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Abstract

In 1970 P. Monsky showed that a square cannot be triangulated into an odd
number of triangles of equal areas; further, in 1990 E. A. Kasimatis and S. K. Stein
proved that the trapezoid T (α) whose vertices have the coordinates (0, 0), (0, 1),
(1, 0), and (α, 1) cannot be triangulated into any number of triangles of equal areas
if α > 0 is transcendental.

In this paper we first establish a new asymptotic upper bound for the minimal
difference between the smallest and the largest area in triangulations of a square
into an odd number of triangles. More precisely, using some techniques from the
theory of continued fractions, we construct a sequence of triangulations Tni

of the
unit square into ni triangles, ni odd, so that the difference between the smallest and
the largest area in Tni

is O
(

1
n3

i

)

.

We then prove that for an arbitrarily fast-growing function f : N → N, there
exists a transcendental number α > 0 and a sequence of triangulations Tni

of the
trapezoid T (α) into ni triangles, so that the difference between the smallest and the
largest area in Tni

is O
(

1
f(ni)

)

.

Keywords: triangulation, equidissection, area discrepancy, square, trapezoid, contin-
ued fraction

1 Introduction

In this paper we consider simplicial triangulations of squares and trapezoids. By ‘simpli-
cial’ we mean that the intersection of any two triangles in the triangulation, if non-empty,
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is either a common vertex or two vertices and the entire edge that joins them. In other
words, a vertex is not allowed to lie in the interior of an edge of another triangle. How-
ever, we do allow vertices to lie on the edges of the square (or the trapezoid, respectively).
Throughout the paper, by a triangulation we will always mean a simplicial triangulation.

It is a celebrated result of Paul Monsky that a square cannot be triangulated into
an odd number of triangles of equal areas [11] (see also [1, 16]). Following Monsky’s
result, a number of authors have investigated the existence of ‘equal-area triangulations’
for various other types of polygons, such as trapezoids, regular n-gons, polyominos, etc.
(see [7, 5, 12, 4, 6, 14], for example). See also [16] for a nice survey of some basic results
in the theory. In recent years, research activities related to ‘equal-area triangulations’ of
polygons have further increased due to some questions and conjectures posed by Richard
Kenyon, Sherman Stein, and Günter M. Ziegler [10, 18, 15, 17, 2].

In Section 2 of this paper, we first address the following question asked by Günter M.
Ziegler in 2003: given an odd number n ∈ N, how small can the difference between the
smallest and the largest area in a triangulation of a square into n triangles become?

Formally, this problem may be described as follows. If for a triangulation Tn of the
unit square into n triangles with areas A1, . . . , An, we define

Max(Tn) := max
1≤i<j≤n

|Ai − Aj |,

then we are interested in
M(n) := min

Tn∈Sn

Max(Tn),

where Sn is the set of all triangulations of the unit square into n triangles. It is easy to
see that the minimum M(n) is in fact attained (see [10]). Obviously, we have M(n) = 0 if
n is even. So we suppose that n is odd.

The following trivial - though currently best known - asymptotic upper bound for
M(n) was established in [10]:

M(n) = O(
1

n2
).

In Section 2.2 (Theorem 2.5), we derive

M(n) = O(
1

n3
) (1)

by constructing a sequence {Tni
} of triangulations of the unit square that satisfies

Max(Tni
) = O( 1

n3
i

).

Some of the difficulties that arise in further improving this upper bound for M(n) are
discussed in Section 2.3.

In Section 3, we study the area discrepancy of triangulations of trapezoids. For any real
number α > 0, we let T (α) denote the trapezoid whose vertices have the coordinates (0, 0),
(0, 1), (1, 0), and (α, 1). Note that we may restrict our attention to such trapezoids, since
any trapezoid is affinely equivalent to a trapezoid T (α). Analogously to the definitions
above, we let

M(α, n) := min
Tn∈S

(α)
n

Max(Tn),
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where S
(α)
n is the set of all triangulations of T (α) into n triangles, and for any triangulation

Tn of T (α) into n triangles with areas A1, . . . , An, Max(Tn) is defined as

Max(Tn) := max
1≤i<j≤n

|Ai − Aj |.

It is well known that if α is transcendental, then T (α) cannot be triangulated into triangles
of equal areas (see [7] as well as [5, 16, 12, 4], for example), so that for every n ∈ N we
have

M(α, n) > 0.

