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Abstract

In combinatorics on words, a word w over an alphabet Σ is said to avoid a pattern
p over an alphabet ∆ if there is no factor x of w and no non-erasing morphism h

from ∆∗ to Σ∗ such that h(p) = x. Bell and Goh have recently applied an algebraic
technique due to Golod to show that for a certain wide class of patterns p there
are exponentially many words of length n over a 4-letter alphabet that avoid p. We
consider some further consequences of their work. In particular, we show that any
pattern with k variables of length at least 4k is avoidable on the binary alphabet.
This improves an earlier bound due to Cassaigne and Roth.

1 Introduction

In combinatorics on words, the notion of an avoidable/unavoidable pattern was first in-
troduced (independently) by Bean, Ehrenfeucht, and McNulty [1] and Zimin [22]. Let Σ
and ∆ be alphabets: the alphabet ∆ is the pattern alphabet and its elements are variables.
A pattern p is a non-empty word over ∆. A word w over Σ is an instance of p if there
exists a non-erasing morphism h : ∆∗ → Σ∗ such that h(p) = w. A pattern p is avoidable
if there exists infinitely many words x over a finite alphabet such that no factor of x is an
instance of p. Otherwise, p is unavoidable. If p is avoided by infinitely many words on an
m-letter alphabet then it is said to be m-avoidable. The survey chapter in Lothaire [12,
Chapter 3] gives a good overview of the main results concerning avoidable patterns.
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The classical results of Thue [19, 20] established that the pattern xx is 3-avoidable
and the pattern xxx is 2-avoidable. Schmidt [17] (see also [14]) proved that any binary
pattern of length at least 13 is 2-avoidable; Roth [15] showed that the bound of 13 can
be replaced by 6. Cassaigne [7] and Vanic̆ek [21] (see [10]) determined exactly the set of
binary patterns that are 2-avoidable.

Bean, Ehrenfeucht, and McNulty [1] and Zimin [22] characterized the avoidable pat-
terns in general. Let us call a pattern p for which all variables occurring in p occur at least
twice a doubled pattern. A consequence of the characterization of the avoidable patterns is
that any doubled pattern is avoidable. Bell and Goh [3] proved the much stronger result
that every doubled pattern is 4-avoidable. Cassaigne and Roth (see [8] or [12, Chapter 3])
proved that any pattern containing k distinct variables and having length greater than
200 · 5k is 2-avoidable. In this note we apply the arguments of Bell and Goh to show the
following result, which improves that of Cassaigne and Roth.

Theorem 1. Let k be a positive integer and let p be a pattern containing k distinct
variables.

(a) If p has length at least 2k then p is 4-avoidable.

(b) If p has length at least 3k then p is 3-avoidable.

(c) If p has length at least 4k then p is 2-avoidable.

2 A power series approach

Rather than simply wishing to show the avoidability of a pattern p, one may wish instead
to determine the number of words of length n over an m-letter alphabet that avoid p (see,
for instance, Berstel’s survey [4]). Brinkhuis [6] and Brandenburg [5] showed that there
are exponentially many words of length n over a 3-letter alphabet that avoid the pattern
xx. Similarly, Brandenburg showed that there are exponentially many words of length n
over a 2-letter alphabet that avoid the pattern xxx.

As previously mentioned, Bell and Goh proved that every doubled pattern is 4-
avoidable. In fact, they proved the stronger result that there are exponentially many
words of length n over a 4-letter alphabet that avoid a given doubled pattern. Their main
tool in obtaining this result is the following (here [xn]G(x) denotes the coefficient of xn

in the series expansion of G(x)).

Theorem 2 (Golod). Let S be a set of words over an m-letter alphabet, each word of
length at least 2. Suppose that for each i ≥ 2, the set S contains at most ci words of length
i. If the power series expansion of

G(x) :=

(

1 −mx+
∑

i≥2

cix
i

)−1

(1)

has non-negative coefficients, then there are least [xn]G(x) words of length n over an
m-letter alphabet that avoid S.
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Theorem 2 is a special case of a result originally presented by Golod (see Rowen
[16, Lemma 6.2.7]) in an algebraic setting. We have stated it here using combinatorial
terminology. The proof given in Rowen’s book also is phrased in algebraic terminology;
in order to make the technique perhaps a little more accessible to combinatorialists, we
present a proof of Theorem 2 using combinatorial language.

