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Abstract

Suppose G is a finite abelian group and S is a sequence of elements in G. For
any element g of G, let Ng(S) denote the number of subsequences of S with sum
g. The purpose of this paper is to investigate the lower bound for Ng(S). In
particular, we prove that either Ng(S) = 0 or Ng(S) ≥ 2|S|−D(G)+1, where D(G) is
the smallest positive integer ℓ such that every sequence over G of length at least ℓ

has a nonempty zero-sum subsequence. We also characterize the structures of the
extremal sequences for which the equality holds for some groups.

1 Introduction

Suppose G is a finite abelian group and S is a sequence over G. The enumeration of sub-
sequences with certain prescribed properties is a classical topic in Combinatorial Number
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Theory going back to Erdős, Ginzburg and Ziv [6, 14, 15] who proved that 2n − 1 is the
smallest integer such that every sequence S over a cyclic group Cn has a subsequence
of length n with zero-sum. This raises the problem of determining the smallest positive
integer ℓ such that every sequence S of length at least ℓ has a nonempty zero-sum sub-
sequence. Such an integer ℓ is called the Davenport constant [4] of G, denoted by D(G),
which is still unknown in general.

For any g of G, let Ng(S) denote the number of subsequences of S with sum g. In
1969, J. E. Olson [24] proved that N0(S) ≥ 2|S|−D(G)+1 for every sequence S over G of
length |S| ≥ D(G). Subsequently, several authors [1, 2, 3, 5, 8, 9, 11, 13, 16, 17, 18, 20] ob-
tained a huge variety of results on the number of subsequences with prescribed properties.
However, for any arbitrary g of G, the lower bound of Ng(S) remains undetermined.

In this paper, we determine the best possible lower bound of Ng(S) for an arbitrary
g of G. We also characterize the structures of the extremal sequences which attain the
lower bound for some groups.

2 Notation and lower bound

Our notation and terminology are consistent with [10]. We briefly gather some notions
and fix the notation concerning sequences over abelian group. Let N and N0 denote the
sets of positive integers and non-negative integers, respectively. For integers a, b ∈ N0, we
set [a, b] = {x ∈ N0 : a ≤ x ≤ b}. Throughout, all abelian groups are written additively.
For a positive integer n, let Cn denote a cyclic group with n elements.

For a sequence S = g1 · . . . · gm of elements in G, we use σ(S) =
∑m

i=1 gi denote the
sum of S. By λ we denote the empty sequence and adopt the convention that σ(λ) = 0.
A subsequence T |S means T = gi1 · . . . · gik with {i1, . . . , ik} ⊆ [1, m]; we denote by IT the
index set {i1, . . . , ik} of T , and identify two subsequences S1 and S2 if IS1

= IS2
. We denote

−T = (−gi1)·. . .·(−gik). Let S1, . . . , Sn be n subsequences of S, denote by gcd(S1, . . . , Sn)
the subsequence of S with index set IS1

⋂

· · ·
⋂

ISn
. We say two subsequences S1 and S2

are disjoint if gcd(S1, S2) = λ. If S1 and S2 are disjoint, then we denote by S1S2 the
subsequence with index set IS1

⋃

IS2
; if S1|S2, we denote by S2S

−1
1 the subsequence with

index set IS2
\ IS1

. Define
∑

(S) = {
∑

i∈I gi : φ 6= I ⊆ [1, m]}, and
∑•(S) =

∑

(S)∪ {0}.

The sequence S is called

• a zero-sum sequence if σ(S) = 0,

• a zero-sum free sequence if 0 /∈
∑

(S),

• a minimal zero-sum sequence if S 6= λ, σ(S) = 0, and every T |S with 1 ≤ |T | < |S|
is zero-sum free,

• a unique factorial sequence if 0 ∤ S and if S = T1 · . . . · TkS
′, where T1, . . . , Tk are all

the minimal zero-sum subsequences of S.