One might suspect that - due to the large number of degrees of freedom for the vertex
coordinates of a triangulation of a trapezoid (or, in particular, of a square) - there exists
an exponential asymptotic upper bound for M(α, n) (see also [10]). We prove in Section
3 (Theorem 3.2) that for suitable transcendental numbers α, the following even stronger
statement holds:

Given an (arbitrarily fast-growing) function f : N → N, there exists a transcendental
number α > 0 and a strictly monotone increasing sequence of natural numbers ni with

M(α, ni) = O
( 1

f(ni)

)

. (2)

2 Odd triangulations of a square

2.1 Preliminaries

The starting point for our construction of sequences of triangulations which prove (1) are
certain triangulations of a trapezoid, as they are described by Stein and Szabó in [16].

Theorem 2.1 [16] Let t1, t2, and t3 be positive integers such that t22 − 4t1t3 is positive
and is not the square of an integer (i.e., f(x) = t3x

2−t2x+t1 has two positive nonrational
roots). Let c be a root of f(x) and let b = ct3

1+ct3
. Then

(i) 0 < b < 1;

(ii) the triangulation of the trapezoid ABCD into the triangles ∆1, ∆2, and ∆3 with
respective areas A1, A2, and A3 depicted in Figure 1 satisfies

A2

A1
=

t2
t1

and
A3

A1
=

t3
t1

.

Corollary 2.2 [16] A triangulation of ∆1 into t1, ∆2 into t2, and ∆3 into t3 triangles of
equal areas gives rise to a triangulation of the trapezoid ABCD into t1 + t2 + t3 triangles
of equal areas.

To prove (1) we need the following stronger version of Corollary 2.2:
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A = (0, 0) B = (1, 0)

C = (c, 1)D = (0, 1)

F = (0, b)

∆3

∆2

∆1

Figure 1: A triangulation of the trapezoid ABCD, where b and c are defined as in Theorem
2.1.

Corollary 2.3 Let a ∈ N, and let t1, t2, and t3 be as in Theorem 2.1. Then the following
statements hold:

(i) If t2 is odd, then the trapezoid ABCD in Figure 1 can be triangulated into a(t1+t2+
t3) triangles of equal areas, so that no vertex lies in the interior of the line segment
BC;

(ii) if t2 is even, then the trapezoid ABCD in Figure 1 can be triangulated into a(t1 +
t2 + t3) triangles of equal areas, so that one of the vertices of the triangles is the
midpoint of the line segment BC and no other vertices lie in the interior of BC.

Proof. (i) Let a = 2αa′, where a′ is odd and α ≥ 0. It is easy to triangulate ∆3 into at3
triangles of equal areas by placing at3 − 1 vertices equidistantly on the line segment AB.
Then we triangulate each of the triangles ∆1 and ∆2 into 2α triangles by placing 2α − 1
vertices equidistantly on the line segment FC. Since t2a

′ is odd, we can triangulate each of
the triangles in the resulting triangulation of ∆2 into t2a

′ triangles of equal areas without
placing vertices on edges. If t1 is odd, the same can be done with the triangulation of ∆1,
yielding a desired triangulation of the trapezoid ABCD. If t1 is even, then we denote the
vertices that were added on the line segment FC by V1, . . . , V2α−1, and triangulate each
of the 2α triangles in the triangulation of ∆1 into t1a

′ triangles of equal areas by placing
t1a

′ − 1 vertices equidistantly on each of the line segments DV2i−1, i = 1, . . . , 2α−1. This
proves (i).

(ii) Let t2 = 2τ t′, where t′ is odd and τ ≥ 1. Then we triangulate the triangle ∆2 as
follows. First, we split ∆2 into two triangles of equal areas by connecting the vertex F with
the midpoint M of the line segment BC. Then we triangulate each of these two triangles
into 2τ−1t′a triangles of equal areas by placing 2τ−1t′a − 1 vertices equidistantly on the
line segment FM . The triangles ∆1 and ∆3 we triangulate into at1 and at3 triangles of
equal areas by placing at1 − 1 and at3 − 1 vertices equidistantly on the line segments AB
and DC, respectively. This yields a desired triangulation of the trapezoid ABCD. �

Throughout this paper, we will need good rational approximations of a real number α;
so we will frequently use some basic results from the theory of continued fractions which
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we summarize in Theorem 2.4. Good sources for these results are [8, 9], for example.
Let the continued fraction representation of a real number α > 0 be given by

α = [a1, a2, a3, . . .] := a1 +
1

a2 + 1
a3+ 1

a4+...

,

where a1 ∈ N ∪ {0} and ai ∈ N for all i ≥ 1. Then the rational number

[a1, a2, . . . , an] := a1 +
1

a2 + . . . + 1
an−1+ 1

an

is called the nth convergent of α.

