g−1
∑

j=1

Q⋆
g−j(x, y)

∂Q⋆
j (x, y)

∂x

))

for some fixed integers i, l. As in previous arguments, this leads to a negligible contribu-
tion.
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Case 2. Now suppose C is non-separating. Cutting through C, filling the two holes with
disks, and then quadrangulating the resulting two faces as in Case 1, we obtain a rooted
simple quadrangulation of genus g − 1 with two distinguished M0. Thus the generating
function of simple quadrangulations in this case is bounded by

Õ

(

xiyl
∂2Q⋆

g−1(x, y)

(∂x)2

)

for some fixed integers i, l. Again, the contribution is negligible. This gives (18). Robert-
son and Vitray’s result [25] implies that Lg(n, m; 2g+3)n!/(4m) counts 3-connected graphs
of genus g with face width at least 2g + 3 and so (19) follows.

6 From 3-connected graphs to 2-connected graphs

Since the results for 2-connected planar graphs follow from [8], we assume g > 0 in this
section.

Definition 7 ((Planar networks) A planar network is a graph G together with two
distinguished vertices v0 and v1 (the poles) such that the graph obtained by adding the
edge e = {v0, v1} (if it is not already in G) is 2-connected and planar. In contrast to the
usual labeled graph, the poles of a labeled network are not labeled.

As in [8] we use D(x, y) to denote the generating function for planar networks; that is,
[(xi/i!)ym] D(x, y) is the number of planar networks with m edges i vertices not including
the poles v0 and v1.

We will be expanding various functions about singularities. To help us remember
which coefficient goes with which function, we introduce some notation. If F (x) has a
singularity at x = r and we expand it in powers of (1 − x/r), then F [t] denotes the
coefficient of (1 − x/r)t in the expansion.

We begin with a review of some results for planar graphs. It is convenient to use essen-
tially the same notation and parametrization as in [8]. That paper has three parameters,
u, v and t. The parameters u and v are related to r and s by

u =
r(2 + s)

4 − rs
and v =

s(2 + r)

4 − rs
; (20)

or equivalently,

r =
2u

1 + v
and s =

2v

1 + u
. (21)

The parameter t is used on the singular curve rs = 1 and is given by

t =
1

1 + 2r
.
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It also uses the following functions of t. (When our notation differs from [8], we have
indicated the [8] notation parenthetically.)

α(t) = 144 + 592t + 664t2 + 135t3 + 6t4 − 5t5

β(t) = 3t(1 + t)(400 + 1808t + 2527t2 + 1155t3 + 237t4 + 17t5)

γ(t) = 1296 + 10272 t + 30920 t2 + 42526 t3 + 23135 t4

− 1482 t5 − 4650 t6 − 1358 t7 − 405 t8 − 30t9

h(t) =
t2(1 − t) (18 + 36 t + 5t2)

2(3 + t)(1 + 2t) (1 + 3 t)2

ρ2(t) =
(1 + 3t)(1 − t)3

16t3
(called x0 in [8])

λ2(t) =
1 + 2t

(1 + 3t) (1 − t)
e−h(t) − 1 (called y0 in [8])

µ(t) =
(1 + t)(3 + t)2(1 + 2t)2(1 + 3t)2λ2(t)

t3(1 + λ2(t))α(t)

σ2(t) =
(3 + t)2(1 + 2t)2(1 + 3t)2λ2(t)

3t6(1 + t)(1 + λ2(t))2α(t)3

×
(

3t3(1 + t)2α(t)2 − (1 − t)(3 + t)(1 + 2t)(1 + 3t)2λ2(t)γ(t)
)

D[0](t) =
3t2

(1 − t)(1 + 3t)
(called D0 in [8])

D[1](t) = −48t2(1 + t)(1 + 2t)2(18 + 6t + t2)

(1 + 3t)β(t)
(called D2 in [8])

D[3/2](t) = 384t3(1+ t)2(1+2t)2(3+ t)2α(t)3/2β(t)−5/2(called D3 in [8]).

As was pointed out in [20], a factor of t is missing in D2 of [8]. We note that ρ2(t) = ρ(r).
Throughout the rest of the paper, we adopt the following notation, with ǫ > 0 not

necessarily the same at each appearance,

T (ǫ) = {teiθ : ǫ≤t≤1 − ǫ, |θ| ≤ ǫ} and ∆(ρ, ǫ) = {z : |z| ≤ ρ + ǫ} − [ρ, ρ + ǫ].