Define
N1(G) = max{|S| : S is a unique factorial sequence over G}
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where the maximum is taken when S runs over all unique factorial sequences over G.

Remark 1. The concept of unique factorial sequence was first introduced by Narkiewicz
in [21] for zero-sum sequence. For recent progress on unique factorial sequences we refer
to [12].

For an element g of G, let

Ng(S) = |{IT : T |S and σ(T ) = g}|

denote the number of subsequences T of S with sum σ(T ) = g. Notice that we always
have N0(S) ≥ 1.

Theorem 2. If S is a sequence over a finite abelian group G and g ∈
∑•(S), then

Ng(S) ≥ 2|S|−D(G)+1.

Proof. We shall prove the theorem by induction on m = |S|. The case of m ≤ D(G) −
1 is clear. We now consider the case of m ≥ D(G). Choose a subsequence T |S of
minimum length with σ(T ) = g, and a nonempty zero-sum subsequence W |T (−(ST−1)).
By the minimality of |T |, W is not a subsequence of T , for otherwise TW−1 is a shorter
subsequence of S with σ(TW−1) = g. Choose a term a|W with a ∤ T , and let X =
gcd(W, T ). Then, −a|ST−1 such that g = σ(T ) ∈

∑•(S(−a)−1) and (g − σ(X)) −
(0 − σ(X) − a) = g + a = σ(TX−1(−(W (Xa)−1))) ∈

∑•(S(−a)−1). By the induction
hypothesis, Ng(S) = Ng(S(−a)−1) + Ng+a(S(−a)−1) ≥ 2m−D(G) + 2m−D(G) = 2m−D(G)+1.
This completes the proof of the theorem.

Notice that the result in [24] that N0(S) ≥ 2|S|−D(G)+1 for any sequence S over G,
together with the following lemma, also gives Theorem 2.

Lemma 3. If S is a sequence over a finite abelian group G, then for any T |S with
σ(T ) = g ∈

∑•(S),
Ng(S) = N0(T (−(ST−1))).

Proof. Let A = {X|S : σ(X) = g} and B = {Y |T (−(ST−1)) : σ(Y ) = 0}. It is
clear that |A| = Ng(S) and |B| = N0(T (−(ST−1))). Define the map ϕ : A → B by
ϕ(X) = TX−1

1 (−X2) for any X ∈ A, where X1 = gcd(X, T ) and X2 = gcd(X, ST−1). It
is straightforward to check that ϕ is a bijection, which implies Ng(S) = N0(T (−(ST−1))).

We remark that the lower bound in Theorem 2 is best possible. For any g ∈ G and
any m ≥ D(G)−1, we construct the extremal sequence S over G of length m with respect
to g as follows: Take a zero-sum free sequence U over G with |U | = D(G)− 1. Clearly, U
contains a subsequence T with σ(T ) = g. For S = T (−(UT−1))0m−D(G)+1, by Lemma 3,
Ng(S) = N0(U0m−D(G)+1) = 2m−D(G)+1.

Proposition 4. If S is a sequence over a finite abelian group G such that Nh(S) =
2|S|−D(G)+1 for some h ∈ G, then Ng(S) ≥ 2|S|−D(G)+1 for all g ∈ G.

Proof. If there exists g such that Ng(S) < 2|S|−D(G)+1, then

Nh(S(h − g)) = Nh(S) + Ng(S) < 2|S|+1−D(G)+1

is a contradiction to Theorem 2 since h ∈
∑•(S) ⊆

∑•(S(h − g)).
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3 The structures of extremal sequences

In this section, we study sequence S for which Ng(S) = 2|S|−D(G)+1. By Lemma 3, we need
only pay attention to the case g = 0. Also, as Ng(0S) = 2Ng(S), it suffices to consider
the case 0 ∤ S. For |S| ≥ D(G) − 1, define

E(S) = {g ∈ G : Ng(S) = 2|S|−D(G)+1}.