Theorem 2.4 Let α ∈ R, α > 0, and let pn

qn
be the nth convergent of α with gcd(pn, qn) =

1. Then

(i) the process of representing α as a continued fraction terminates if and only if α is
rational;

(ii) pnqn−1 − pn−1qn = (−1)n;

(iii) |α − pn

qn
| ≤ 1

q2
n
.

2.2 The main result for the square

Theorem 2.5 Let T
(1)
n0 , T

(2)
n0 , and T

(3)
n0 be the triangulations of the rectangle AECD de-

picted in Figure 2 with E = (c, 0), G = (1 + 2
3
(c − 1), 0), and M = (1 + 1

2
(c − 1), 1

2
);

these triangulations extend the triangulation of the trapezoid ABCD in Figure 1. Then
for some k ∈ {1, 2, 3}, there exists a sequence of triangulations T

(k)
ni , i ≥ 0, of AECD

into ni triangles so that

(i) n0 < n1 < n2 < . . . (ni odd for i ≥ 1);

(ii) T
(k)
ni is a refinement of the triangulation T

(k)
n0 (i.e., each triangle of T

(k)
ni is fully

contained in a triangle of T
(k)
n0 );

(iii) Max(T
(k)
ni ) = O( 1

n3
i

).

Remark 2.1 By appropriately scaling the x-axis, Theorem 2.5 can immediately be trans-
ferred from the rectangle AECD to the unit square.

Proof of Theorem 2.5. Wlog we assume that c > 1 (as it is the case in Figures 1 -
2). For c < 1, the proof proceeds analogously. Let Atrap denote the area of the trapezoid
ABCD and Atria denote the area of the triangle BEC. Then we have

Atrap

Atria

=
c + 1

c − 1
,
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A B

CD

F

E

(a)

A B

CD

F

E

M

(b)

A B

CD

F

E

M

G

(c)

Figure 2: Triangulations of the rectangle AECD: (a) the triangulation T
(1)
n0 ; (b) the

triangulation T
(2)
n0 ; (c) the triangulation T

(3)
n0 .

and since c /∈ Q, Atrap

Atria
is not rational. We now consider four cases.

Case 1 (see Figure 2 (a)): Suppose that both t2 and t1 + t2 + t3 are odd. By Theorem
2.4 (iii), for the nth convergent pn

qn
of Atrap

Atria
, we have

∣

∣

∣

Atrap

Atria

−
pn

qn

∣

∣

∣
≤

1

q2
n

,

and hence
∣

∣

∣

Atrap

pn

−
Atria

qn

∣

∣

∣
≤

Atria

pn

·
1

q2
n

.

By Theorem 2.4 (iii), there exist positive constants c1 and c2 such that for all n ∈ N we
have

c1qn ≤ pn ≤ c2qn. (3)

Therefore,
∣

∣

∣

Atrap

(t1 + t2 + t3)pn

−
Atria

(t1 + t2 + t3)qn

∣

∣

∣
≤

Atria

c′1
·

1

q3
n

,

where c′1 = (t1 + t2 + t3)c1.
By Corollary 2.3 (i), the trapezoid ABCD can be triangulated into (t1 + t2 + t3)pn

triangles of equal areas, and the triangle BEC can be triangulated into (t1 + t2 + t3)qn

triangles of equal areas, so that we obtain a triangulation T
(1)
ni of the rectangle AECD

into ni = (t1 + t2 + t3)(pn + qn) triangles with

Max(T (1)
ni

) ≤
Atria

c′1
·

1

q3
n

.

It follows from (3) that the number ni of triangles in T
(1)
ni is at most (t1 + t2 + t3)(c2 +1)qn.

Moreover, ni is odd for infinitely many ni, because if pn + qn is even, then it follows from
gcd(pn, qn) = 1 that both pn and qn are odd, so that, by Theorem 2.4 (ii), pn−1 + qn−1 is

odd. Thus, there exists a sequence {T
(1)
ni }i≥0 of triangulations of AECD which satisfies

the desired properties.
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Case 2 (see again Figure 2 (a)): Suppose that t2 is odd and that t1 + t2 + t3 is even.
By Theorem 2.4 (iii), for the nth convergent pn

qn
of

Atrap

t1+t2+t3

Atria

,

we have
∣

∣

∣

Atrap

(t1 + t2 + t3)pn

−
Atria

qn

∣

∣

∣
≤

Atria

pn

·
1

q2
n

.