It is known [8, 20] that for each t ∈ T (ǫ), D(x, λ2(t)) and G0,2(x, λ2(t)) are all analytic in
a ∆(ρ2(t), ǫ) region. Also from [8, 20], we have

D(x, y) = D[0](t) + D[1](t)(1 − x/ρ2(t)) + D[3/2](t)(1 − x/ρ2(t))
3/2 (22)

+ O
(

(1 − x/ρ2(t))
2
)

,

∂D

∂y
=

D[0]′(t)

λ′
2(t)

+
D[1](t)ρ′

2(t)

ρ2(t)λ′
2(t)

+ O
(

(1 − x/ρ2(t))
1/2
)

, (23)

as x → ρ2(t), uniformly for y = λ2(t) and t ∈ T (ǫ).
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We now turn our attention to Gg,2(x, y) and Gg(n, m; 2). Since the planar case g = 0
has already been done [8, 20], we deal with the nonplanar case and prove the following
theorem. A logarithm arises for g = 1 from integrating a function raised to the power
(3 − 5g)/2. As a consequence, g = 1 requires separate treatment in later theorems.

Theorem 5 Let Bg(t) be as in Theorem 2(ii). There are generating functions Eg,2(x, y)
which are analytic in a ∆(ρ2(t), ǫ) region for each t ∈ T (ǫ) such that

G1,2(x, y) = B1(t) ln

(

1

1 − x/ρ2(t)

)

+ Õ(E1,2(x, y))

Gg,2(x, y) = Bg(t) Γ

(

5g − 5

2

)

(

1 − x/ρ2(t)
)−5(g−1)/2

+ Õ(Eg,2(x, y)) for g > 1.

The radius of convergence R(c) of Eg,2(x, c) satisfies R(c) > R(|c|) for c 6= |c|. As
x → ρ2(t), we have, uniformly for y = λ2(t) and t ∈ T (ǫ),

Eg,2(x, y) = h(y) + O
(

(1 − x/ρ2(t))
−5g/2+3

)

for some function h(y).

Proof: Since the planar case has been done in [8], we will use induction on g and assume
g > 0 below. Write Gg,2(x, y) = F (x, y)+E(x, y) where F (x, y) counts 2-connected graphs
containing a unique nonplanar 3-connected component and E(x, y) counts the remaining
2-connected graphs. We will analyze F (x, y) and show that the contribution of E(x, y) is
negligible.

The dominant singularity is extracted from the F (x, y) part and the remainder, along
with the E(x, y) bound, can be incorporated into Eg,2.

We begin with F . A 2-connected graph F counted by F contains a unique 3-connected
component of genus g and all other 3-connected components of F are planar.

Thus we have
F (x, y) = Gg,3(x, D(x, y)).

It follows from (19) that

∂

∂y
F (x, y) =

xQ⋆
g(x, D(x, y))

4D(x, y)

∂D(x, y)

∂y
+ Õ

(

B2(x, D(x, y))
∂D(x, y)

∂y

)

,

and hence

F (x, y) =

∫

xQ⋆
g(x, D(x, y))

4D(x, y)

∂D(x, y)

∂y
dy + Õ

(
∫

B2(x, D(x, y))
∂D(x, y)

∂y
dy

)

. (24)

Although we do not know xQ⋆
g(x, y) exactly, we can still obtain an asymptotic estimate

for the above integral because the coefficients of D are nonnegative and we have (7). We
first use Theorem 4 and (7) to obtain the singular expansion for xQ⋆

g(x, D(x, y)) at the
singularity x = ρ(r) = ρ2(t), with y = λ2(t) fixed. We have from (7)

xQ⋆
g(x, D) = C(r)(1 − x/ρ(r))(3−5g)/2 + O

(

(1 − x/ρ(r))(4−5g)/2
)

,
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as x → ρ(r). As in the proofs of (7) for Q̂g(x, y) and Q⋆
g(x, y), it is important to note that

D = D(x, y) is a function of x for each fixed y, and hence ρ(r) is a function of x through
the relation D = η3(r). It follows from (22) that

d

dx

(

1 − x

ρ(r)

)
∣

∣

∣

∣

x=ρ(r)

=
−1

ρ(r)

(

1 − ρ′(r)

η′
3(r)

∂D

∂x

∣

∣

∣

∣

x=ρ(r)

)

=
−1

ρ(r)

(

1 +
ρ′(r)

η′
3(r)

D[1]

ρ(r)

)

=
−1

ρ2(t)

3(1 + t)(1 + 3t)α(t)

β(t)
.

