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Abstract

When graph Ramsey theory is viewed as a game, “Painter” 2-colors the edges of a
graph presented by “Builder”. Builder wins if every coloring has a monochromatic
copy of a fixed graph G. In the on-line version, iteratively, Builder presents one
edge and Painter must color it. Builder must keep the presented graph in a class
H. Builder wins the game (G,H) if a monochromatic copy of G can be forced. The
on-line degree Ramsey number R̊∆(G) is the least k such that Builder wins (G,H)
when H is the class of graphs with maximum degree at most k. Our results include:
1) R̊∆(G)≤3 if and only if G is a linear forest or each component lies inside K1,3.
2) R̊∆(G) ≥ ∆(G) + t − 1, where t = maxuv∈E(G) min{d(u), d(v)}.

3) R̊∆(G) ≤ d1 +d2−1 for a tree G, where d1 and d2 are two largest vertex degrees.
4) 4 ≤ R̊∆(Cn) ≤ 5, with R̊∆(Cn) = 4 except for finitely many odd values of n.
5) R̊∆(G) ≤ 6 when ∆(G) ≤ 2.

The lower bounds come from strategies for Painter that color edges red whenever
the red graph remains in a specified class. The upper bounds use a result showing
that Builder may assume that Painter plays “consistently”.

1 Introduction

The classical problem of graph Ramsey theory specifies a target graph G and seeks a
graph H such that every 2-coloring of E(H) produces a monochromatic copy of G. For
such H , we write H → G and say that H arrows G. More generally, when every s-coloring
of E(H) produces a monochromatic G, we write H

s
→ G. Ramsey’s Theorem guarantees

for every G that such a graph H exists. The Ramsey number R(G; s) (or R(G) when
s = 2) is the minimum number of vertices in such a graph H .
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Given a graph parameter ρ, the ρ-Ramsey number Rρ(G; s) is min{ρ(H) : H
s
→ G};

this is the ordinary Ramsey number R(G; s) when ρ is the number of vertices. When
ρ(G) is the clique number ω(G), Nešetřil and Rödl [19] proved that Rω(G; s) = ω(G),
extending the special case for s = 2 by Folkman [8]. The size Ramsey number of G is the
minimum number of edges in a graph H with H → G. The first result on the size Ramsey
number, by Erdős, Faudree, Rousseau, and Schelp [10], was that for G = Kn it equals the
obvious upper bound

(

R(Kn)
2

)

(see [2, 3, 7, 24] for further results on size Ramsey number).
When ρ(G) is the chromatic number χ(G), Burr, Erdős, and Lovász [5] showed that

Rχ(G) equals the Ramsey number of the family of homomorphic images of G, where the
Ramsey number of a family G is the minimum number of vertices in a graph H such that
every 2-coloring of E(H) produces a monochromatic copy of some graph in G. They also
conjectured min{Rχ(G; s) : χ(G) = k} = ks + 1, which has been proved by Zhu [27, 28].

Burr, Erdős, and Lovász [5] also studied the degree Ramsey number R∆, where ∆(G)
is the maximum vertex degree in G. Further results on R∆ will appear in [14, 15, 18].

Another modern variation in graph Ramsey theory is an on-line or “game” version
introduced by Beck [4]. We consider the 2-color case, but the game extends naturally to
s colors. Two players, Builder and Painter, play a game with a target graph G. During
each round, Builder presents a new edge uv to Painter (the endpoints may be vertices not
yet used). Painter must color uv red or blue. Builder wins if a monochromatic copy of G
arises. We say that Builder can force G if Builder has a strategy to win.

When Builder’s moves are unrestricted, Builder wins by playing a large complete
graph (by Ramsey’s Theorem). As in parameter Ramsey theory, the problem becomes
more interesting when Builder must keep the presented graph in a class H. This defines
the on-line Ramsey game (G,H). Given G and H, which player has a winning strategy?

We say that (G,H) is played on H. Grytczuk, Ha luszcak, and Kierstead [12] showed
that Builder wins on the class of k-colorable graphs when G is k-colorable. Also, Builder
wins on the class of forests when G is a forest. For G = K3, Painter wins on outerplanar
graphs but Builder wins on planar 2-degenerate graphs. On planar graphs, Builder wins
when G is a cycle or is a 4-cycle plus one chord (a slight extension is that Builder can
force any fixed cycle plus chords at any one vertex). They conjectured that on planar
graphs, Builder wins if and only if G is outerplanar. Petřičková [20] disporved this by
showing that Builder can force K2,3 on the class of planar graphs.

For any graph parameter ρ, we define the on-line ρ-Ramsey number R̊ρ of G to be the
least k such that Builder can force G when playing on the family {H : ρ(H) ≤ k}. The
main result of [12] is that R̊χ(G) = χ(G) for every graph.

The notation r̃(G) has been used for the on-line size Ramsey number. Grytczuk,
Kierstead, and Pra lat [13] proved that r̃(Pn) ≤ 4n − 7 for n ≥ 2 (they found the exact
values for n ≤ 6; see [21, 22, 23] for additional exact results on r̃). They also proved
r̃(G) ≥ 1

2
b(D − 1) + m when G has m edges, maximum degree D, and vertex cover

number b. Using the latter, they proved that the maximum of r̃(G) over trees with m
edges is Θ(m2). It is conjectured that r̃(Kn)/R(Kn) → 0 as n → ∞ (see Conlon [6]).
Kierstead and Konjevod [16] studied an extension of on-line Ramsey games to s-uniform
hypergraphs. A variant of on-line Ramsey games in which Builder is replaced with a
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sequence of random edges is studied in [11].

In this paper, we study the on-line degree Ramsey number R̊∆(G). Let Sk be the class
of graphs with maximum degree at most k; R̊∆(G) is the least k such that Builder wins
(G,Sk). Since the on-line model gives Builder more power, always R̊ρ(G; s) ≤ Rρ(G; s);
we will compare results on these two parameters.