Lemma 5. Suppose S is a sequence over a finite abelian group G with 0 ∤ S, |S| ≥ D(G)
and 0 ∈ E(S). If a is a term of a zero-sum subsequence T of S, then

E(S) + {0,−a} ⊆ E(Sa−1).

Proof. Since 0,−a ∈
∑•(Sa−1), by Theorem 2, N0(Sa−1) ≥ 2|S|−D(G) and N−a(Sa−1) ≥

2|S|−D(G). On the other hand, N0(Sa−1) + N−a(Sa−1) = N0(S) = 2|S|−D(G)+1 and so
N0(Sa−1) = N−a(Sa−1) = 2|S|−D(G). Hence, by Proposition 4, Ng(Sa−1) ≥ 2|S|−D(G) for
all g ∈ G. Now, for every h ∈ E(S), Nh(Sa−1) + Nh−a(Sa−1) = Nh(S) = 2|S|−D(G)+1

and so Nh(Sa−1) = Nh−a(Sa−1) = 2|S|−D(G), i.e., {h, h − a} ⊆ E(Sa−1). This proves
E(S) + {0,−a} ⊆ E(Sa−1).

Lemma 6 ([14], Lemma 6.1.3, Lemma 6.1.4). Let G ∼= Cn1
⊕ Cn2

⊕ · · · ⊕ Cnr
with

n1|n2| · · · |nr, and H be a subgroup of G, then D(G) ≥ D(H)+D(G/H)−1 and D(G) ≥
∑r

i=1(ni − 1) + 1.

Lemma 7. If S is a sequence over a finite abelian group G such that E(S) contains a
non-trivial subgroup H of G, then H ∼=

⊕r
i=1 C2 and D(G) = D(G/H) + r.

Proof. Suppose H ∼= Cn1
⊕ Cn2

⊕ · · · ⊕ Cnr
, where n1|n2| · · · |nr, and assume that

S = g1 ·. . .·gm. Consider the canonical map ϕ : G → G/H and let ϕ(S) = ϕ(g1)·. . .·ϕ(gm)
be a sequence over G/H . Then

|H| · 2|S|−D(G)+1 =
∑

h∈H

Nh(S) = N0(ϕ(S)) ≥ 2|ϕ(S)|−D(G/H)+1.

It follows from Lemma 6 that |H| ≥ 2D(G)−D(G/H) ≥ 2D(H)−1, and so

r
∏

i=1

ni ≥ 2
P

r

i=1
(ni−1) =

r
∏

i=1

2ni−1.

Hence, ni = 2 for all i, which gives H ∼=
⊕r

i=1 C2 and D(G) = D(G/H) + r.

Lemma 8. ([22], Proposition 9; [12], Lemma 3.9) Let G be a finite abelian group, and
let S = S1 · . . . · Sr be a unique factorial zero-sum sequence over G, where S1, . . . , Sr are
all the minimal zero-sum subsequences of S. Then, |S1| · · · |Sr| ≤ |G|.

Lemma 9. Let G be a finite abelian group, and let S = S1 · . . . ·SrS
′ be a unique factorial

sequence over G, where S1, . . . , Sr are all the minimal zero-sum subsequences of S and S ′

is empty or zero-sum free. Then, |S1| · · · |Sr|max{1, |S ′|} ≤ |G|.
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Proof. If |S ′| ≤ 1 then |S1| · · · |Sr|max{1, |S ′|} = |S1| · · · |Sr| ≤ |G| follows from Lemma
8. Now assume that |S ′| ≥ 2. In a similar way to the proof of Proposition 9 in [22] (or
Lemma 3.9 in [12]) one can prove that |S1| · · · |Sr||S

′| ≤ |G|.

Lemma 10. If G is a finite abelian group then N1(G) ≤ log2 |G| + D(G) − 1.