Proof of Theorem 2. For two power series f(x) =
∑

i≥0 aix
i and g(x) =

∑

i≥0 bix
i, we

write f ≥ g to mean that ai ≥ bi for all i ≥ 0. Let F (x) :=
∑

i≥0 aix
i, where ai is the

number of words of length i over anm-letter alphabet that avoid S. Let G(x) :=
∑

i≥0 bix
i

be the power series expansion of G defined above. We wish to show F ≥ G.
For k ≥ 1, there are mk − ak words w of length k over an m-letter alphabet that

contain a word in S as a factor. On the other hand, for any such w either (a) w = w′a,
where a is a single letter and w′ is a word of length k − 1 containing a word in S as a
factor; or (b) w = xy, where x is a word of length k− j that avoids S and y ∈ S is a word
of length j. There are at most (mk−1 − ak−1)m words w of the form (a), and there are at
most

∑

j ak−jcj words w of the form (b). We thus have the inequality

mk − ak ≤ (mk−1 − ak−1)m+
∑

j

ak−jcj.

Rearranging, we have

ak − ak−1m+
∑

j

ak−jcj ≥ 0, (2)

for k ≥ 1.
Consider the function

H(x) := F (x)

(

1 −mx+
∑

j≥2

cjx
j

)

=

(

∑

i≥0

aix
i

)(

1 −mx+
∑

j≥2

cjx
j

)

.

Observe that for k ≥ 1, we have [xk]H(x) = ak − ak−1m +
∑

j ak−jcj . By (2), we have

[xk]H(x) ≥ 0 for k ≥ 1. Since [x0]H(x) = 1, the inequality H ≥ 1 holds, and in particular,
H − 1 has non-negative coefficients. We conclude that F = HG = (H − 1)G+G ≥ G, as
required.

Theorem 2 bears a certain resemblance to the Goulden–Jackson cluster method [11,
Section 2.8], which also produces a formula similar to (1). The cluster method yields an
exact enumeration of the words avoiding the set S but requires S to be finite. By contrast,
Theorem 2 only gives a lower bound on the number of words avoiding S, but now the set
S can be infinite.

Theorem 2 can be viewed as a non-constructive method to show the avoidability of
patterns over an alphabet of a certain size. In this sense it is somewhat reminiscent of
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the probabilistic approach to pattern avoidance using the Lovász local lemma (see [2, 9]).
For pattern avoidance it may even be more powerful than the local lemma in certain
respects. For instance, Pegden [13] proved that doubled patterns are 22-avoidable using
the local lemma, whereas Bell and Goh were able to show 4-avoidability using Theorem 2.
Similarly, the reader may find it a pleasant exercise to show using Theorem 2 that there
are infinitely many words avoiding xx over a 7-letter alphabet; as far as we are aware,
the smallest alphabet size for which the avoidability of xx has been shown using the local
lemma is 13 [18].

3 Proof of Theorem 1

To prove Theorem 1 we begin with some lemmas.

Lemma 3. Let k ≥ 1 and m ≥ 2 be integers. If w is a word of length at least mk

over a k-letter alphabet, then w contains a non-empty factor w′ such that the number of
occurrences of each letter in w′ is a multiple of m.

Proof. Suppose w is over the alphabet Σ = {1, 2, . . . , k}. Define the map ψ : Σ∗ → N
k

that maps a word x to the k-tuple [|x|1 mod m, . . . , |x|k mod m], where |x|a denotes the
number of occurrences of the letter a in x. For each prefix wi of length i of w, let
vi = ψ(wi). Since w has length at least mk, w has at least mk + 1 prefixes, but there are
at most mk distinct tuples vi. There exists therefore i < j such that vi = vj. However,
if w′ is the suffix of wj of length j − i, then ψ(w′) = vj − vi = [0, . . . , 0], and hence the
number of occurrences of each letter in w′ is a multiple of m.

Lemma 4 ([3]). Let k ≥ 1 be an integer and let p be a pattern over the pattern alphabet
{x1, . . . , xk}. Suppose that for 1 ≤ i ≤ k, the variable xi occurs ai ≥ 1 times in p. Let
m ≥ 2 be an integer and let Σ be an m-letter alphabet. Then for n ≥ 1, the number of
words of length n over Σ that are instances of the pattern p is at most [xn]C(x), where

C(x) :=
∑

i1≥1

· · ·
∑

ik≥1

mi1+···+ikxa1i1+···+akik .

For the proof of the next result, we essentially follow the approach of Bell and Goh.

Theorem 5. Let k ≥ 2 be an integer and let p be a pattern over a k-letter pattern alphabet
such that every variable occurring in p occurs at least µ times.

(a) If µ = 3, then for n ≥ 0, there are at least 2.94n words of length n avoiding p over
a 3-letter alphabet.