Our easy Theorem 2.2 is R̊∆(G) ≥ ∆(G) − 1 + maxuv∈E(G) min{dG(u), dG(v)}, where
dG(v) is the degree of vertex v in G. This yields optimal lower bounds for various small
graphs, as noted later. When G has adjacent vertices of maximum degree, the lower
bound becomes R̊∆(G) ≥ 2∆(G)− 1, which proves sharpness of our general upper bound
for a tree G in terms of the maximum degree: R̊∆(G) ≤ 2∆(G) − 1. This upper bound
argument does not extend to the multicolor setting. Nevertheless, using other techniques,
Kinnersley [17] has proved that R̊∆(G; s) ≤ s∆(G) − (s − 1) when G is a tree, with
equality when G has adjacent vertices of maximum degree. He also obtained results on
the “non-diagonal” case where one seeks a copy of tree Gi in color i for some i.

For s = 2, we prove a stronger upper bound for trees: R̊∆(G) ≤ d1 + d2 − 1, where
d1, . . . , dn is the nonincreasing list of the vertex degrees (Theorem 3.1). Here Builder’s
strategy makes no cycles, thus yielding also the result of [12] on forests; their proof is
shorter but does not give a good upper bound on the maximum degree used by Builder.

For cycles, we prove that 4 ≤ R̊∆(Cn) ≤ 5 for all n (Sections 4 and 5). In fact, the
value is 4 for all n. Here we prove R̊∆(Cn) = 4 when n is even or equals 3. Our methods
also prove R̊∆(Cn) = 4 for odd n between 337 and 514 or at least 689. Rolnick [25]
extended our methods to complete the proof that R̊∆(Cn) = 4 for all n, so we omit the
details of our final construction for odd cycles.

We include the techniques developed for cycles because we use them to obtain upper
bounds for all graphs with maximum degree 2. A major open question is whether there
exists a function f such that R̊∆(G) ≤ f(k) when ∆(G) ≤ k. We prove that f(2) exists;
in fact f(2) ≤ 6 (Theorem 5.6). We do not know whether this bound is sharp.

Our lower bounds rely on “greedy” strategies for Painter, in which Painter makes an
edge red if and only if it keeps the red graph within a specified class, such as Sk or the
class of linear forests (a linear forest is a graph whose components are all paths). Greedy
Painters of both types are used to prove that R̊∆(G) ≤ 3 if and only if G is a linear forest
or each component of G is a subgraph of the claw K1,3 (Theorem 2.5). Thus when Builder
wins (G1,H) and (G2,H), it does not follow that Builder wins (G1 +G2,H); for example,
R̊∆(P4) = R̊∆(K1,3) = 3, but R̊∆(P4 + K1,3) > 3.

Upper bounds require strategies for Builder. Optimal strategies for paths, stars, and
triangles need only induction and the pigeonhole principle. For other graphs, we simplify
Builder’s task. We prove (Theorem 2.11) that Builder may assume that Painter plays
“consistently”, meaning that the color Painter assigns to an edge depends only on the
components of the current edge-colored graph containing its endpoints. This reduction
applies to the Ramsey game (G,H) whenever H is monotone (all subgraphs of graphs in
H lie in H) and additive (disjoint unions of graphs in H lie in H). Hence the “Consistent
Painter Theorem” may be useful for on-line Ramsey problems other than R̊∆(G).
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2 Tools: Greedy Painter and Consistent Painter

This section presents techniques for proving bounds on R̊∆(G). Upper bounds arise from
strategies for Builder; lower bounds from strategies for Painter. Although lower bounds
are usually more difficult, we begin with a class of strategies for Painter.

Definition 2.1. Let F be a family of graphs. The greedy F-Painter colors each new edge
red if the resulting red graph lies in F ; otherwise, the edge is colored blue.

When k = ∆(G) − 1, the greedy Sk-Painter establishes a useful general lower bound.

Theorem 2.2. For every graph G, R̊∆(G) ≥ ∆(G) − 1 + maxuv∈E(G) min{d(u), d(v)}.

Proof. Let k = ∆(G)− 1, and let t = maxuv∈E(G) min{d(u), d(v)}. The greedy Sk-Painter
never makes a red G, because no vertex ever has ∆(G) incident red edges. In a blue G,
some edge represents an edge xy ∈ E(G) such that min{dG(x), dG(y)} = t. Making this
edge blue requires k red edges already at at least one endpoint. Within the blue G, each
endpoint has at least t edges. Hence at x or y at least k + t edges have been played.

Theorem 2.2 yields R̊∆(G) ≥ 2∆(G) − 1 when G has adjacent vertices of maximum
degree. Furthermore, R̊∆(G) ≥ d1 + d2 − 1 when vertices whose degrees are the first two
edges in the nonincreasing degree list d are adjacent. Thus the upper bound for trees in
Theorem 3.1 is sharp. The greedy Sk-Painter also easily yields the lower bound in [13] for
the on-line size Ramsey number (r̃(G) ≥ 1

2
b(D − 1) + m when G has m edges, maximum

degree D, and vertex cover number b).
Induction and the pigeonhole principle lead to optimality of the lower bound in The-

orem 2.2 for paths and stars. If Builder can force a monochromatic G, then by the
pigeonhole principle Builder can force t monochromatic copies of G in the same color.

Corollary 2.3. R̊∆(K1,m) = m and R̊∆(Pk) = 3 (for k ≥ 4).

Proof. The lower bounds follow from Theorem 2.2; the upper use strategies for Builder.
For K1,m, use induction on m; trivially R̊∆(K1,1) = 1. For m > 1, Builder first plays

on Sm−1 to force m disjoint copies of K1,m−1 in the same color. Builder then plays a star
K1,m whose leaves are their centers. The resulting graph is in Sm, and K1,m is forced.