Thus, analogously to Case 1, Corollary 2.3 (i) guarantees the existence of a triangulation

T
(1)
ni of the rectangle AECD into ni = (t1 + t2 + t3)pn + qn triangles with

Max(T (1)
ni

) ≤ c ·
1

q3
n

for some constant c. Since, by Theorem 2.4 (ii), qn and qn−1 cannot both be even, ni is

odd for infinitely many ni. Thus, there exists a sequence {T
(1)
ni }i≥0 of triangulations of

AECD which satisfies the desired properties.
Case 3 (see Figure 2 (b)): Suppose that t2 is even and that t1 + t2 + t3 is odd. Note

that in the triangulation T
(2)
n0 of AECD depicted in Figure 2 (b), the triangle BEC is

triangulated into two triangles of equal areas. By Theorem 2.4 (iii), for the nth convergent
pn

qn
of

Atrap

t1+t2+t3
Atria

2

,

we have
∣

∣

∣

Atrap

(t1 + t2 + t3)pn

−
Atria

2qn

∣

∣

∣
≤

Atria

2pn

·
1

q2
n

.

Thus, it follows from Corollary 2.3 (ii) that there exists a triangulation T
(2)
ni of the rect-

angle AECD into ni = (t1 + t2 + t3)pn + 2qn triangles with

Max(T (2)
ni

) ≤ c ·
1

q3
n

for some constant c. Since, by Theorem 2.4 (ii), pn and pn−1 cannot both be even, ni is

odd for infinitely many ni. Thus, there exists a sequence {T
(2)
ni }i≥0 of triangulations of

AECD which satisfies the desired properties.
Case 4 (see Figure 2 (c)): Finally, suppose that both t2 and t1 + t2 + t3 are even.

Note that in the triangulation T
(3)
n0 of AECD depicted in Figure 2 (c), the triangle BEC

is triangulated into three triangles of equal areas. By Theorem 2.4 (iii), for the nth
convergent pn

qn
of

Atrap

t1+t2+t3
Atria

3

,
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we have
∣

∣

∣

Atrap

(t1 + t2 + t3)pn

−
Atria

3qn

∣

∣

∣
≤

Atria

3pn

·
1

q2
n

.

Thus, by Corollary 2.3 (ii), there exists a triangulation T
(3)
ni of the rectangle AECD into

ni = (t1 + t2 + t3)pn + 3qn triangles with

Max(T (3)
ni

) ≤ c ·
1

q3
n

for some constant c. Further, we again have that ni is odd for infinitely many ni, since, by
Theorem 2.4 (ii), qn and qn−1 cannot both be even. Thus, there exists a sequence {T

(3)
ni }i≥0

of triangulations of AECD which satisfies the desired properties. This completes the
proof. �

2.3 Further remarks

In the previous section (Theorem 2.5) we showed that M(n) = O( 1
n3 ) by constructing a

sequence {Tni
} of triangulations of the unit square, starting from a suitable triangulation

Tn0 , with the property that each triangulation Tni
is a refinement of the triangulation Tn0 .

Can the asymptotic upper bound O( 1
n3 ) for M(n) be further improved with this method?

Clearly, if the triangles ∆1, . . . , ∆n0 of Tn0 with respective areas A1, . . . , An0 satisfy
the property that all quotients Ai

A1
, i = 2, . . . , n0, are rational, then one cannot obtain

an analogous result to Theorem 2.5 by refining Tn0, because rational numbers have finite
continued fraction representations (recall Theorem 2.4 (i)) and |α − p

q
| < 1

q2 has only a

finite number of solutions if α is rational (see [3], for example).
Our analyses in the previous sections suggest to consider triangulations of the following

type:

Definition 2.1 We say that a triangulation Tn0 of the unit square (or, more generally,
of a trapezoid) into triangles ∆1, . . . , ∆n0 is an r-triangulation if for any natural numbers
B1, . . . , Bn0 , there exists a natural number B and a refinement of Tn0 in which each ∆i is
triangulated into B ·Bi triangles of equal areas. (See also Remark 3.1 for further comments
on r-triangulations.)

Remark 2.2 Let Tn0 be a triangulation of the unit square whose triangles ∆1, . . . , ∆n0

have respective areas A1, . . . , An0. If Tn0 is an r-triangulation and all quotients Ai

A1
, i =

2, . . . , n0, are rational, then Tn0 can of course be refined to a triangulation of the unit
square whose triangles all have equal areas. However, it then follows from Monsky’s
theorem (see [11]) that the number of triangles in this triangulation must be even.

Remark 2.3 To improve the asymptotic upper bound for M(n) in Theorem 2.5 it is
natural to try the following approach.