Proof. Let S be a unique factorial sequence over G with |S| = N1(G). Then, S =
S1 · . . . · SrS

′ with S1, . . . , Sr are all the minimal zero-sum subsequences of S. By Lemma
9, |S1| · · · |Sr| ≤ |G|. It follows from |Si| ≥ 2 for every i ∈ [1, r] that r ≤ log2 |G|.
Take an element xi ∈ Si for every i ∈ [1, r]. Since S1, . . . , Sr are all the minimal zero-sum
subsequences of S, we have that S1 · . . . ·SrS

′(x1 · . . . ·xr)
−1 is zero-sum free. It follows that

|S|−r = |S1 · . . .·SrS
′|−r ≤ D(G)−1. Therefore, N1(G) = |S| ≤ log2 |G|+D(G)−1.

Now, we consider the case G = Cn. Notice that D(Cn) = n.

Theorem 11. For n ≥ 3, if S is a sequence over the cyclic group Cn with 0 ∤ S and
N0(S) = 2|S|−n+1, then n − 1 ≤ |S| ≤ n and S = a|S|, where a generates Cn.

Proof. Suppose S is a sequence over the cyclic group Cn with 0 ∤ S and N0(S) = 2|S|−n+1.
We first show by induction that

S = a|S| (1)

where 〈a〉 = Cn. For |S| = n − 1, we have N0(S) = 1, i.e., S is a zero-sum free sequence,
and (1) follows readily.

For |S| ≥ n, since N0(S) = 2|S|−n+1 ≥ 2, S contains at least one nonempty zero-
sum subsequence T . Take an arbitrary term c from T . By Lemma 5, 0 ∈ E(Sc−1). It
follows from the induction hypothesis that Sc−1 = a|S|−1 for some a generating Cn. By
the arbitrariness of c, we conclude that (1) holds.

To prove |S| ≤ n, we suppose to the contrary that |S| ≥ n + 1. By (1) and Lemma
5,

0 ∈ E(an+1). (2)

We see that N0(a
n+1) ≥ 1 +

(

n+1
n

)

> 4, a contraction with (2).

Notice that Theorem 11 is not true for n = 2, since for any sequence S over C2 with
0 ∤ S, we always have N0(S) = 2|S|−2+1.

While the structure of a sequence S over a general finite abelian group G with 0 ∤ S
and N0(S) = 2|S|−D(G)+1 is still not known, we have the following result for the case when
|G| is odd.

Theorem 12. If S is a sequence over a finite abelian group G of odd order with 0 ∤ S
and N0(S) = 2|S|−D(G)+1, then S is unique factorial and the number of minimal zero-sum
subsequences of S is |S| − D(G) + 1, and therefore |S| ≤ N1(G) ≤ D(G) − 1 + log2 |G|.

Proof. We first note that if S is a unique factorial sequence, i.e., S = S1 · . . . ·SℓS
′ where

S1, . . . , Sℓ are all the minimal zero-sum subsequences of S, then 2ℓ = N0(S) = 2|S|−D(G)+1,
which implies that ℓ = |S|−D(G)+1, and that |S| ≤ N1(G) ≤ log2 |G|+D(G)−1 follows
from Lemma 10. Therefore, it suffices to show that S is a unique factorial sequence.
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We proceed by induction on |S|. If |S| = D(G), then N0(S) = 2 and so S contains
exactly one nonempty zero-sum subsequence, and we are done. Now assume

|S| ≥ D(G) + 1.

If all the minimal zero-sum subsequences of S are pairwise disjoint, then the conclusion
follows readily. So we may assume that there exist two distinct minimal zero-sum sub-
sequences T1 and T2 with gcd(T1, T2) 6= λ. Take a term a|gcd(T1, T2). By Lemma 5,
0 ∈ E(Sa−1) and so Sa−1 contains r = |S| − D(G) ≥ 1 pairwise disjoint minimal zero-
sum subsequences T3, T4, . . . , Tr+2 by the induction hypothesis. Now we need the following
claim.

Claim A. There is no term which is contained in exactly one Ti, where i ∈ [1, r + 2].