For Pk, we prove by induction on k that Builder playing on S3 can force a monochro-
matic path with at least k vertices such that no other edges have been played at the
endpoints; the single edge has this property for k = 2. For k ≥ 3, Builder first plays on
S3 to force k−2 such paths of the same color having at least k−1 vertices each; let “red”
be this color. Builder then plays a path Q with k vertices using one endpoint of each of
these paths plus two new vertices as the endpoints of Q. If any edge of Q is red, then the
desired path arises in red; if they are all blue, then Q becomes the desired path.

For comparison with degree Ramsey number, note that R∆(Pk) = 4 for k ≥ 7 ([26]
and [1] combined), while R∆(K1,m) equals 2m − 1 for odd m and 2m − 2 for even m [5].
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Greedy Painters also enable us to characterize the graphs G such that R̊∆(G) ≤ 3.
It is trivial that R̊∆(G) ≤ 1 if and only if G is a matching. Also R̊∆(G) ≤ 2 is easily
characterized.

Proposition 2.4. R̊∆(G) ≤ 2 if and only if each component of G is a subgraph of P3.

Proof. Builder forces any such graph by presenting enough disjoint triangles. For neces-
sity, if R̊∆(G) ≤ 2, then ∆(G) ≤ 2. By Theorem 2.2, the vertices with degree 2 are
nonadjacent. Hence each component of G is a subgraph of P3.

Theorem 2.5. R̊∆(G) ≤ 3 if and only if each component of G is a path or each component
of G is a subgraph of the claw K1,3.

Proof. By Corollary 2.3, Builder can force the claw or any path on S3. By the pigeonhole
principle, Builder can thus force any disjoint union of subgraphs of K1,3. Also Builder
can force a path long enough to contain any specified disjoint union of paths.

For necessity, suppose that R̊∆(G) ≤ 3, so Builder can force G on S3. Consider a
greedy L-Painter, where L is the family of linear forests (disjoint unions of paths). If G
appears in red, then each component of G is a path.

Suppose that G appears in blue. A vertex v with degree 3 in G has three incident
blue edges and hence no incident red edges, since Builder is playing on S3. For the greedy
L-Painter to make these edges blue, each neighbor already has two incident red edges.
Hence a blue claw must be a full component of the blue graph.

It remains to show that Builder cannot force a monochromatic graph containing both
P4 and K1,3 in S3. Since such a graph G has maximum degree at least 3 and has an edge

with both endpoints having degree at least 2, Theorem 2.2 implies that R̊∆(G) ≥ 4.

Theorem 2.5 shows that Builder can force P4 or K1,3 in S3 but not their disjoint union.
The family of graphs that Builder can force when playing on a given family is not always
closed under disjoint union.

We proved these results by using the pigeonhole principle to force many monochro-
matic graphs. Pigeonholing also applies to 2-edge-colored graphs. When Builder presents
m edges, Painter can produce at most 2m distinguishable 2-edge-colored graphs. By pre-
senting isomorphic copies of the graph formed by these m edges, Builder can force many
copies of some single pattern. Nevertheless, when strategies become more complicated and
repeated copies of larger patterns are needed, use of the pigeonholing argument becomes
unwieldy. Arguments simplify if Builder can assume that Painter plays “consistently”.

Definition 2.6. A Painter strategy is consistent if the color Painter chooses for an edge
uv depends only on the 2-edge-colored component(s) containing u and v when uv arrives.

For example, a consistent Painter always colors an isolated triangle in the same way. If
there are nonisomorphic ways to order the edges of a graph (such as K4), then a consistent
Painter may produce different colorings depending the order in which the edges arrive.
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Our aim is to reduce the problem of proving that Builder wins to proving that Builder
wins against consistent Painters. The argument can be given for the s-color model, but
we state it only for two colors, red and blue. We need several technical notions.

Definition 2.7. Given a monotone additive family H, an H-strategy specifies a color for
each pair (H, e) such that H is a 2-edge-coloring of a graph in H and e is an edge not in
H (either or both endpoints of e may be new vertices). An H-list is an ordering of the
edges of some graph in H; every initial segment of an H-list forms a graph in H. For
each H-list E and each H-strategy A, let A(E) denote the edge-colored graph that results
when Builder presents E to A. An edge-colored graph F contains another such graph F ′

if there is an injection of V (F ′) into V (F ) that preserves edges and preserves their colors.

To reduce the Builder problem to winning against consistent Painters, we will show
that for every Painter strategy there is a consistent strategy that does at least as well for
Painter. That is, when A is an H-strategy, there is a consistent H-strategy A′ such that
any 2-edge-colored graph Builder can force against A′ can also be forced against A. A
special set of 2-edge-colored graphs will enable us to produce A′.

Definition 2.8. A uv-augmentation of a 2-edge-colored graph H with nonadjacent ver-
tices u and v is obtained by adding uv to H with color red or blue. For a monotone additive
family H, a class C of connected 2-edge-colored graphs is H-coherent if it contains K1 and
satisfies the following augmentation property: If H is a 2-edge-colored copy of a graph H ′

in H, and H ′ has nonadjacent vertices u and v such that H ′ + uv is a connected graph in
H and the component(s) of H are in C, then C contains a uv-augmentation of H .

An H-coherent class C yields a consistent H-strategy A′ as follows. When an edge uv
is added to the current 2-colored graph H , A′ consults C to find which color on uv yields
a uv-augmentation in C for the component(s) of H containing the endpoints of the added
edge. When both colors yield uv-augmentations, A′ always makes the same choice.