Let A1, . . . , An0 be the areas of the triangles ∆1, . . . , ∆n0 of an r-triangulation Tn0

of the unit square, and let A′
1, . . . , A

′
n0

be the areas of the triangles ∆′
1, . . . , ∆

′
n0

of a
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triangulation T ′
n0

of the unit square, where the coordinates of the vertices of the ∆′
i are

rational numbers that approximate the coordinates of the vertices of the ∆i very well.
Moreover, the combinatorial type of the triangulations Tn0 and T ′

n0
shall be the same.

Then the quotients
A′

i

A′

1
, i = 2, . . . , n0, are of course rational, say

A′
i

A′
1

=
ai

a1
with ai ∈ N for all i. (4)

Due to the continuity of the area function, the approximation

∣

∣

∣

Ai

A1
−

ai

a1

∣

∣

∣

is then also very good. It is therefore natural to refine the triangulation Tn0 by triangulating
each ∆i into Bai triangles of equal areas. This yields a triangulation with B(a1+. . .+an0)
triangles.

Unfortunately, B(a1 + . . . + an0) will always be even, because it follows from (4) that
if each triangle ∆′

i is triangulated into Bai triangles of equal areas, then one obtains a
triangulation of the unit square whose triangles have all equal areas.

The next theorem (Theorem 2.7) shows that if there exist two triangles in Tn0 whose
ratio of areas is not rational but algebraic over Q, then Theorem 2.5 can also not be
improved by refining Tn0 . This result is based on the following well-known fact:

Lemma 2.6 (Thue, Siegel, Roth) [13] Let ǫ > 0, A > 0, and α ∈ R be nonrational,
but algebraic over Q. Then there only exist finitely many fractions p

q
, gcd(p, q) = 1, with

∣

∣

∣
α −

p

q

∣

∣

∣
<

A

q2+ǫ
.

Theorem 2.7 Let Tn0 be a triangulation of the unit square which contains two triangles
∆1 and ∆2 with respective areas A1 and A2 so that

α =
A1

A2

is not rational, but algebraic over Q. Let ǫ > 0. Then there exists no sequence of trian-
gulations Tni

, i ≥ 0, of the unit square into ni triangles with

(i) n0 < n1 < n2 < . . .;

(ii) Tni
is a refinement of the triangulation Tn0 (i.e., each triangle of Tni

is fully con-
tained in a triangle of Tn0);

(iii) Max(Tni
) = O( 1

n3+ǫ
i

).
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Proof. Let {Tni
}i≥0 be a sequence of triangulations satisfying the conditions (i), (ii), and

(iii). Then {Tni
}i≥0 gives rise to sequences {Tn′

i
}i≥0 and {Tn′′

i
}i≥0 of triangulations of the

triangles ∆1 and ∆2 into n′
i and n′′

i triangles, respectively. Condition (iii) implies that
limi→∞ n′

i = ∞ and limi→∞ n′′
i = ∞. So, wlog, the sequence {Tni

}i≥0 can be chosen so
that

n′
0 ≤ n′

1 ≤ n′
2 ≤ . . .

n′′
0 ≤ n′′

1 ≤ n′′
2 ≤ . . .

Note that there exist triangles D1 and D2 in the triangulations Tn′

i
and Tn′′

i
, respectively,

so that the difference between the area of D1 and the area of D2 is at least

∣

∣

∣

A1

n′
i

−
A2

n′′
i

∣

∣

∣
,

because the maximum over all differences between the area of a triangle in Tn′

i
and the

area of a triangle in Tn′′

i
is minimal if both ∆1 and ∆2 are triangulated into triangles of

equal areas. Thus, we have

Max(Tni
) ≥

∣

∣

∣

A1

n′
i

−
A2

n′′
i

∣

∣

∣
. (5)

By the definition of α, we have

∣

∣

∣

A1

n′
i

−
A2

n′′
i

∣

∣

∣
=

∣

∣

∣
α −

n′
i

n′′
i

∣

∣

∣
·
A2

n′
i

. (6)

Now, if condition (iii) holds, then it follows from (5) that there exists a constant c > 0
with

∣

∣

∣

A1

n′
i

−
A2

n′′
i

∣

∣

∣
≤

c

n3+ǫ
i

for all i ∈ N. (7)

Therefore, by (6) and (7), we have

∣

∣

∣
α −

n′
i

n′′
i

∣

∣

∣
≤

n′
i

A2
·

c

n3+ǫ
i

≤
c

A2
·

1

n2+ǫ
i

≤
c

A2
·

1

n′′2+ǫ
i

for all i ∈ N. (8)

If
n′

i

n′′

i

takes on infinitely many different values, then (8) contradicts Lemma 2.6.