Proof of Claim A. Assume to the contrary that, there is a term b such that b|Tt for
some t ∈ [1, r + 2], and such that b ∤ Ti for every i ∈ [1, r + 2] \ {t}. By Lemma 5, we
have 0 ∈ E(Sb−1). It follows from the induction hypothesis that Sb−1 contains exactly r
minimal zero-sum subsequences, which is a contradiction. This proves Claim A.

Choose a term c in T1 but not in T2. By Claim A, we have that c is in another
Ti, say Tr+2 and so not in any of T3, T4, . . . , Tr+1. Again Sc−1 contains exactly r disjoint
minimal zero-sum subsequences, which are just T2, T3, . . . , Tr+1. If r ≥ 2, noticing that
gcd(Tr+1, Ti) = λ for every i ∈ [2, r + 2] \ {r + 1}, it follows from Claim A that Tr+1|T1,
which is a contradiction to the minimality of T1. Therefore,

r = 1.

Then N0(S)=4 and T1, T2, T3 are all the minimal zero-sum subsequences of S. If there
is some d|gcd(T1, T2, T3), then Sd−1 contains no minimal zero-sum subsequence, which
is impossible. Thus gcd(T1, T2, T3) = λ. Let X = gcd(T2, T3), Y = gcd(T1, T3) and
Z = gcd(T1, T2). It follows from Claim A that T1 = Y Z, T2 = XZ and T3 = XY .
Therefore, σ(Y ) + σ(Z) = σ(X) + σ(Z) = σ(X) + σ(Y ) = 0. This gives that 2σ(X) =
2σ(Y ) = 2σ(Z) = 0. Since |G| is odd, it follows that σ(X) = 0, which is a contradiction.
This completes the proof of the theorem.

If we further assume that E(S) = {0} in Theorem 12, the structure of S can be
further restricted.

Corollary 13. If S is a sequence over a finite abelian group G of odd order with 0 ∤ S
and E(S) = {0}, then S is a unique factorial zero-sum sequence and the number of
minimal zero-sum subsequences of S is |S| − D(G) + 1. Therefore, |S| ≤ N1(G) ≤
log2 |G| + D(G) − 1.

Proof. By Theorem 12, S is unique factorial and contains exactly r = |S| − D(G) + 1
minimal zero-sum subsequences T1, . . . , Tr (say). Therefore, S = T1 · . . . · TrW . For any
subsequence X of S with σ(X) = σ(W ), if W ∤ X, then SX−1 is a zero-sum subsequence
containing terms in W , which is impossible. So W |X, and then σ(XW−1) = 0. This
gives X = Ti1 · . . . · TisW with 1 ≤ i1 < · · · < is ≤ r. Hence, Nσ(W )(S) = 2r and then
σ(W ) ∈ E(S) = {0} implying W = λ. Now |S| ≤ N1(G) ≤ log2 |G| + D(G) − 1 follows
from Lemma 10.
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Remark 14. The following example shows that Theorem 12 does not hold for all finite
abelian groups. Let G = C2⊕C2n1

⊕· · ·⊕C2nr
= 〈e〉⊕〈e1〉⊕· · ·⊕〈er〉 with 1 ≤ n1| · · · |nr

and D(G) = d∗(G) + 1. For any m ≥ D(G) + 1, take S = em−D(G)+2 ·
∏r

i=1 e2ni−1
i . It is

easy to check that N0(S) =
(

k
0

)

+
(

k
2

)

+ · · ·+
(

k
2⌊k

2
⌋

)

= 2k−1 where k = m−D(G) + 2, and

that S is not a unique factorial sequence.

The property that S contains exactly |S|−D(G)+1 minimal zero-sum subsequences,
all of which are pairwise disjoint, implies that |S| is bounded as in the case of Theorem
11 for cyclic groups. In general, we have the following theorem.

Theorem 15. For any finite abelian group G ∼= Cn1
⊕Cn2

⊕ · · ·⊕Cnr
with n1|n2| · · · |nr,

(i) implies the three equivalent statements (ii), (iii) and (iv).