Definition 2.9. Let C be the class of connected 2-edge-colored (unlabeled) graphs; every
2-edge-coloring of a graph in H is a multiset of elements of C having finitely many
distinguishable components, each with finite multiplicity. Given an H-strategy A, a 2-
edge-colored graph H is A-realizable if for some H-list E, the outcome A(E) contains H .
A family C ⊆ C is A-plentiful if, for every finite subset C ⊆ C and every positive integer
n, the 2-edge-colored graph consisting of n components isomorphic to each element of C
is A-realizable.

In order to be H-coherent for some monotone additive family H, a family C contained
in C must somehow be “large enough”. In order to be A-plentiful for some H-strategy
A, the family C must somehow be “small enough”. We seek a family achieving both
properties. We use Zorn’s Lemma in the following form: if every chain in a partial order
P has an upper bound, then P has a maximal element.

Lemma 2.10. If H is a monotone additive family of graphs, and A is an H-strategy,
then some family C is both H-coherent and A-plentiful.
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Proof. Note first that {K1} is A-plentiful. Also, if C1, C2, . . . are A-plentiful families with
C1 ⊆ C2 ⊆ · · · , then the union of these families is also A-plentiful, because the definition
of A-plentiful requires A-realizability only of repeated copies of finite subsets, and each
finite subset appears in some Cj . It follows from Zorn’s Lemma that there is a maximal
A-plentiful family C containing K1. We claim that C is H-coherent.

By construction, K1 ∈ C. For a fixed 2-edge-colored graph H in C, let H ′ be its
underlying graph in H. Let u and v be nonadjacent vertices in H ′ with H ′ + uv ∈ H. Let
H1 and H2 be the possible uv-augmentations of H (using red or blue on uv). If neither
lies in C, then neither C∪{H1} nor C∪{H2} is A-plentiful, by the maximality of C. Hence
there are positive integers t1 and t2 and finite sets C1, C2 ⊆ C such that the 2-edge-colored
graphs t1(C1 ∪ {H1}) and t2(C2 ∪ {H2}) are not A-realizable, where for C ⊆ C we use qC
to denote the 2-edge-colored graph with q copies of each element of C as components.

Let D = C1 ∪ C2 ∪ {H}. Since D is a finite subset of C, and C is A-plentiful,
2(t1 + t2 − 1)D is A-realizable via some H-list E. When E is presented, A(E) contains
at least 2(t1 + t2 − 1) disjoint copies of H .

Since H is additive, the list E ′ formed by adding to E the copies of uv in 2(t1 + t2 −1)
components isomorphic to H ′ is an H-list; Builder may legally present these edges after
E. Consider the first t1 + t2 − 1 of the added edges. Either A colors at least t1 of them
red, or A colors at least t2 of them blue. In the first case, t1(C1 ∪ {H1}) is A-realizable:
we have obtained t1 copies of H1, and at least t1 + t2 − 1 copies of H remain (needed if
H ∈ C1). In the second case, t2(C2 ∪ {H2}) is similarly A-realizable. The contradiction
implies that C contains a uv-augmentation of H .

Essentially the same argument shows that C contains a uv-augmentation of H when
H consists of two 2-edge-colored components, each containing one of u and v.

Theorem 2.11. If H is a monotone additive family of graphs, and A is an H-strategy
for Painter, then there is a consistent H-strategy A′ such that for every H-list E ′, there
is an H-list E such that A(E) ⊇ A′(E ′). That is, Builder can force against A any
monochromatic target that Builder can force against A′.

Proof. By Lemma 2.10, there is an H-coherent, A-plentiful family C ⊆ C. As described
after Definition 2.8, from the H-coherence of C we define a consistent H-strategy A′.

When A′ is given a new edge uv, the definition of C being H-coherent implies that
the uv-augmentation chosen by A′ for the component being formed is in C. Thus every
component of A′(E ′) is in C. Since C is A-plentiful, it follows that A′(E ′) ⊆ A(E) for
some H-list E.

To show that Builder wins (G,H), it now suffices to show that Builder can force a
monochromatic G against any consistent H-strategy for Painter. In particular, if some
H-list results in a particular 2-edge-colored component, then Builder can recreate another
copy of that component by playing an isomorphic list of edges on a new set of vertices.

Theorem 2.11 applies to all monotone additive families, not just Sk. For example, to
prove sufficiency in the conjecture in [12], one need only show that Builder can force any
outerplanar graph when playing on planar graphs against a consistent Painter.
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3 Trees

We apply Theorem 2.11 first to prove an upper bound on R̊∆(G) when G is a tree. When
G is a tree, our main result is that R̊∆(G) ≤ d1 + d2 − 1, where d1 and d2 are two largest
entries in the list of vertex degrees. When there is an edge joining vertices of degrees
d1 and d2, Theorem 2.2 yields R̊∆(G) ≥ d1 − 1 + d2 (whether or not G is a tree). In
particular, for the double-star Sa,b (the tree with a + b vertices having vertices of degrees

a and b), we have R̊∆(Sa,b) = a + b− 1. (In comparison, R∆(Sa,b) = 2 max{a, b}− 2, plus
1 when a and b are equal and odd [18]; for general trees, R∆(G) ≤ 4∆(G) − 4 [15].)

Theorem 3.1. Let G be any n-vertex tree. If the vertex degrees are d1, . . . , dn in nonin-
creasing order, then R̊∆(G) ≤ d1 + d2 − 1. Equality holds when G has adjacent vertices
of degrees d1 and d2.

Proof. Under the condition given for equality, Theorem 2.2 provides the lower bound. We
prove that Builder can force (against a consistent Painter) a monochromatic rooted tree
in which the root has d1 children, all other non-leaves have d2 − 1 children, and all leaves
have distance more than l from the root, where l = diam(G). Such a tree contains a
monochromatic G. At any point in the game, let H be the graph that has been presented
so far. In fact, H will be a forest.