So, suppose there exists an i ∈ N, so that

n′
j

n′′
j

=
kjn

′
i

kjn
′′
i

for infinitely many j with j ≥ i, where kj ∈ N, kj ≥ 0. Then it follows from (5) that for
infinitely many j with j ≥ i, we have

Max(Tnj
) ≥

1

kj

·
∣

∣

∣

A1

n′
i

−
A2

n′′
i

∣

∣

∣
.

the electronic journal of combinatorics 18 (2011), #P137 10



Further, we have nj ≥ kj(n
′
i + n′′

i ), and hence

Max(Tnj
) · nj ≥

∣

∣

∣

A1

n′
i

−
A2

n′′
i

∣

∣

∣
· (n′

i + n′′
i )

for infinitely many j with j ≥ i. This contradicts (iii), since the right-hand side of the
above inequality is constant. �

Theorem 2.8 The condition in Theorem 2.7 that the triangulation Tn0 contains two
triangles ∆1 and ∆2 with respective areas A1 and A2 so that α = A1

A2
is not rational

but algebraic over Q may be replaced by the condition that Tn0 contains a triangle ∆1

whose area A1 is not rational but algebraic over Q.

Proof. If we assume that there exists a sequence of triangulations of the unit square
starting with Tn0 and satisfying the conditions (i)−(iii) of Theorem 2.7, then, analogously
to the proof of Theorem 2.7, it follows that for each of the triangles ∆j , j = 2, . . . , n0,
of the triangulation Tn0 , there exists a sequence (nji

)i∈N of natural numbers, so that for
appropriate positive constants c2, . . . , cn0, we have

∣

∣

∣

Aj

A1

−
nji

n1i

∣

∣

∣
≤ cj ·

1

n2+ǫ
1i

for all i ∈ N, (9)

where Aj is the area of the triangle ∆j for each j. Further, it follows from the proof of
Theorem 2.7 that for each j = 1, . . . , n0,

nji

n1i

takes on infinitely many different values. It

follows that the same is also true for n1i
, for otherwise (9) would not hold for all i ∈ N.

Since we have A2 + . . . + An0 = 1 − A1, summation of the inequalities in (9) yields a
constant c > 0 and a sequence (ni)i∈N with

∣

∣

∣

1 − A1

A1
−

ni

n1i

∣

∣

∣
≤ c ·

1

n2+ǫ
1i

for all i ∈ N. (10)

Since, by assumption, A1 is not rational but algebraic over Q, the same is also true for
1−A1

A1
. Moreover, since n1i

takes on infinitely many different values, the right-hand side of
the inequality (10) becomes arbitrarily small as i goes to infinity, and hence ni

n1i

also takes

on infinitely many different values. Thus, the inequality (10) contradicts Lemma 2.6. �

It follows from Theorem 2.7 and the comments in the beginning of this section that
an improvement of Theorem 2.5 using refinements of a given triangulation Tn0 is only
possible if the quotients Ai

A1
, i = 2, . . . , n0, are all either rational or transcendental, and

Ai

A1
is transcendental for at least one i.
Note that a triangulation of the unit square into n triangles is determined by the

(n− 2) ‘free’ coordinates of the corresponding vertices. If (n− 2) of the (n− 1) quotients
Ai

A1
are rational, then the free coordinates satisfy (n−2) polynomial equations with integer

coefficients, so that one may suspect that all the free coordinates - and hence also all the
quotients Ai

A1
- are algebraic over Q. In other words, we anticipate that an improvement of

Theorem 2.5 can only be obtained if at least two of the quotients Ai

A1
are transcendental.
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So, let A2

A1
, . . . , Ar+1

A1
, r ≥ 2, be transcendental, and let Ar+2

A1
, . . . , An

A1
be rational. To

improve Theorem 2.7 we then need simultaneous approximations of the form

∣

∣

∣

Ai

A1
−

ai

a1

∣

∣

∣
≤

c

a2+ǫ
1

, i = 2, . . . , r + 1, (11)

where ǫ > 0 and c is a constant, so that a1 + . . . + an is odd. It remains open whether
there exists such an example.

It is a well known fact (see [3], for example) that there always exists an approximation
of the form

∣

∣

∣

Ai

A1
−

ai

a1

∣

∣

∣
≤

c

a
1+ 1

r

1

, i = 2, . . . , r + 1,

where c is a constant, but such an approximation is of course not good enough.
If, on the other hand, the approximation in (11) is ‘too good’, then a1 + . . . + an is

surely even, since, by Monsky’s theorem, the area discrepancy is strictly positive for all
odd triangulations of the unit square.