(i) Any sequence S over G with 0 ∤ S and N0(S) = 2|S|−D(G)+1, contains exactly
|S| − D(G) + 1 minimal zero-sum subsequences, all of which are pairwise disjoint.

(ii) There is a natural number t = t(G) such that |S| ≤ t for every sequence S over G
with 0 ∤ S and N0(S) = 2|S|−D(G)+1.

(iii) For any subgroup H of G isomorphic to C2, D(G) ≥ D(G/H) + 2.

(iv) For any sequence S over G, E(S) contains no non-trivial subgroup of G.

Proof. (i) ⇒ (ii). Since S contains exactly |S|−D(G)+1 minimal zero-sum subsequences,
all of which are pairwise disjoint, we have that |S| ≥ 2(|S| − D(G) + 1) which gives
|S| ≤ 2D(G) − 2.

(ii) ⇒ (iii). Assume to the contrary that D(G) = D(G/H) + 1 for some subgroup
H = {0, h} of G. Let ϕ : G → G/H be the canonical map, and let m = D(G/H). We
choose a sequence S = g1 · . . . · gm over G such that ϕ(S) = ϕ(g1) · . . . ·ϕ(gm) is a minimal
zero-sum sequence over G/H , and σ(S) = h in G. Since

N0(S) + Nh(S) = N0(ϕ(S)) = 2 = 2 · 2|S|−D(G)+1

and N0(S) and Nh(S) are not zero, by theorem 2, N0(S) = Nh(S) = 2|S|−D(G)+1.
Since N0(Shk) = N0(Shk−1) + Nh(Shk−1) = Nh(Shk), by induction we have N0(Shk) =

Nh(Shk) = 2|Shk|−D(G)+1 for all k, a contradiction to the assumption in (ii).

(iii) ⇒ (iv). Suppose to the contrary that there exists a sequence S over G such
that E(S) contains a non-trivial subgroup H of G. By Lemma 7, H ∼=

⊕s
i=1 C2 and

D(G) = D(G/H)+s. Hence, E(S) contains a subgroup H ′ ∼= C2. If D(G) ≥ D(G/H ′)+2,
then by Lemma 6, D(G) ≥ D(G/H ′) + 2 ≥ D(H/H ′) + D((G/H ′)/(H/H ′)) + 1 =
s + 1 + D(G/H) > D(G), a contradiction.

(iv) ⇒ (ii). For |S| ≥ D(G), that is, N0(S) = 2|S|−D(G)+1 > 1, there exists a
nonempty zero-sum subsequence T1 of S and a term a1|T1. By Lemma 5, 0 ∈ E(S) ⊆
E(Sa−1

1 ). By (iv), 〈−a1〉 6⊆ E(Sa−1
1 ). Let k be the minimum index such that k(−a1) /∈

the electronic journal of combinatorics 18 (2011), #P133 7



E(Sa−1
1 ), that is, {0,−a1, . . . , (k − 1)(−a1)} ⊆ E(Sa−1

1 ) but k(−a1) /∈ E(Sa−1
1 ). Then,

N(k−1)(−a1)(Sa−1
1 ) = 2|Sa−1

1
|−D(G)+1 but Nk(−a1)(Sa−1

1 ) 6= 2|Sa−1

1
|−D(G)+1. Thus,

N(k−1)(−a1)(S) = N(k−1)(−a1)(Sa−1
1 ) + Nk(−a1)(Sa−1

1 ) 6= 2|S|−D(G)+1

and so (k − 1)(−a1) /∈ E(S). This means

E(S) ( E(Sa−1
1 ).

If |Sa−1
1 | ≥ D(G), a similar argument shows that there exists a nonempty zero-sum

subsequence T2 of Sa−1
1 and a term a2|T2, thus, E(Sa−1

1 ) ( E(Sa−1
1 a−1

2 ). We continue
this process to get a1, a2, . . . , a|S|−D(G)+1 of S such that

E(S) ( E(Sa−1
1 ) ( · · · ( E(Sa−1

1 a−1
2 · . . . · a−1

|S|−D(G)+1).