Hence

(1 − x/ρ(r))(3−5g)/2 =

(

3(1 + t)(1 + 3t)α(t)

β(t)

)(3−5g)/2

(1 − x/ρ2(t))
(3−5g)/2

+O
(

(1 − x/ρ(r))(4−5g)/2
)

,

as x → ρ2(t) with y = λ2(t) fixed. We remind the reader that t and r are related by
t = 1

1+2r
. Thus, temporarily using the notation

H(t) =

√

3

1 + r

Ag(r)

4D(x, y)(1 + 2r)
(2 + r)5g−4

(

3(1 + t)(1 + 3t)α(t)

β(t)

)(3−5g)/2

Γ

(

5g − 3

2

)

,

we have

F (x, y) =

∫

H(t)
(

1 − x/ρ2(t)
)(3−5g)/2 ∂D(x, y)

∂y

λ′
2(t)

ρ′
2(t)

dρ2

+ Õ

(
∫

B2(x, D(x, y))
∂D(x, y)

∂y

λ′
2(t)

ρ′
2(t)

dρ2

)

.

Noting that B2(x, D(x, y)) has a singular expansion at x = ρ2(t) of lower order, we obtain
from (23) that

F (x, y) = H(t)

(

D[0]′(t)

λ′
2(t)

+
ρ′

2(t)D
[1](t)

λ′
2(t)ρ2(t)

)

λ′
2(t)ρ2(t)

ρ′
2(t)

fg(ρ2)

+ O

(

(

1 − x/ρ2

)(6−5g)/2
)

= Bg(t)fg(ρ2) + O

(

(

1 − x/ρ2

)(6−5g)/2
)

, (25)

where Bg(t) is defined in Theorem 2(ii), f1(ρ2) = − ln(1 − x/ρ2), and

fg(ρ2) =
(1 − x/ρ2(t))

−5(g−1)/2

5(g − 1)/2
when g > 1.
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We now show that E(x, y) is negligible compared with F (x, y).
For each graph counted by E(x, y), there are at least two nonplanar 3-connected

components. In this case there is a 2-cut {a, b} that either splits G into two nonplanar
pieces or gives a single piece with a lower genus. We consider these two cases separately.
As in Section 4, there is a non-contractible simple closed curve C intersecting G only at
a and b. As an aside, we note that this means the face width of G is at most 2 and hence
intuitively the graphs in this class should be negligible; however, we have not proved a
large face-width result for 2-connected graphs. The following analysis basically proves
such a large face-width result and is very similar to the one used above for 3-connected
graphs (maps).

Case 1. Cutting through C splits G into 2-connected graphs G1 and G2 such that G1 is
embeddable in the orientable surface of genus j > 0 and G2 is embeddable in the orientable
surface of genus g − j > 0. Also G1 and G2 each has a distinguished edge (joining vertices
a and b). Hence the generating function of the 2-connected graphs in this case is bounded
by (applying Lemma 3)

g−1
∑

j=1

Õ

(

∂Gg−j,2(x, y)

∂y

∂Gj,2(x, y)

∂y

)

.

Case 2. Cutting through C reduces G into a 2-connected graph G1 which is embeddable
in the orientable surface of genus g − 1, and G1 has two distinguished edges (joining the
copies of a and b). Hence the generating function in this case is bounded by

Õ

(

∂2Gg−1,2(x, y)

(∂y)2

)

.

By induction, it is easily seen that the contributions in both cases satisfy Lemma 2
with the same parameters as F (x, y), except that the exponent of n obtained in the
asymptotics is less than the exponent of n in the asymptotics for F .

We need to establish Lemma 2(a,e). It is important to note that the dominant singu-
larities of Gg,3(x, D(x, y)) are the same for each genus g because Gg,3(x, y) (more precisely
Q⋆

g(x, y)) have the same dominant singularities.
This completes the proof of Theorem 5.

Now Theorem 2(ii) follows immediately using Lemma 2.
Theorem 2(iii) for 2-connected graphs follows by setting y = λ2(t) = 1 in Theorem 5

(i.e., t = t̂
.
= 0.62637) and applying the “transfer” theorem. We note that

β2 =
8

9(1 + t̂)(1 − t̂)6

(

β(t̂)

α(t̂)

)5/2
.
= 7.6150 · 104,

α2 =
1

4β2

.
= 3.28299 · 10−6.
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7 From 2-connected graphs to 1-connected graphs

Since the composition depends only on the vertices, there is no need to keep track of the
number of edges if we only care about the number of graphs with n vertices. This makes
the arguments much simpler as we are dealing with univariate functions. From now on,
we will focus on y = 1, although the results extend to all y near 1 as done in [20] for
planar graphs. We note that it would be possible to extend the result to the whole range
of y, provided that the condition R(y) > R(|y|) when y 6= |y| for the radius of convergence
in Lemma 2 can be verified for Gg,1(x, y). However, we have not verified this technical
condition.