3 Triangulations of trapezoids

While it seems to be difficult to further improve the asymptotic upper bound for M(n)
given in Theorem 2.5 using the refinement methods of the previous section, we can use
the basic idea of Remark 2.3 to show a surprisingly strong result concerning the area
discrepancy of triangulations of certain trapezoids (see Theorem 3.2).

Recall from Section 1 that for any real number α > 0, T (α) is the trapezoid whose
vertices have the coordinates (0, 0), (0, 1), (1, 0), and (α, 1), and that, as shown in [7], we
have

M(α, n) > 0

for every n ∈ N, whenever α > 0 is transcendental. To prove (2), we need the following
well-known result (see [9]):

Lemma 3.1 Let a1, a2, . . . be natural numbers and α = [a1, a2, . . .]; further, let pn

qn
=

[a1, . . . , an] be the nth convergent of α, where gcd(pn, qn) = 1. Then we have

(i)
∣

∣

∣
α − pn

qn

∣

∣

∣
≤ 1

qn(an+1qn+qn−1)
(n > 1);

(ii) α is transcendental if there exists an n0 ∈ N, so that for all n ≥ n0, we have
an+1 > qn−1

n .

We also need the following remark concerning r-triangulations (recall Definition 2.1):

Remark 3.1 Let T (α), α > 0, be a trapezoid. If Tn0 is a triangulation of T (α) with the
property that edges of triangles can be removed in such a way that one obtains a dissection
of T (α) into quadrilaterals and triangles, where each triangle has at least one edge that
lies on an edge of T (α), then Tn0 is an r-triangulation.
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Proof. For triangles that have at least one of their edges, say e, on an edge of T (α),
the desired dissection can trivially be obtained by adding points appropriately on e. By
assumption, we can identify pairs of edge-sharing triangles in Tn0 , so that each of the
remaining triangles has the property that at least one of its edges lies on an edge of T (α).
Let ∆i = ABC and ∆j = BDC be such a pair of edge-sharing triangles (see Figure 3).
We add the midpoint P of the shared edge BC as a new vertex. The edges AP and DP

A

B

C

DP

Figure 3: The edge-sharing triangles ABC and BDC in Tn0.

triangulate each of the triangles ABC and BDC into two triangles of equal areas. By
appropriately choosing Bi − 1 points on AP , the triangle ∆i can be triangulated into 2Bi

triangles of equal areas. Analogously, one obtains a triangulation of ∆j into 2Bj triangles
of equal areas. This yields the desired refinement of Tn0 for B = 2. �

It remains open, whether there exist triangulations which are not r-triangulations, or
whether there exist triangulations which do not satisfy the conditions in Remark 3.1.

We are now ready to prove (2).

Theorem 3.2 Let f : N → N be an (arbitrarily fast-growing) function. Then there exists
a transcendental number α > 0 and a strictly monotone increasing sequence of natural
numbers ni with

M(α, ni) = O
( 1

f(ni)

)

.

Proof. For β ∈ R, we denote p(β) to be the point in R2 with the coordinates (β, 1). Let
α′ be a positive real number and T ′

n0
be an r-triangulation of the trapezoid T (α′) into n0

triangles, so that none of the vertices of the triangles in T ′
n0

lies on the edge between the
points p(α′) and (1, 0). By Remark 3.1, such a triangulation of T (α′) clearly exists. In
the following, we denote p′2 = (1, 0) and we let p(α′), p′2, . . . , p

′
m be the points in R2 that

correspond to the vertices of the triangles in T ′
n0

.
We show that there exists a transcendental number α > 0 and a triangulation Tn0 of

T (α), so that

(i) Tn0 has the same combinatorial type as T ′
n0

;

(ii) there exists a sequence of triangulations Tnj
, j ≥ 0, of T (α) into nj triangles with

(a) n0 < n1 < n2 < . . .;

(b) all triangulations Tnj
are refinements of Tn0;
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(c) Max(Tnj
) = O( 1

f(nj)
).

We can perturb the vertices of the triangles in the triangulation T ′
n0

, so that we obtain
a triangulation T ′′

n0
of T (α′′) which has the same combinatorial type as T ′

n0
and whose

vertices have all rational coordinates. We denote p(α′′), p2, . . . , pm to be the points in R2

that correspond to the vertices of the triangles in T ′′
n0

. In particular, α′′ is then rational,
say α′′ = tn

un
with gcd(tn, un) = 1. If A′′

i is the area of the triangle ∆′′
i in the triangulation

T ′′
n0

, then
A′′

i

A′′

1
is also rational. Let

A′′
i

A′′
1

=
A1i

A11
, A1i, A11 ∈ N.