Since |E(Sa−1
1 a−1

2 · . . . · a−1
|S|−D(G)+1)| ≤ |G|, we conclude |S| ≤ D(G) + |G| − 1 := t.

4 Concluding remarks

We are interested in the structure of a sequence S over a finite abelian group G such that
N0(S) = 2|S|−D(G)+1. Based on the experiences in Section 3, we have the following two
conjectures.

Conjecture 16. Suppose G is a finite abelian group in which D(G) ≥ D(G/H) + 2
for every subgroup H of G isomorphic to C2. If S is a sequence over G with 0 ∤ S
and N0(S) = 2|S|−D(G)+1, then S contains exactly |S| − D(G) + 1 minimal zero-sum
subsequences, all of which are pairwise disjoint.

Notice that this conjecture holds when G is cyclic or |G| is odd. The second conjec-
ture concerns the length of S.

Conjecture 17. Suppose G ∼= Cn1
⊕Cn2

⊕· · ·⊕Cnr
where 1 < n1|n2| · · · |nr and D(G) =

d∗(G) + 1 =
∑r

i=1(ni − 1) + 1. Let S be a sequence over G such that 0 ∤ S and E(S) 6= ∅
contains no non-trivial subgroup of G, then |S| ≤ d∗(G) + r.

The following example shows that if Conjecture 17 holds, then the upper bound
d∗(G)+r =

∑r
i=1 ni is best possible. Let G ∼= Cn1

⊕Cn2
⊕· · ·⊕Cnr

= 〈e1〉⊕〈e2〉⊕· · ·⊕〈er〉
with 1 < n1|n2| · · · |nr. Clearly, S =

∏r
i=1 eni

i is an extremal sequence with respect to 0
and of length d∗(G) + r.
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[6] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull.

Res. Council Israel 10 (1961), 41–43.

[7] W.D. Gao, On a combinatorial problem connected with factorizations, Colloq. Math.

72 (1997), 251–268.

[8] W.D. Gao, On the number of zero-sum subsequences, Discrete Math. 163 (1997),
267–273.

[9] W.D. Gao, On the number of subsequences with given sum, Discrete Math. 195

(1999), 127–138.

[10] W.D. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey,
Expo. Math. 24 (2006), 337–369.

[11] W.D. Gao and A. Geroldinger, On the number of subsequences with given sum of
sequences over finite abelian p−groups, Rocky Mountain J. Math. 37 (2007), 1541–
1550.

[12] W.D. Gao, A. Geroldinger and Q.H. Wang, A quantitative aspect of non-unique
factorizations: the Narkiewicz constants, International Journal of Number Theory,
to appear.

[13] W.D. Gao and J.T. Peng, On the number of zero-sum subsequences of restricted size,
Integers 9 (2009), 537–554.

[14] A. Geroldinger and F. Halter-Koch, Non-unique factorizations, Combinatorial and

Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC,
2006.

[15] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial

Number Theory and Additive Group Theory, Advanced Courses in Mathematics CRM
Barcelona, Birkha̋user, (2009), 1–86.

[16] D.J. Grynkiewicz, On the number of m-term zero-sum subsequences, Acta Arith. 121

(2006), 275–298.

[17] D.J. Grynkiewicz, E. Marchan and O. Ordaz, Representation of finite abelian group
elements by subsequence sums, J. Theor. Nombres Bordeaux 21 (2009), 559–587.

the electronic journal of combinatorics 18 (2011), #P133 9



[18] D.R. Guichard, Two theorems on the addition residue classes, Discrete Math. 81

(1990), 11–18.

[19] Y.O. Hamidoune, A note on the addition of residues, Graphs Combin. 6 (1990),
147–152.

[20] M. Kisin, The number of zero sums modulo m in a sequence of length n, Mathematica

41 (1994), 149–163.

[21] W. Narkiewicz, Finite abelian groups and factorization problems, Colloq. Math. 42

(1979), 319–330.
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