Builder maintains candidate trees TR and TB with edges in red and blue, respectively.
Initially, these trees consist only of their root vertices. Moreover, Builder keeps TR and
TB in different components of H . A vertex of TR or TB is satisfied when it has the desired
number of children in that tree (d1 for the root, d2 − 1 for others). Each tree has an
active vertex, xR or xB respectively, which is an unsatisfied vertex of least depth. A bad
edge is an edge incident to TR or TB having the color of the other tree. The active vertex
becomes dangerous when its has d2 − 1 incident bad edges.

If the two active vertices are not both dangerous, then Builder plays an edge joining
a non-dangerous active vertex to a new vertex. If the new edge has the color of that tree,
then it enters the tree; otherwise, it is an additional bad edge at the active vertex.

Builder plays pendant edges at active vertices until an active vertex becomes satisfied
or both active vertices become dangerous. When an active vertex becomes satisfied, a
new active vertex is chosen in that tree from the unsatisfied vertices of least depth.

When both active vertices are dangerous, Builder plays xRxB. Since TR and TB are
in different components HR and HB, still H is a forest. If Painter colors xRxB red, then
Builder makes xB a child of xR in TR. Because xB was active and dangerous, xB is already
incident to d2 − 1 red edges; its neighbors along these edges become its children in TR,
and so it is satisfied. Possibly xR is now satisfied, in which case a new active vertex is
chosen for TR.

What we previously called TB now lies inside the component of H containing TR. Be-
fore continuing, Builder regenerates TB in a new component of H . Builder plays edges
on new vertices isomorphic to the list that produced HB; since Painter is consistent, the
resulting edge-colored graph is isomorphic to HB, yielding a new copy of TB with new
active vertex xB. (See Figure 1, where solid edges are red and dashed edges are blue.)
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The process now continues, with TR having been augmented by the old xB and its
children and TB having been regenerated; the new copy of xB is dangerous. (Of course,
if Painter had colored xRxB blue, the roles of red and blue would be interchanged in
Builder’s response.)

•

•

•

• •

•

•

• •
xR xB

TR TB

• •

•

• •

•

•

• •

•

•

• •
xR xB

TR TB

• • •

•

• •

•

•

• •

•• •

•

xR xB

TR new TB

• • •

•

•

•

•

••

•

•

before during after

Figure 1: Strategy for trees with d1 = d2 = 3 when xR and xB are dangerous

At each move, the edge played by Builder is incident to both active vertices or to one
active vertex and a new vertex. When a bad edge is added at an active vertex, the other
endpoint is given degree 1. Hence when one active vertex y becomes a child of the active
vertex in the other tree, the vertices that now become children of y in that tree are leaves.
We conclude that every non-leaf vertex other than the active vertex is satisfied.

Hence when a vertex becomes active, it has degree 1 in H . While active, it receives
at most d2 − 1 bad edges, and it can receive only enough incident edges in the color of its
tree to make it satisfied. Hence its degree remains at most d1 +d2−1 (it takes d1 children
to satisfy a root). After becoming satisfied, a vertex receives no more incident edges.

There is another way to become satisfied. When xRxB is played and colored red, the
d2 − 1 edges that were bad at xB now satisfy it in TR. The tree TB remains attached to
xB, but since xB was not satisfied in TB it had at most d1 − 1 incident blue edges. Again
its degree is at most d1 + d2 − 1, and it receives no more incident edges.

Finally, we must argue that this strategy forces a monochromatic tree (TR or TB) in
which all vertices having distance at most l from the root are satisfied. When xR and
xB are both dangerous, one receives a good incident edge and the other is recreated by
regenerating its component. Hence eventually one of them becomes satisfied. Since xR

and xB are unsatisfied vertices of least depth, we already have the desired monochromatic
tree if one of them has distance more than l from its root. Otherwise, we increase the
number of satisfied vertices having distance at most l from the root in one tree or the
other. The number of possible such vertices is bounded by 2d1

∑l
i=1 di−1

2 , so eventually
Builder forces the desired tree.

In the strategy in Theorem 3.1, H remains a forest in Sk, where k = d1 + d2 − 1. We
conclude that Builder can force any forest when playing on the family of forests. This
statement was proved more simply in [12], but their proof did not provide a good bound
on the maximum degree used. On the other hand, the proof in [12] extends easily to the
s-color setting. Theorem 3.1 uses the fact that active vertices in each of two colors can
be made adjacent by a single edge; our proof does not extend to the multicolor setting.
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4 Weighted Graphs and Even Cycles

Strategies for Builder playing on Sk often involve keeping track of how many edges have
been played incident to each vertex. The argument we gave for paths (Corollary 2.3) had
this flavor; to facilitate the induction we needed to maintain degree 1 at the leaves of the
monochromatic path, but we could allow degree 3 at internal vertices.

Definition 4.1. A c-weighted graph is a graph G equipped with a nonnegative integer
capacity function c on V (G). A copy of a c-weighted graph G exists in a graph H if G
embeds as a subgraph of H via an injection f such that dH(f(v)) ≤ c(v) for all v ∈ V (G).

When the capacity function is constant, say c(v) = k for all v ∈ V (G), we simply
refer to the c-weighted graph G as a k-weighted graph. The statement that Builder wins
(G,Sk) is equivalent to the statement that Builder can force the k-weighted graph G
when playing on the unrestricted family of all graphs. Vertices that acquire more than k
incident edges are forbidden from the desired monochromatic copy of G when Builder is
restricted to Sk.

We use weighted graphs primarily to discuss R̊∆(Cn). When the capacity function
is not constant, we list its values in some fixed order to specify a weighted graph. In
particular, an (a, b, c, d)-claw is a monochromatic weighted claw with capacity a at the
center and capacities b, c, d at the leaves. Similarly, an (a, b, c)-triangle is a monochromatic
weighted triangle with capacities a, b, c at the vertices.