Since the planar case is dealt with in [20], we assume g > 0.
Let x1 be the smallest positive singularity of G0,1(x). Giménez and Noy [20, p. 320]

showed that
x2 = x1G

′
0,1(x1) (26)

and G0,1(x) is analytic in a ∆(x1, ǫ) region.
As in the previous section, let t̂

.
= 0.62637 be determined by λ2(t̂) = 1. From [20,

Lemma 6], we have the following singular expansion at x2 = ρ2(t̂)
.
= 0.03819,

G0,2(x) = G
[0]
0,2 + G

[1]
0,2(1 − x/x2) + G

[2]
0,2(1 − x/x2)

2 + G
[5/2]
0,2 (1 − x/x2)

5/2 + . . . , (27)

where G
[j]
0,2 = G

[j]
0,2(t̂), and in particular

G
[0]
0,2

.
= 7.397 · 10−4, G

[1]
0,2

.
= −1.4914 · 10−3 and G

[2]
0,2

.
= 7.672 · 10−4.

Define

A =
(3t̂ − 1)(1 + t̂)3 ln(1 + t̂)

16t̂3
+

(1 + 3t̂)(1 − t̂)3 ln(1 + 2t̂)

32t̂3

+
(1 − t̂)(185t̂4 + 698t̂3 − 217t̂2 − 160t̂ + 6)

64t̂(1 + 3t̂)2(3 + t̂)
,

x1 = 1
16

√

1 + 3t̂(1 − t̂)3t̂−3eA .
= 0.03673.

It was shown in [20] that

G0,1(x) = G
[0]
0,1 + G

[1]
0,1(1 − x/x1) + G

[2]
0,1(1 − x/x1)

2 + G
[5/2]
0,1 (1 − x/x1)

5/2 + . . . (28)

P (x) := xG′
0,1(x) = P [0] + P [1](1 − x/x1) + P [3/2](1 − x/x1)

3/2 + . . . , (29)

where

P [0] = −G
[1]
0,1, P [1] = −2G

[2]
0,1 − G

[0]
0,1

.
= −0.03979 and P [3/2] = −5G

[5/2]
0,1 /2.

We also note that [20, (4.7)] G
[0]
0,1 = G0,1(x1) = x2 + G

[0]
0,2 + G

[1]
0,2

.
= 0.03744. The following

theorem summarizes the main results of this section.
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Theorem 6 Fix g > 0. We have Gg,1(x) = F (x) + Õ(E(x)) where

(i) F (x) and Eg(x) are analytic in a ∆(x1, ǫ);

(ii) as x → x1,

F (x) ∼



















α2β2t1 ln

(

1

1 − x/x1

)

if g = 1,

α2β
g
2 tg Γ

(

5g − 5

2

)(−x2

P [1]

)5(g−1)/2

(1 − x/x1)
−5(g−1)/2 if g > 1;

(iii) as x → x1, E1(x) = C + O
(

(1 − x/x1)
1/2
)

for some constant C and

E(x) = O
(

(1 − x/x1)
−5g/2+3

)

when g > 1.

Proof: We again apply induction on g. Let G be a connected graph of genus g rooted
at a vertex v. It is well known that G is (uniquely) decomposed into a set of blocks
(2-connected pieces) and the genus of G is the sum of the genera of all blocks [2]. We
divide all connected graphs of genus g > 0 into two classes according to whether there is
a block of genus g or not and will show that the second class is negligible.

Case 1 (Genus g block). We attach a planar 1-connected graph to each vertex of the
genus g to connected block. Thus the generating function for this case is

F (x) = Gg,2(xG′
0,1(x)).

Since Gg,2(x) is bounded termwise above and below by functions analytic in a ∆(x2, ǫ)
region, it follows from (26), the same holds for F (x) in a ∆(x1, ǫ) region. For g > 1, it
follows from Theorem 5 and (29) that

Gg,2(x) = α2β
g
2tg Γ

(

5g − 5

2

)

(1 − x/x2)
−5g/2+5/2 + O

(

(1 − x/x2)
−5g/2+3

)

Gg,2(xG′
0,1(x)) = α2β

g
2tg Γ

(

5g − 5

2

)

(−P [1]/x2)
−5g/2+5/2(1 − x/x1)

−5g/2+5/2

+ O
(

(1 − x/x1)
−5g/2+3

)

.