Since we do not require that gcd(A1i, A11) = 1, we may assume wlog that the denominator
A11 is the same for all i.

The continued fraction representation of α′′ ∈ Q is finite, say α′′ = [a1, . . . , an].
We now define α and the desired triangulation Tn0 of T (α). To this end, we first

recursively construct a suitable sequence of natural numbers an+1, an+2, . . ., and define α
as

α = [a1, . . . , an, an+1, an+2, . . .].

We then define the desired triangulation Tn0 of T (α) as the triangulation which is of the
same combinatorial type as T ′′

n0
and whose vertices have the positions p(α), p2, . . . , pm.

This choice for the positions of the vertices will be possible, because we will construct α
in such a way that it is ‘close enough’ to α′′, and since, by assumption, none of the points
p2, . . . , pm lies on the edge between the points p(α′′) and (1, 0). We denote the triangle
in Tn0 that corresponds to the triangle ∆′′

i in T ′′
n0

by ∆i. The area of the triangle ∆i is
denoted by Ai.

First, we define an+1 appropriately. By definition, tn
un

is the nth convergent of α. Let
tn−1

un−1
be the (n− 1)st convergent of α. Both tn

un
and tn−1

un−1
are independent of the choice of

an+1, an+2, . . .. By Lemma 3.1 (i), we have
∣

∣

∣
α −

tn
un

∣

∣

∣
≤

1

un(an+1un + un−1)
. (12)

Thus, if we choose an+1 sufficiently large, say

an+1 > N , (13)

then Tn0 is indeed a triangulation of T (α) which has the same combinatorial type as T ′
n0

(independent of the choice of the an+2, an+3, . . .).
It follows from (12) that for an+1 → ∞, the number α converges to tn

un
, and hence

Ai

A1
converges to A1i

A11
(of course, if neither ∆1 nor ∆i has p(α) as a vertex, then we have

Ai

A1
= A1i

A11
). Since A1 is bounded from above and since A1i is a constant, it follows that

for a sufficiently large an+1, we have
∣

∣

∣

Ai

A1i

−
A1

A11

∣

∣

∣
<

1

f
(

B1(A11 + . . . + A1n0)
) , (14)
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for all i = 1, . . . , n0, where B1 is chosen so that for all i, the triangle ∆i can be triangulated
into B1A1i triangles of equal areas. Now we choose an+1 so that it satisfies (13) and (14)
and also

an+1 > un−1
n . (15)

Condition (15) will be used later to show that the number α is transcendental.
Suppose now that an+1, . . . , an+j−1 have already been chosen. Then we define an+j

using the same basic idea that we have used to define an+1 - we merely replace the ap-
proximation tn

un
of α by the (n + j − 1)st convergent [a1, . . . , an+j−1] =

tn+j−1

un+j−1
, and we

replace the triangulation T ′′
n0

of T (α′′) by the triangulation T ′′′
n0

(of the same combina-

torial type) of the trapezoid T (
tn+j−1

un+j−1
) whose triangles have their vertices at the points

p(
tn+j−1

un+j−1
), p2, . . . , pm.

For sufficiently large an+j,
tn+j−1

un+j−1
approximates the number α again arbitrarily well,

and if
Aji

Aj1
are the quotients of the areas of the respective triangles in T ′′′

n0
, then, analogously

to (14), we have
∣

∣

∣

Ai

Aji

−
A1

Aj1

∣

∣

∣
<

1

f
(

Bj(Aj1 + . . . + Ajn0)
) , (16)

for all i = 1, . . . , n0, where Bj is chosen so that for all i, the triangle ∆i can be triangulated
into BjAji triangles of equal areas.

Further, analogously to (15), an+j is chosen so that

an+j > un+j−2
n+j−1. (17)

Since
Aji

Aj1
does not have to be a reduced fraction, we may assume wlog that

Aj1 + . . . + Ajn0 > Bj−1(Aj−1,1 + . . . + Aj−1,n0). (18)

By Lemma 3.1 (ii), it follows from (15) and (17) that α is transcendental. The desired
refinements Tnj

of the triangulation Tn0 of T (α) are now obtained by triangulating the
triangle ∆i into BjAji triangles of equal areas, for each i = 1, . . . , n0. Condition (ii) (c)
concerning the area discrepancy of Tnj

is then satisfied because of (14) and (16). Moreover,
(18) guarantees that the inequalities in (ii) (a) hold. This completes the proof. �
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