Proposition 4.2. R̊∆(C3) = 4.

Proof. For the lower bound, note that C3 does not satisfy the characterization of graphs
with R̊∆(G) ≤ 3 in Theorem 2.5.

For the upper bound, Builder seeks a (4, 4, 4)-triangle. If Builder obtains a (4, 2, 2, 2)-
claw, then Builder wins by presenting a triangle on its leaves.

Builder first presents a claw with center u, winning if Painter makes it monochromatic.
Otherwise, we may assume that the claw has one blue edge ux and red edges uy and uz.

Now Builder presents a claw C with center x and three new vertices as leaves. If
monochromatic, C is a (4, 2, 2, 2)-claw and Builder wins. Otherwise, C has a blue edge xw.

Now Builder presents uw; note that u now has degree 4 and w has degree 2. Coloring
uw blue completes a blue triangle on {u, x, w}. Otherwise, there is now a red (4, 2, 2, 2)-
claw with center u and leaves w, y, z.

Such detailed analysis of weighted graphs forced by Builder can yield the answers for
other small graphs. For the graph K+

1,3 obtained by adding one edge to K1,3, Theorem 2.2

yields R̊∆(K+
1,3) ≥ 4. Builder guarantees R̊∆(K+

1,3) ≤ 5 by first forcing three disjoint
monochromatic (5, 1, 1, 1)-claws in the same color, then playing a triangle on the leaves of
each, then playing a triangle using one vertex from each of those triangles. Using a more
detailed analysis, Rolnick [25] proved that R̊∆(K+

1,3) = 4.
Similarly, for the graph C+

4 obtained by adding one chord to a 4-cycle, Theorem 2.2
yields R̊∆(C+

4 ) ≥ 5. A Builder strategy that starts by forcing a 4-weighted monochromatic
copy of K1,4 can be used to show that R̊∆(C+

4 ) ≤ 7. The exact value is not known.
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Next we apply the consistent Painter and weighted graphs to determine R̊∆(Cn) when
n is even. When Builder forces a monochromatic graph against a consistent Painter, it
always arises in the same color each time Builder forces it on new vertices.

Lemma 4.3. Let F1 and F2 be weighted graphs Builder can force in red against a con-
sistent Painter. For i ∈ {1, 2}, let ui be a vertex of Fi with capacity ci. Form F from
F1 + F2 by adding u1u2 and changing the capacities of u1 and u2 to c1 + 2 and c2 + 2. If
c1, c2 ≤ t − 2 and n is even, then Builder can force a red F or a blue t-weighted n-cycle.

Proof. Builder forces n/2 copies of both F1 and F2 in red. Builder then plays an n-cycle
on the copies of u1 and u2, alternating between copies of u1 and copies of u2. If these edges
are all blue, then they form a blue t-weighted n-cycle. Otherwise, a red F arises.

Theorem 4.4. If n is even, then R̊∆(Cn) = 4.

Proof. By Theorem 2.5, R̊∆(Cn) > 3; consider the upper bound. A consistent Painter
always gives an isolated triangle the same coloring. It has a monochromatic 2-weighted
P3, which we may assume by symmetry is red.

Let p = n/2. Suppose that Builder can force a red tree T , with degree 2 at the leaves
and degree 4 at non-leaves, such that T has p-sets L and L′ of leaves with the distance
in T between leaves chosen from L and L′ being n − 1. Builder can then play an n-cycle
alternating between L and L′. If these edges are not all blue, then a red n-cycle arises.
It therefore suffices to force such a red tree when Painter avoids making a blue Cn.

Let F1 and F2 both equal the 2-weighted P3, with centers u1 and u2. By Lemma 4.3,
regardless of p, Builder can force in red the weighted tree T2 obtained by adding u1u2 and
giving u1 and u2 capacity 4. This is the desired tree for p = 2 (see Figure 2).
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Figure 2: Trees used to force even cycles

Four more applications of Lemma 4.3 yield in red the weighted tree T4 obtained by
adding edges from the leaves of T2 to the centers of copies of P3, with capacity 2 at the
leaves and capacity 4 otherwise. This is the desired tree for p = 4 (see Figure 2).

Repeating this process doubles the number of leaves as p increases by 2, generating
sufficiently many leaves to obtain L and L′ in the tree Tp when p is even. Also, in T6 there
are eight vertices available on each side; as desired, the distance between leaves in the two
sets is 11. Applying the same operation to expand only at L and not at L′ yields leaf sets
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of sizes 16 and 8 with the distance between leaves from the two sets being 7. Choosing
seven leaves from each set yields T7. Repeating the expansion process at all leaves now
generates Tp for all larger odd p.

Unfortunately, this process does not make enough leaves in each of two sets to form
T3 or T5. Hence we force a monochromatic C6 or C10 in a different way. Returning to the
isolated triangles, we consider two cases. In the figure, the solid straight edges are red.

Case 1: Painter makes isolated triangles all red. Builder plays four isolated triangles;
these become all red, with all vertices having degree 2. Builder now uses Lemma 4.3
to force a red matching joining one triangle to vertices in the other three; the matched
vertices now have degree 4. The distance between any two nonadjacent vertices of degree
2 is now 5. By playing a 6-cycle on these vertices, Builder forces a monochromatic C6.