It follows that

F (x) = α2β
g
2 tg Γ

(

5g − 5

2

)

(−P [1]/x2)
−5g/2+5/2(1 − x/x1)

−5g/2+5/2

+ O
(

(1 − x/x1)
−5g/2+3

)

. (30)

The formula for g = 1 is similar except that it involves a logarithm:

F (x) = α2β2t1 ln

(

1

1 − x/x1

)

+ O(1). (31)
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As in previous proofs, we use bounds on the functions to split F into Fg and a contribution
to Eg which are analytic in a ∆(x1, ǫ).

Case 2 (No genus g block). In this case, there is at least one vertex v such that G can
be viewed as two nonplanar graphs joined at v. Hence an upper bound for graphs in this
class is given by the generating function

g−1
∑

j=1

xG′
j,1(x)G′

g−j,1(x).

It follows by induction on g that each summand is bounded by a function analytic in a
∆(x1, ǫ) region and, as x → x1 in this region each bound is bounded by

O
(

(1 − x/x1)
−5j/2+3/2(1 − x/x1)

−5(g−j)/2+3/2
)

= O
(

(1 − x/x1)
−5g/2+3

)

. (32)

This completes the proof of Theorem 6.

Now Theorem 2(iii) for 1-connected graphs follows immediately using the “transfer
theorem”. We obtain

β1 =

(−x2

P [1]

)5/2

β2
.
= 6.87242 · 104, and α1 =

1

4β1

.
= 3.63773 · 10−6.

8 From 1-connected graphs to all graphs

The case g = 0 is treated in [20]. We treat g > 1. The case g = 1 is similar to g > 1
except that ln(1−x/x1) appears. Let F (x) denote the generating function of these graphs
containing a connected component of genus g. Then we have

F (x) = Gg,1(x) exp(G0,1(x))

= α1β
g
1 exp(G0,1(x1))tg Γ

(

5g − 5

2

)

(1 − x/x1)
5(1−g)/2 + O

(

(1 − x/x1)
−5g/2+3

)

.

Again the case that there are two components with positive genus is (by induction)
bounded by

O

(

g−1
∑

j=1

Gj,1(x)Gg−j,0(x)

)

= O
(

(1 − x/x1)
−5g/2+3

)

.

Thus

Gg,0(x) = Gg,1(x) exp(G0,1(x)) + O
(

(1 − x/x1)
−5g/2+3

)

= α1β
g
1 exp(G0,1(x1))tg Γ

(

5g − 5

2

)

(1 − x/x1)
5(1−g)/2 + O

(

(1 − x/x1)
−5g/2+3

)

.

This completes the proof of Theorem 2 (using the “transfer” theorem again) with

α0 = α1 exp(G0,1(x1))
.
= 3.77651 · 10−6 and β0 = β1.
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9 A formula for Ag(r)

In this section we obtain a formula for Ag(r) using [4] and recently derived information [17]
for tg(r).

Let Tg(n, j) be the number of rooted maps of genus g with i faces and j vertices.
By duality, we may interchange the role of vertices and faces, and we do so. By

Euler’s formula, Tg(n, j) is also the number of rooted maps of genus g with i vertices and
m = j + n + 2g − 2 edges.

By Theorem 1, we have

Tg(n, j) = [xnym]M̂g(x, y)

∼
(

C1(r)Ag(r)n
5g/2−3

)

ρ(r)−nη1(r)
−m (33)

∼ C1(r)Ag(r)(n/j)5g/4−3/2(nj)5g/4−3/2ρ(r)−nη1(r)
−n−j+2−2g

Note that
j

n
=

m

n
− 1 +

2 − 2g

n
=

1 + 2r

r2(2 + r)
+

2 − 2g

n
.

It follows that the value of r in [4, Theorem 2] differs from our r by O(1/n). Replacing
one r with the other inside the large parentheses of (33) does not change the asymptotics.
We must show that is also true for f = ρ(r)−nη1(r)

−m. This can be done by expanding
log f in a power series about r and noting that the linear term vanishes after we set m/n
to the value given in Theorem 1(i). It follows that replacing r by r+O(1/n) changes log f
by nO(1/n2) = o(1). Hence we may freely use either value of r in (33). Thus we obtain

Tg(n, j) ∼
(

C1(r)Ag(r)η1(r)
2−2g

(

r2(2 + r)

1 + 2r
nj

)5g/4−3/2
)

(ρ(r)η1(r))
−n η1(r)

−j.