(b) If µ = 4, then for n ≥ 0, there are at least 1.94n words of length n avoiding p over
a 2-letter alphabet.
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Proof. Let (m,µ) ∈ {(3, 3), (2, 4)} and let Σ be an m-letter alphabet. Define S to be the
set of all words over Σ that are instances of the pattern p. By Lemma 4, the number of
words of length n in S is at most [xn]C(x), where

C(x) :=
∑

i1≥1

· · ·
∑

ik≥1

mi1+···+ikxa1i1+···+akik ,

and for 1 ≤ i ≤ k we have ai ≥ µ. Define

B(x) :=
∑

i≥0

bix
i = (1 −mx+ C(x))−1,

and set λ := m − 0.06 (this is not necessarily the optimal value for λ). We claim that
bn ≥ λbn−1 for all n ≥ 0. This suffices to prove the lemma, as we would then have bn ≥ λn

and the result follows by an application of Theorem 2.
We prove the claim by induction on n. When n = 0, we have b0 = 1 and b1 = m.

Since m > λ, the inequality b1 ≥ λb0 holds, as required. Suppose that for all j < n,
we have bj ≥ λbj−1. Since B = (1 − mx + C)−1, we have B(1 −mx + C) = 1. Hence
[xn]B(1 −mx+ C) = 0 for n ≥ 1. However,

B(1 −mx+ C) =

(

∑

i≥0

bix
i

)(

1 −mx+
∑

i1≥1

· · ·
∑

ik≥1

mi1+···+ikxa1i1+···+akik

)

,

so

[xn]B(1 −mx+ C) = bn − bn−1m+
∑

i1≥1

· · ·
∑

ik≥1

mi1+···+ikbn−(a1i1+···+akik) = 0.

Rearranging, we obtain

bn = λbn−1 + (m− λ)bn−1 −
∑

i1≥1

· · ·
∑

ik≥1

mi1+···+ikbn−(a1i1+···+akik).

To show bn ≥ λbn−1 it therefore suffices to show

(m− λ)bn−1 −
∑

i1≥1

· · ·
∑

ik≥1

mi1+···+ikbn−(a1i1+···+akik) ≥ 0. (3)
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Since bj ≥ λbj−1 for all j < n, we have bn−i ≤ bn−1/λ
i−1 for 1 ≤ i ≤ n. Hence

∑

i1≥1

· · ·
∑

ik≥1

mi1+···+ikbn−(a1i1+···+akik) ≤
∑

i1≥1

· · ·
∑

ik≥1

mi1+···+ik
λbn−1

λa1i1+···+akik

= λbn−1

∑

i1≥1

· · ·
∑

ik≥1

mi1+···+ik

λa1i1+···+akik

= λbn−1

∑

i1≥1

mi1

λa1i1
· · ·
∑

ik≥1

mik

λakik

≤ λbn−1

∑

i1≥1

mi1

λµi1
· · ·
∑

ik≥1

mik

λµik

= λbn−1

(

∑

i≥1

mi

λµi

)k

= λbn−1

(

m/λµ

1 −m/λµ

)k

= λbn−1

(

m

λµ −m

)k

≤ λbn−1

(

m

λµ −m

)2

.

In order to show that (3) holds, it thus suffices to show that

m− λ ≥ λ

(

m

λµ −m

)2

.

Recall that m− λ = 0.06. For (m,µ) = (3, 3) we have

2.94

(

3

2.943 − 3

)2

= 0.052677 · · · ≤ 0.06,

and for (m,µ) = (2, 4) we have

1.94

(

2

1.944 − 2

)2

= 0.052439 · · · ≤ 0.06,

as required. This completes the proof of the inductive claim and the proof of the lemma.

We can now complete the proof of Theorem 1. Let p be a pattern with k variables.
If p has length at least 2k, then by Lemma 3, the pattern p contains a non-empty factor
p′ such that each variable occurring in p′ occurs at least twice. However, Bell and Goh
showed that such a p′ is 4-avoidable and hence p is 4-avoidable.
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Similarly, if p has length at least 3k (resp. 4k), then by Lemma 3, the pattern p contains
a non-empty factor p′ such that each variable occurring in p′ occurs at least 3 times (resp.
4 times). If p′ contains only one distinct variable, recall that we have already noted in
the introduction that the pattern xxx is 2-avoidable (and hence also 3-avoidable). If p′

contains at least two distinct variables, then by Theorem 5, the pattern p′ is 3-avoidable
(resp. 2-avoidable), and hence the pattern p is 3-avoidable (resp. 2-avoidable). This
completes the proof of Theorem 1.

Recall that Cassaigne and Roth showed that any pattern p over k variables of length
greater than 200 · 5k is 2-avoidable. Their proof is constructive but is rather difficult.
We are able to obtain the much better bound of 4k non-constructively by a somewhat
simpler argument. Cassaigne suggests (see the open problem [12, Problem 3.3.2]) that
the bound of 3k in Theorem 1(b) can perhaps be replaced by 2k and that the bound of
4k in Theorem 1(c) can perhaps be replaced by 3 · 2k. Note that the bound of 2k in
Theorem 1(a) is optimal, since the Zimin pattern on k-variables (see [12, Chapter 3]) has
length 2k − 1 and is unavoidable.
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