Case 2: Painter makes isolated triangles majority red. Again Builder plays four
triangles, with degree 2 at each vertex. In the figure, blue edges are bold and dashed (the
dashed ones are not needed). Again Builder forces the red matching, using the center of
each red P3. Now the distance between vertices remaining with degree 2 is 5 or 6. Instead
of a 6-cycle, Builder plays only four additional edges as shown in Figure 3, using two
existing blue edges to help force a monochromatic C6 whether the four new edges are all
blue or any red.
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4

2

4 4 4

Figure 3: Forcing C6

A similar strategy forces C10, again with two cases by whether the consistent Painter
makes isolated triangles monochromatic (see Figure 4). In each case, we may assume that
the majority color on the triangles is red. As with C6, we force the desired cycle or a
“tree” of triangles by repeatedly applying Lemma 4.3. The tree is deeper by one level of
triangles in order to add 4 to the length of the paths that may lead to red cycles. When
the isolated triangles are not monochromatic, again the leftmost and rightmost “subtrees”
are too far apart in red, so we again use two known blue edges and add just eight edges
joining the middle third to the outside thirds. Making any such edge red completes a red
10-cycle, and making all eight of them blue completes a blue 10-cycle.

In contrast, R∆(C3) = R∆(C4) = 5 [18]. For even cycles, we have R̊∆(Cn) = 4, but
the best known general upper bound for R∆(Cn) is 96 [15]. Also, R∆(Cn) ≤ 3458 for all
odd n [15]. In the next section, we discuss the exact value of R̊∆(Cn) for odd n.
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Figure 4: Forcing C10

5 Odd Cycles and Graphs with Maximum Degree 2

From Theorem 2.5, it follows that R̊∆(Cn) ≥ 4 for each n. So far, we have proved that
R̊∆(Cn) = 4 when n is even or n = 3. Here, we prove that R̊∆(Cn) ≤ 5 for all n and
discuss the techniques used to prove R̊∆(Cn) = 4 also when n is odd.

After discussing odd cycles, we close the section by using these techniques to prove
that R̊∆(G) ≤ 6 whenever ∆(G) ≤ 2. A graph with maximum degree 2 is a disjoint union
of paths and cycles, but we have seen that the ability of Builder to force G and G′ when
playing on Sk does not imply that Builder can force G + G′ on Sk.

As usual, we may assume that Builder plays against a consistent Painter. The results
in this section can be proved without this assumption, but with it the arguments are
marginally shorter, and using the consistent Painter keeps our phrasing consistent.

We begin with two lemmas that describe how Builder can extend given strategies to
force larger structures; these are similar to Lemma 4.3, where we could add any edge
joining two graphs that can be forced in red. When the alternative cycle in blue is odd
rather than even, we have weaker results that require either 1) using the same vertex in
two copies of the same graph, or 2) restricting one of the graphs to be a single vertex.
Lemma 5.1 holds also for even n, but when n is even Lemma 4.3 is much stronger.

Lemma 5.1. Against a consistent Painter, let F be a weighted graph Builder can force
in red, with u ∈ V (F ) having capacity c. Form F ′ from F + F by adding an edge joining
the two copies of u and changing the capacity at its endpoints to c + 2. If n is odd, then
Builder can force a red F ′ or a blue t-weighted n-cycle, where t = c + 2.

Proof. Builder forces n copies of F in red and then plays an n-cycle on the copies of u.
Painter must produce a blue t-weighted n-cycle or a red F ′.

The full generality of the next lemma, with r 6= b, will be used in Theorem 5.6.

Lemma 5.2. Against a consistent Painter, let F be a weighted graph Builder can force
in red, with u ∈ V (F ) having capacity c. Let F ′ be the weighted graph obtained from F
by changing the capacity at u to c + 2 and adding a new vertex v with capacity 2 adjacent
only to u. Let t = max{c + 2, 4}. If b is odd, then Builder can force a red F ′ or a red
t-weighted r-cycle or a blue t-weighted b-cycle.
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Proof. Builder forces r(b− 1)/2 red copies of F against this Painter. Next, Builder plays
an r(b−1)-cycle, alternating between copies of u and new vertices. Using red on any such
edge produces a red copy of F ′; otherwise, there is a blue r(b−1)-cycle in which alternate
vertices have degree 2. This cycle decomposes into r paths P1, . . . , Pr, each consisting
of b − 1 consecutive edges. Since each path has even length, we may assume that the
endpoints of each path have degree 2.

Next, for each path Pj, Builder plays the edge joining its two endpoints. Using blue
for any such edge creates a blue b-cycle (respecting capacities). Otherwise, these edges
form a red r-cycle in which every vertex has degree 4.

Theorem 5.3. If n is odd, then R̊∆(Cn) ≤ 5.

Proof. Let F be the 3-weighted path with n vertices, with vertices v0, . . . , vn−1 in order,
and let G be the 5-weighted n-cycle. By Corollary 2.3, Builder can force F . In fact,
against a consistent Painter, Builder can force F in a particular color, say red. By
repeated application of Lemma 5.2, Builder can force a monochromatic 5-weighted n-
cycle or the red weighted tree F ′, where F ′ is obtained from F as follows. By repeatedly
appending single edges, grow from vi a path of length min{i, n − 1 − i} to a new leaf xi.
Let the capacities of vertices in F ′ be 5 on v2, . . . , vn−2, 4 on the other non-leaves of F ′,
3 on v0 and vn−1, and 2 on the other leaves of F ′ (see Figure 5).

Let p = ⌊n/2⌋; note that vp is the central vertex of F . Builder now presents a cycle
C through the n leaves of F ′, in the order x0, xp+1, x1, xp+2, x2, . . . , xn−1, xp. Consecutive
vertices in this list are separated by distance n − 1 in F ′. Using red on any such edge
produces a red 5-weighted n-cycle; otherwise, the 5-weighted n-cycle arises in blue.