Comparing this with [4, Theorem 2] we obtain

tg(r) = C1(r)Ag(r)η1(r)
2−2g

(

r2(2 + r)

1 + 2r

)5g/4−3/2

and so by Theorem 1(i)

Ag(r) =
η1(r)

2g−2

C1(r)

(

1 + 2r

r2(2 + r)

)5g/4−3/2

tg(r)

=
24r3(2 + r)1/2(1 + r + r2)7/2(4 + 7r + 4r2)1/2

(1 + 2r)3

×
(

(1 + 2r)13/2

28r5(1 + r + r2)8(2 + r)5/2

)g/2

tg(r). (34)
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It was shown by the second author [17] that

tg(r) = c(r)[d(r)]g tg, (35)

where

c(r) =
r3(1 + 2r)(2 + r)

32
√

π(4 + 7r + 4r2)1/2(1 + r + r2)
7/2

,

d(r) =
32
√

3(1 + r + r2)4(1 + r)3/2

r7/2(2 + r)5/4(1 + 2r)5/4
.

Combining (34) and (35) gives

Ag(r) =
r6(2 + r)3/2

2
√

π(1 + 2r)2

(

12(1 + 2r)4(1 + r)3

r12(2 + r)5

)g/2

tg.

10 Remarks on Nonorientable Surfaces

The study of graphs embeddable in nonorientable surfaces can proceed in a manner akin
to the approach we have used for the orientable case, giving Theorems 1 and 2 for a
nonorientable surface with 2g crosscaps provided tg is replaced by the nonorientable map
constant pg. There are some issues that will have to be dealt with.

(a) The projective plane will require some special care because the singular expansion
of the generating function behaves like

M1/2(x, y) = g(y) + h(y)(1 − x/ρ(y))1/4 + · · · ,

whose dominant term has a positive exponent. For (7) it simply involves subtracting
the value of xq(x, y) on the singular curve from the left side. For products like
M1/2(x, y)Mg−1/2(x, y), the dominant term in the singular expansion is not simply
the sum (1/4) + (3/2)− 5(g − 1/2)/2 as in (17). Rather, it should be (3/2)− 5(g −
1/2)/2 when g > 1 and 1/4 when g = 1. It can still be checked that the exponent
of the singular expansion of a product like (16) is higher than (3 − 5g)/2.

(b) Theorem 3 requires minor adjustment. In (a), q(x, y) is no longer rational in r and
s because it involves

√
1 − rs, but it is still algebraic. The adjustment to (7) for the

projective plane was noted in (a).

(c) Careful attention to the proofs in this paper reveals that relative errors obtained for
the asymptotics are typically O(n−1/2). In the nonorientable case they will often be
O(n−1/4) because g increases in half-integer steps rather than integer steps.

(d) Numerical estimation of graphs and maps will be difficult for all but small genus
because computing pg is difficult. The original recursions for tg and pg [3] are
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quite complicated; however a practical recursion was found as noted in the remark
following Theorem 2. None is known for pg, but Garoufalidis and Mariño [19]
conjectured that

pg =
v2g−1

2g−2Γ
(

5g−3
2

) ,

where vg satisfies

vg =
1

2
√

3

(

−3ag/2 +
5g − 6

2
vg−1 +

g−1
∑

k=1

vkvg−k

)

,

and aj is defined in (1), with the understanding that aj = 0 when j is not an integer.
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[15] G. Chapuy, É. Fusy, O. Giménez, B. Mohar and M. Noy, Asymptotic enumeration and
limit laws for graphs of fixed genus, J. Combin. Theory Ser. A 118 (2011) 748–777.

[16] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press,
2009.

[17] Z. Gao, A formula for the bivariate map asymptotics constants with the univariate
map asymptotics constants, Electron. J. Combin. 17(1) (2010) R155.

[18] S. Garoufalidis, T. T. Lê, and M. Mariño, Analyticity of the free energy of a closed
3-manifold, SIGMA 4 (2008), 080, 20pp.

[19] S. Garoufalidis and M. Mariño, Universality and asymptotics of graph counting prob-
lems in unoriented surfaces, J. Combin. Theory Ser. A 117 (2010) 715–740.
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