• • • • • • • • •

3 5 5 5 5 5 5 5 3

• • • • • • •2 4 4 4 4 4 2

• • • • •

• • •

•

2 4 4 4 2

2 4 2

2

Figure 5: Forcing 5-weighted odd cycles

The idea behind Theorem 5.3 is to force a monochromatic tree with many leaves of
weight 2 at the same distance from the center. Doing so was easy with weight 5 allowed
along an initial path. To prove that R̊∆(Cn) = 4 when n is odd and large, we developed a
Builder strategy on S4 that iteratively combines four copies of a monochromatic tree (using
Lemma 5.1) to force the next monochromatic tree. In the resulting sequence T0, T1, . . . of
trees, the number of leaves roughly quadruples with each step, while the diameter roughly
doubles. The leaves of Tr can then be further extended (by Lemma 5.1) so that all the
leaves have the same distance from the center.
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The last step in Theorem 5.3 can then be used to force Cn when n is odd. The trouble
is that n must be at least the diameter of Tr and at most the number of leaves. Since the
number of leaves grows faster, the argument succeeds for large n. Examining the details,
the argument works when n ≥ 689 and when 337 ≤ n ≤ 514 to show that Cn = 4.

The insight by Rolnick [25] is that the leaves need not all have the same distance from
the center. It suffices to use Lemma 5.1 to force a monochromatic 4-weighted tree having n
leaves with weight 2 that can be ordered cyclically so that the distance in the tree between
successive leaves in the order is n − 1. This allows him to use smaller monochromatic
trees, and their diameter is not an issue. With these ideas, his general argument obtains
R̊∆(Cn) = 4 when n is odd and at least 13. He still must give ad hoc arguments (like
those for n = 6 and n = 10 in Theorem 4.4) for n ∈ {5, 7, 9, 11}.

Our final result is that R̊∆(G) ≤ 6 when ∆(G) ≤ 2. We need two more lemmas.

Lemma 5.4. Choose p, q ∈ N with q even and 2⌊p/4⌋ ≥ q/2 ≥ 2. If Builder can force a
red 2-weighted P3 against a consistent Painter, then Builder can force a red 4-weighted
p-cycle or a blue 4-weighted q-cycle.

Proof. Painter plays to avoid a blue q-cycle. If p is even, then Builder can use Lemma 4.3
to force a red tree of diameter p − 1 having degree at most 4 at non-leaves and degree at
most 2 at leaves, as in Theorem 4.4. Since p − 1 is odd, there are isomorphic subtrees
obtained by deleting the central edge. If instead p is odd, then the tree for p − 1 can
be extended by one edge at each leaf in one of those subtrees. The number of leaves
in each such subtree is 2⌊p/4⌋. By the choice of p, there are at least q/2 leaves in each
subtree. Builder plays a q-cycle through these leaves, alternating between the two sides.
This yields a red p-cycle or a blue q-cycle, 4-weighted.

Lemma 5.5. If r and b are both odd, then Builder can force a red Cr or a blue Cb on S6

against any consistent Painter.

Proof. By symmetry, we may assume b ≤ r. By presenting a b-cycle, Builder forces a
red 2-weighted P2. With Painter avoiding a red Cr and blue Cb, repeated application of
Lemma 5.2 forces a red Pr with degree 2 at the leaves and 4 at the non-leaves. With
further applications of Lemma 5.2, red paths can be grown from the non-leaves of the red
Pr to form a copy of the tree F ′ illustrated in Figure 5, with degree 6 in place of 5 and
degree 4 in place of 3.

Now Builder plays a cycle through b leaves in F ′, chosen and ordered as in Theorem 5.3
so that successive vertices are separated by distance r − 1 in F ′. Using red on any such
edge produces a red 6-weighted r-cycle; otherwise, a 4-weighted b-cycle arises in blue.

Theorem 5.6. If ∆(G) ≤ 2, then R̊∆(G) ≤ 6.

Proof. Fix a graph G with maximum degree 2. We may assume that every component is
a cycle, since otherwise we force the graph obtained by completing each path component
to a cycle. Without loss of generality, we may assume that Painter makes at least two
edges red when given an isolated triangle. That is, Builder forces a 2-weighted P3 in red.
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If Builder cannot force a monochromatic G in S6, then there must be integers r and
b such that Builder cannot force a red Cr and cannot force a blue Cb. By Lemma 5.5, we
may assume that r and b are not both odd.

If b is even, then Builder can force a red (r − 1)b-cycle or a blue b-cycle, 4-weighted,
by Lemma 5.4. If the former, then by cutting the cycle into b paths of length r − 1 and
playing a cycle through their endpoints, Builder forces a red r-cycle or a blue b-cycle,
6-weighted. Call this “inscribing” a b-cycle.

Hence we may assume that b is odd and r is even. Let p = (r−1)(2b−1)−1; note that
2⌊p/4⌋ ≥ (b−1)r/2. By Lemma 5.4, Builder can force a red p-cycle or a blue (b−1)r-cycle,
4-weighted. If the latter, then inscribing an r-cycle forces a desired cycle, 6-weighted.

Hence we may assume that a red p-cycle arises, 4-weighted. Builder cuts it into b − 1
consecutive paths of length r − 1 and one path of length (r − 1)b − 1. Playing a cycle
on the breakpoints between paths forces a 6-weighted red r-cycle or a 6-weighted blue
b-cycle or a red (r − 1)b cycle where two adjacent vertices have degree at most 6 and the
remaining vertices have degree at most 4. Since r ≥ 4, in this cycle Builder can inscribe a
b-cycle that avoids those two high-degree vertices. A desired cycle arises, 6-weighted.

A short proof of the weaker bound R̊∆(G) ≤ 8 when ∆(G) ≤ 2 avoids Lemma 5.5. For b
even, argue as before. For b odd, (b−1)r is even, and Builder forces a red (r−1)(b−1)r-
cycle or blue (b − 1)r-cycle, 4-weighted. Inscribing an r-cycle in the latter gives a 6-
weighted desired cycle. Inscribing a (b− 1)r-cycle in the former gives a 6-weighted red r-
cycle or blue (b−1)r-cycle, and then inscribing an r-cycle yields a desired cycle, 8-weighted.
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